2 and 3 particle threshold energies in finite volumes, application for EFTs and lattice

Steve Sharpe University of Washington

Scattering observables from lattice QCD: progress in 3-particle channels

Steve Sharpe University of Washington

Scattering observables from finite-volume QCD: progress in 3-particle channels

Steve Sharpe University of Washington

Outline

- Overview of LQCD calculations involving 1 or 2 particles
- Motivation for studying 3 (or more) particles
- Status of theoretical formalism for 2 and 3 particles (EFT!)
- Sketch of derivation of 3-particle ``quantization condition''
- Numerical implementation of 3-particle QC
 - Isotropic approximation
 - Including higher partial waves
- Outlook

3-particle papers

Max Hansen & SRS:

"Relativistic, model-independent, three-particle quantization condition,"

arXiv:1408.5933 (PRD)

"Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude,"

arXiv:1504.04028 (PRD)

"Perturbative results for 2- & 3-particle threshold energies in finite volume,"

arXiv:1509.07929 (PRD)

"Threshold expansion of the 3-particle quantization condition,"

arXiv:1602.00324 (PRD)

"Applying the relativistic quantization condition to a 3-particle bound state in a periodic box,"

arXiv: 1609.04317 (PRD)

Raúl Briceño, Max Hansen & SRS:

"Relating the finite-volume spectrum and the 2-and-3-particle S-matrix for relativistic systems of identical scalar particles," arXiv:1701.07465 (PRD)

"Numerical study of the relativistic three-body quantization condition in the isotropic approximation,"

arXiv:1803.04169 (PRD)

"Three-particle systems with resonant sub-processes in a finite volume," arXiv:1810.01429

SRS

"Testing the threshold expansion for three-particle energies at fourth order in ϕ^4 theory," arXiv:1707.04279 (PRD)

Tyler Blanton, Fernando Romero-López & SRS:

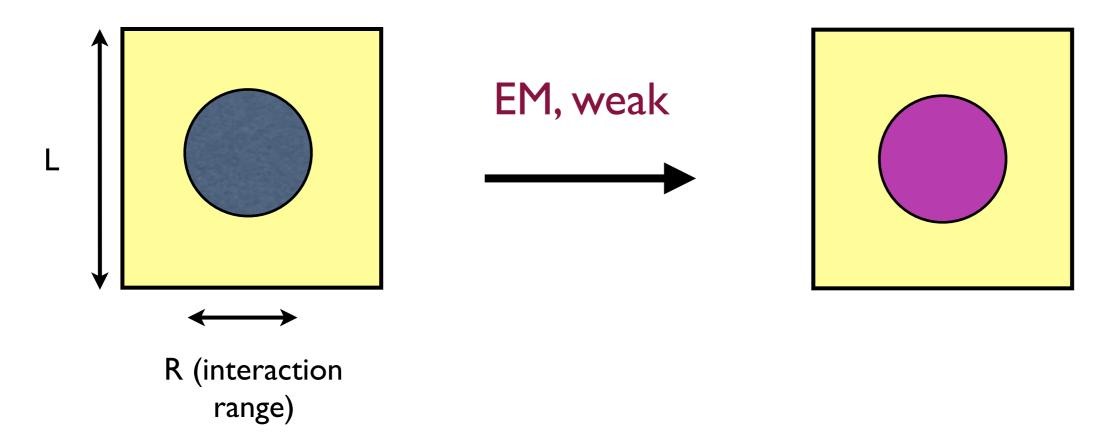
"Numerical implementation of 3-particle quantization condition: beyond the isotropic approximation,"

work in Progress

Overview of present status of LQCD calculations involving 1 or 2 particles

Well-controlled LQCD calculations

Single particle masses and matrix elements

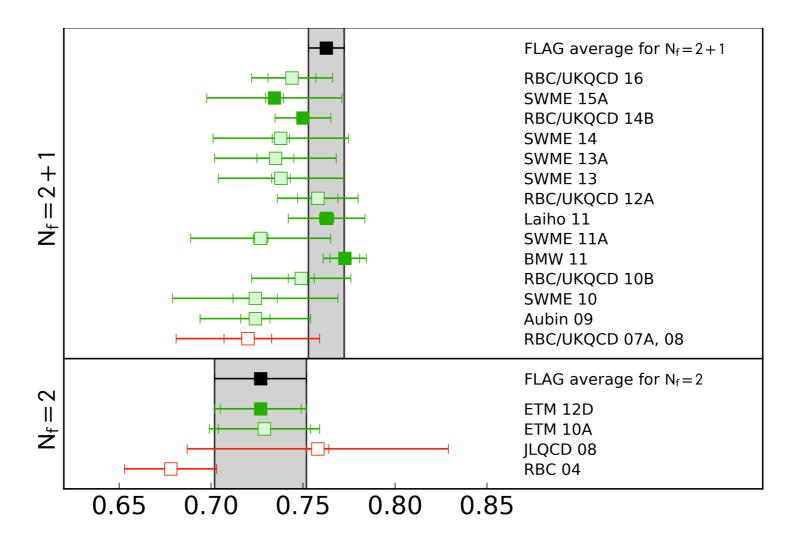


- For large enough boxes (L>2R) dominant finite-volume (FV) effects for single-particle states fall as $exp(-M_{\pi}L)$ [Lüscher 86]
- FV effects can be made small in practice

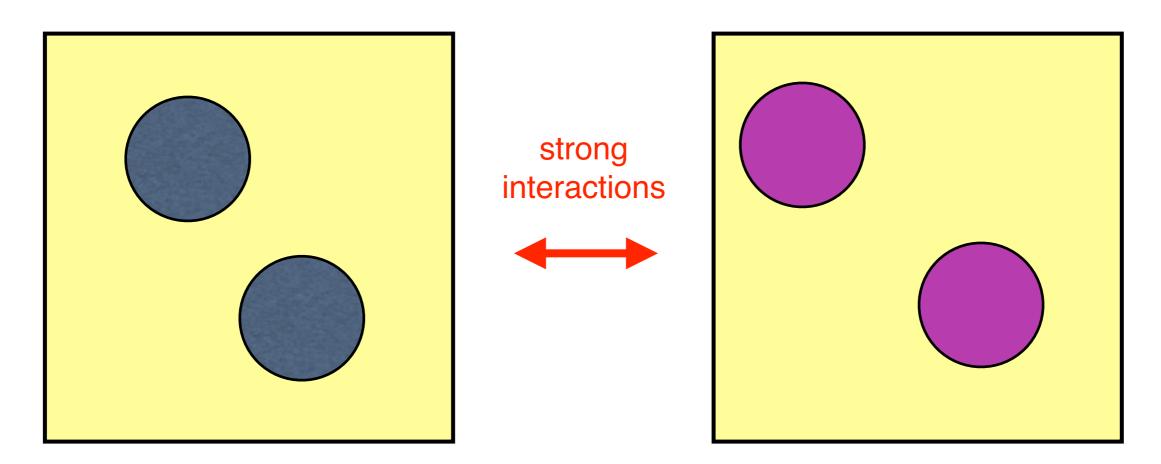
Well-controlled LQCD calculations

Example from FLAG 16: Kaon B-parameter

 \hat{B}_{K}



1.3% error



e.g. $\pi K \leftrightarrow \eta K$, $\pi \pi \leftrightarrow \overline{K} K \leftrightarrow \eta \eta$

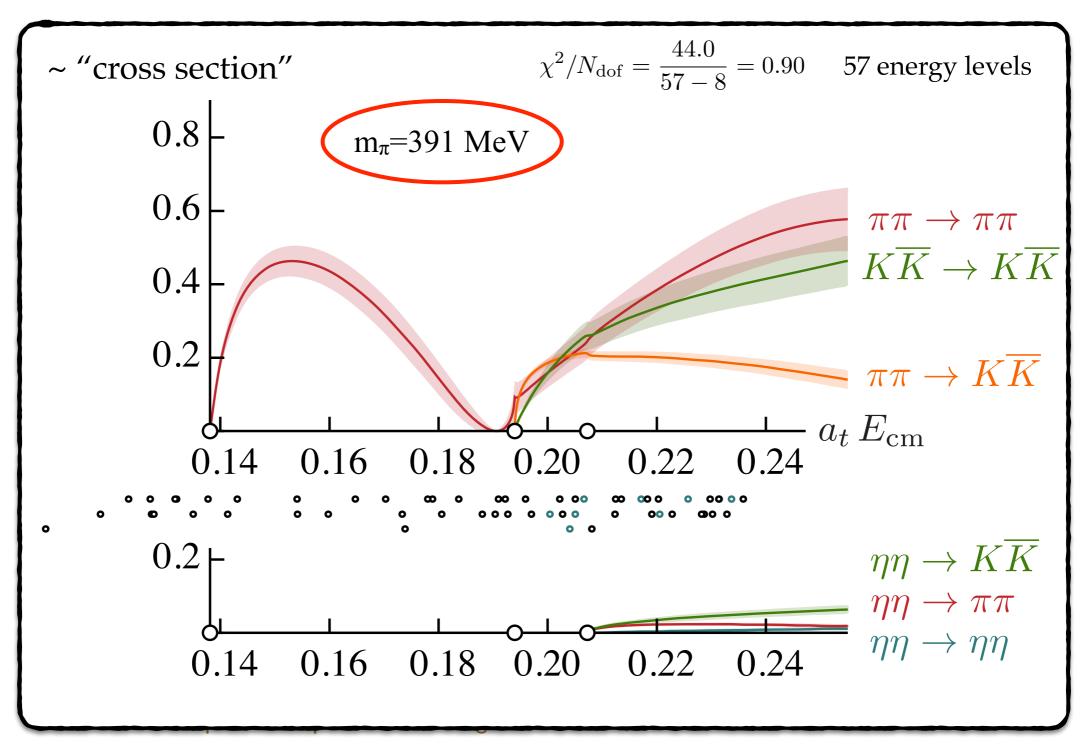
- I/Lⁿ finite-volume (FV) effects associated with 2 particles are theoretically understood [Lüscher, ...]
- Can extract scattering amplitudes (infinite-volume quantities) from FV spectrum
- Numerical implementations expanding rapidly [Colin Morningstar's talk]
- Frontier is two-baryon systems [Sinya Aoki's talk]

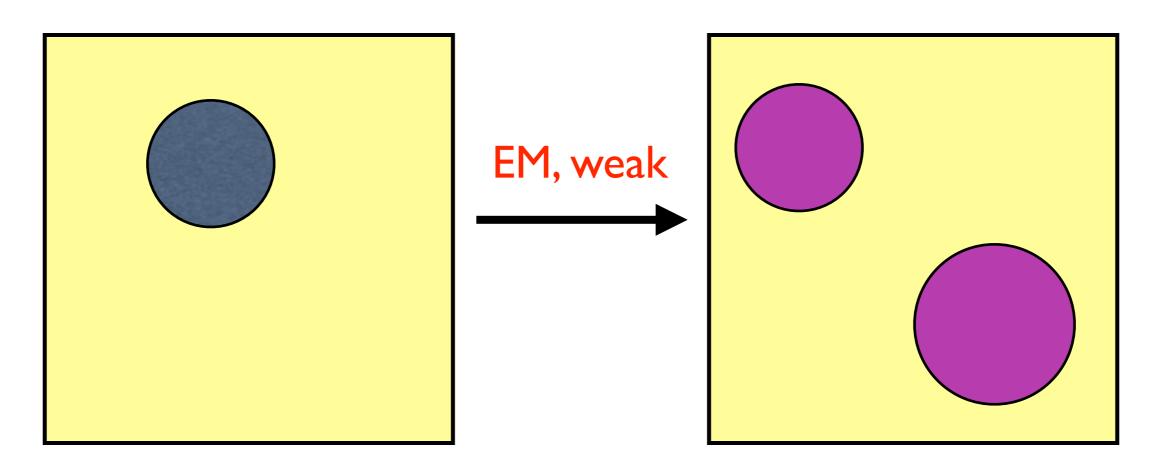
Coupled-channels analysis

 \S S-wave above $2m_{\pi}$, $2m_K$, and $2m_{\eta}$

Ansatz
$$\mathbf{K}^{-1}(s) = \begin{pmatrix} a+bs & c+ds & e \\ c+ds & f & g \\ e & g & h \end{pmatrix}$$

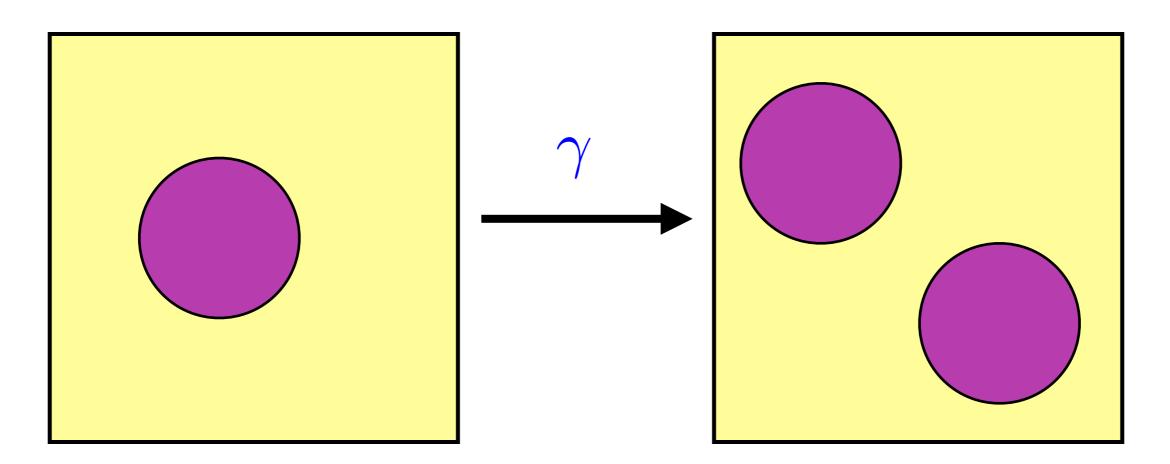
[Briceño, Dudek, Edwards, & Wilson arXiv:1708.06667]





e.g. $K \rightarrow \pi\pi$ decay amplitudes

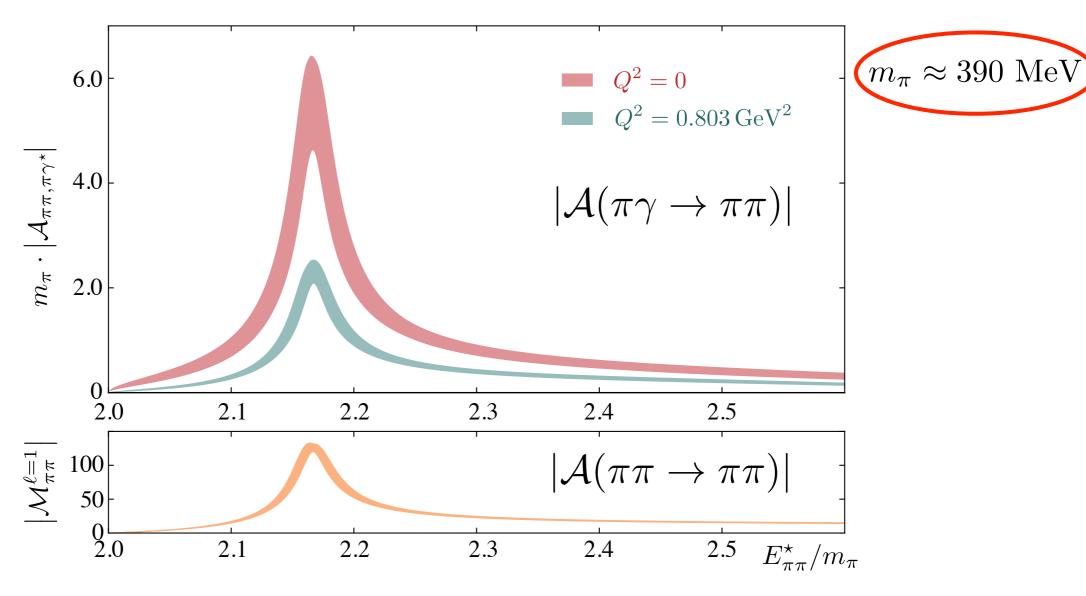
- Theoretical issues understood [Lellouch & Lüscher, ...]
- First lattice results obtained for decay rates (consistent with $\Delta I = \frac{1}{2}$ rule) and for ϵ'/ϵ (large errors so far) [RBC/UKQCD]



e.g. $\pi\gamma \rightarrow \rho$ amplitude

• Theoretical issues understood [Briceño, Hansen & Walker-Loud, ...]

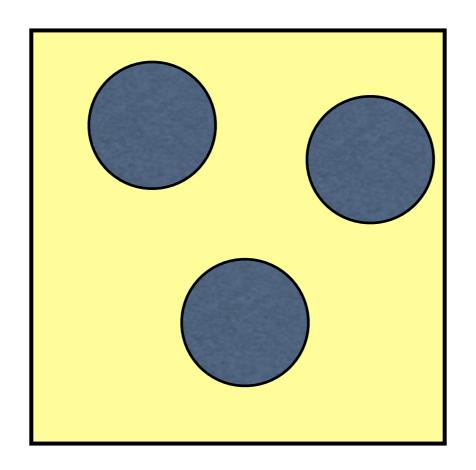
$$\pi\gamma \rightarrow \rho$$



Briceño, Dudek, Edwards, Shultz, Thomas, Wilson [HadSpec collab.] arXiv:1604.03530

• Results also from [Leskovic, ..., Meinel, ..., arXiv:1611:00282]

Present frontier

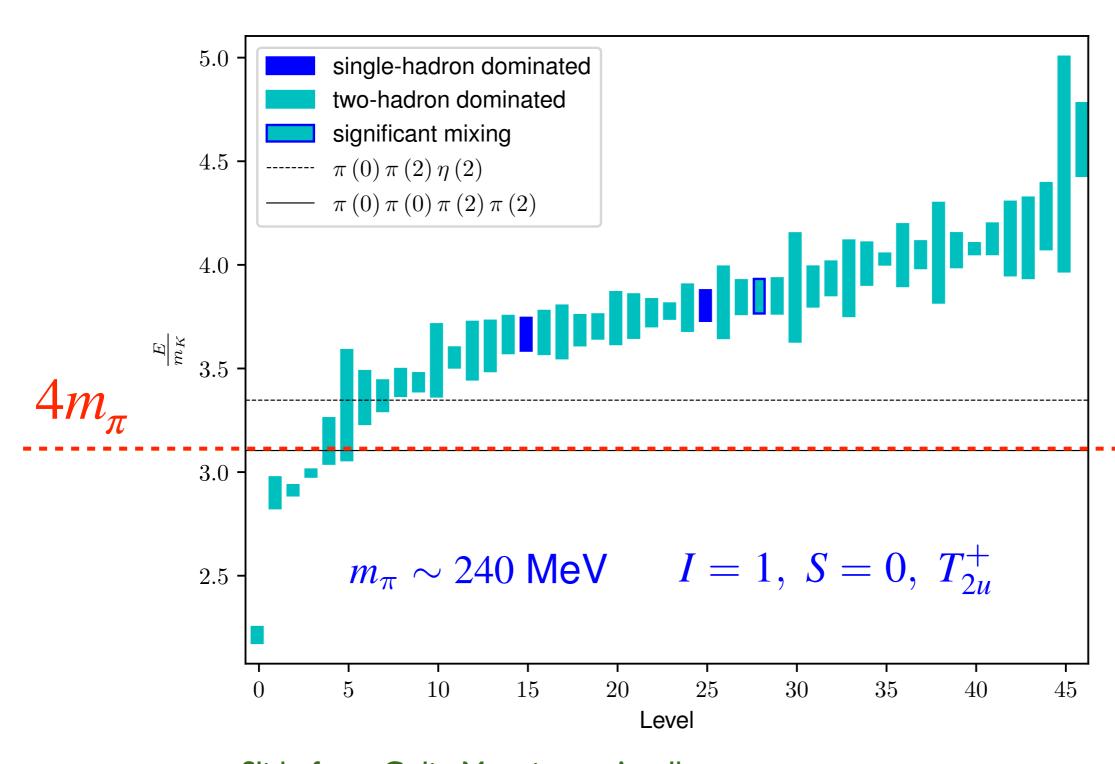


Motivations for studying three (or more) particles

Studying resonances

- Most resonances have 3 (or more) particle decay channels
 - $\omega(782, I^G J^{PC} = 0^-1^{--}) \rightarrow 3\pi$ (no resonant subchannels)
 - $a_2(1320, I^G J^{PC} = 1^{-2^{++}}) \to \rho \pi \to 3\pi$
 - $N(1440) \rightarrow \Delta \pi \rightarrow N\pi\pi$
 - $X(3872) \rightarrow J/\Psi \pi \pi$
- N.B. If a resonance has both 2- and 3-particle strong decays, then 2-particle methods fail—channels cannot be separated as they can in experiment

States above 3-particle threshold



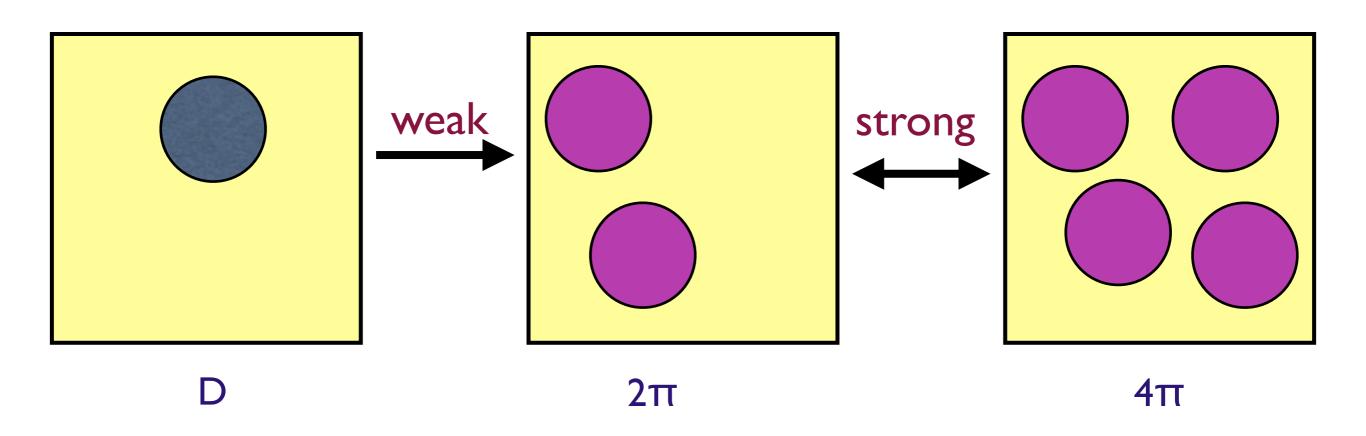
Slide from Colin Morningstar's talk

Weak decays

- Calculating weak decay amplitudes/form factors involving 3 particles, e.g. K→πππ
- N.B. Can study weak K→2π decays independently of K→3π, since strong interactions do not mix these final states (in isospin-symmetric limit)

A more distant motivation

- Calculating CP-violation in $D \rightarrow \pi \pi$, $K\overline{K}$ in the Standard Model
- Finite-volume state is a mix of 2π , $K\overline{K}$, $\eta\eta$, 4π , 6π , ...
- Need 4 (or more) particles in the box!



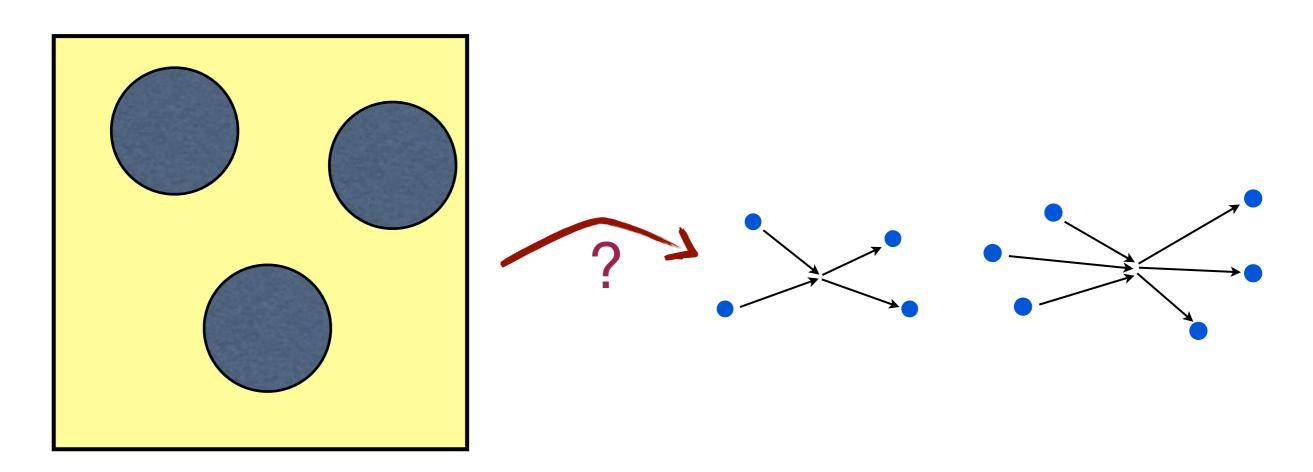
3-body interactions

- Determining NNN interaction
 - Input for effective field theory treatments of larger nuclei & nuclear matter
- Similarly, $\pi\pi\pi$, $\pi K\overline{K}$, ... interactions needed for study of pion/kaon condensation

The fundamental theoretical issue

The fundamental issue

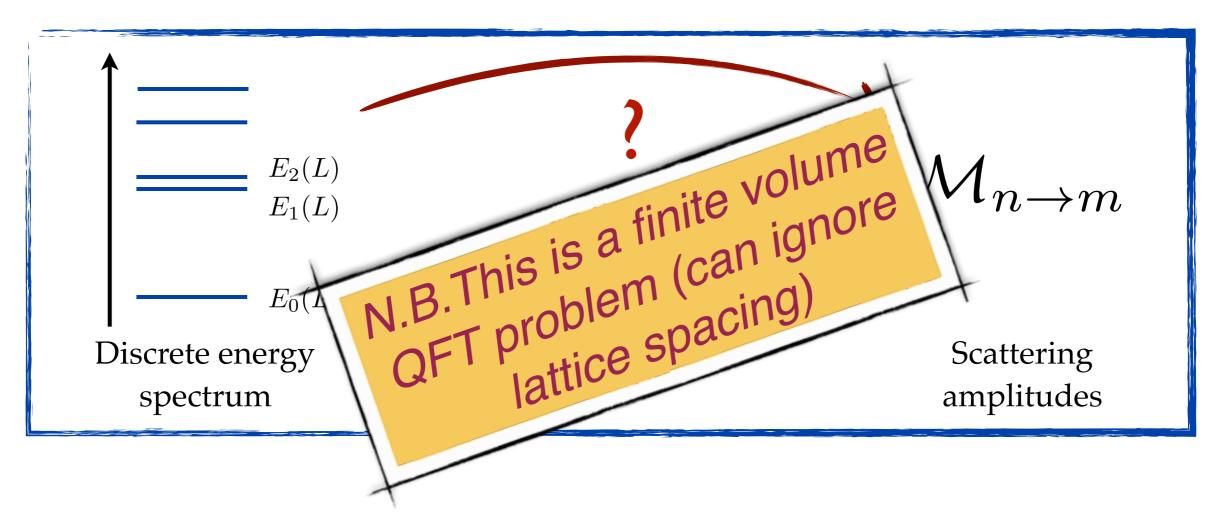
- Lattice simulations are done in finite volumes
- Experiments are not



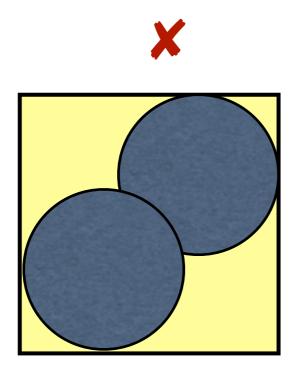
How do we connect these?

The fundamental issue

- Lattice QCD can calculate energy levels of multiparticle systems in a box
- How are these related to infinite-volume scattering amplitudes (which determine resonance properties)?

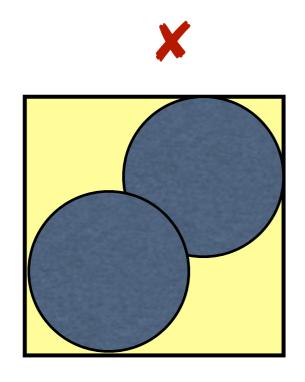


When is the spectrum related to scattering amplitudes?

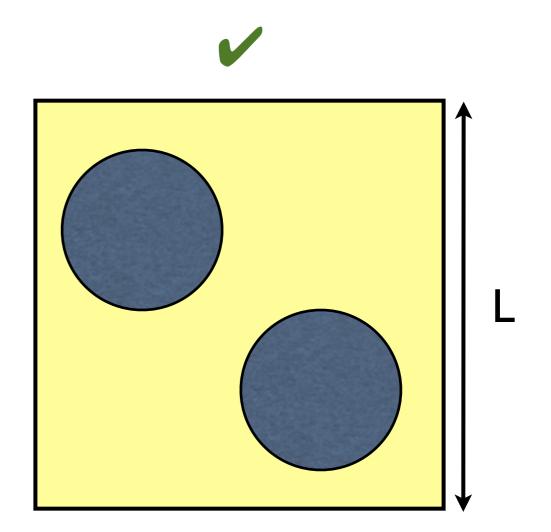


L<2R
No "outside" region.
Spectrum NOT related to scatt. amps.
Depends on finite-density properties

When is the spectrum related to scattering amplitudes?



L<2R
No "outside" region.
Spectrum NOT related to scatt. amps.
Depends on finite-density properties



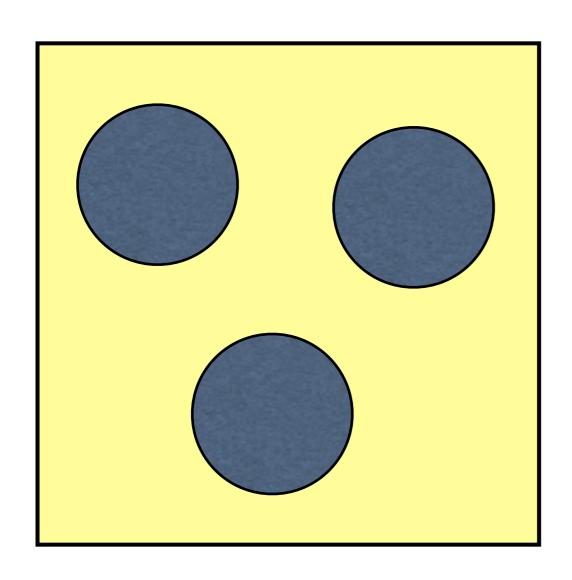
L>2R

There is an "outside" region. Spectrum IS related to scatt. amps. up to corrections proportional to $e^{-M_\pi L}$

[Lüscher]

Theoretically understood; numerical implementations mature.

...and for 3 particles?



- Spectrum IS related to 2→2, 2→3 & 3→3 scattering amplitudes up to corrections proportional to e^{-ML} [Polejaeva & Rusetsky]
- Formalism developed in a generic relativistic EFT [Hansen & SRS, Briceño, Hansen & SRS]
- Formalisms based on NREFT [Hammer, Pang & Rusetsky] and on ``finite-volume unitarity" [Döring & Mai] recently developed
- Practical applicability under investigation
- HALQCD approach can be extended to 3 particles in NR domain [Aoki et al.]

2-particle quantization condition

Single-channel 2-particle quantization condition

[Lüscher 86 & 91; Rummukainen & Gottlieb 85; Kim, Sachrajda & SRS 05; ...]

- Two particles (say pions) in cubic box of size L with PBC and total momentum P
- Below inelastic threshold (4 pions), the finite-volume spectrum E_1 , E_2 , ... is given by solutions to a secular equation in partial-wave (l,m) space (up to exponentially suppressed corrections)

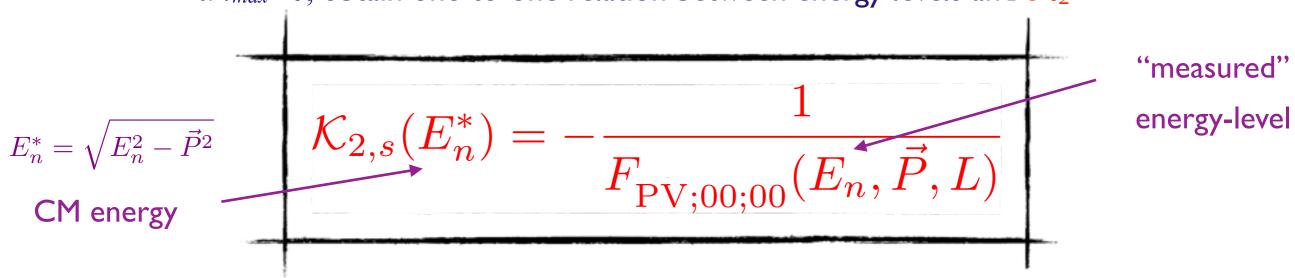
$$\det\left[(F_{\widetilde{\mathrm{PV}}})^{-1} + \mathcal{K}_2\right] = 0$$

- \mathcal{K}_2 ~tan δ/q is the K-matrix, which is diagonal in l,m space
- F_{PV} is a known kinematical "zeta-function", depending on the box shape & E; It is off-diagonal in *l,m*, since the box violates rotation symmetry

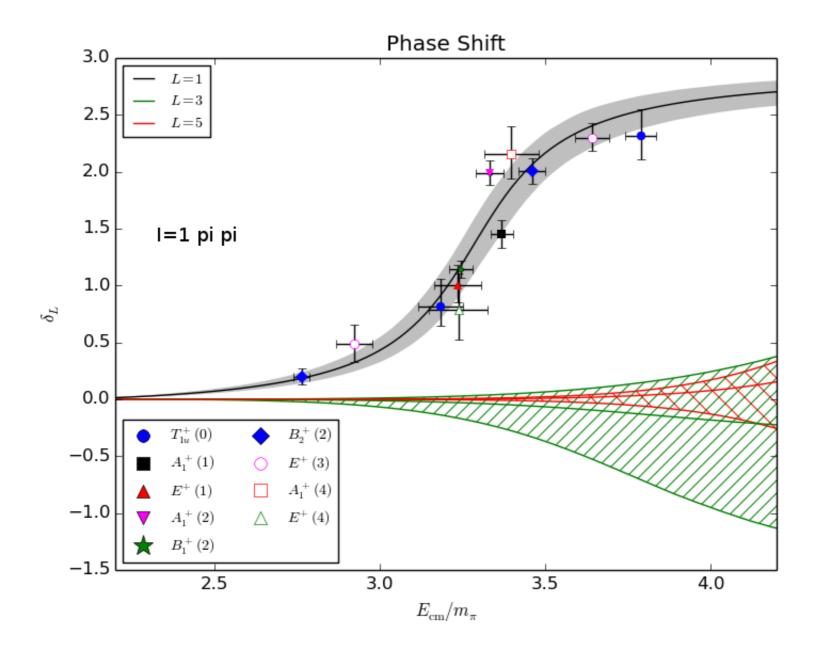
Single-channel 2-particle quantization condition

$$\det\left[(F_{\rm PV})^{-1} + \mathcal{K}_2\right] = 0$$

- Infinite-dimensional determinant must be truncated to be practical; truncate by assuming that \mathcal{K}_2 vanishes above l_{max}
- If $l_{max}=0$, obtain one-to-one relation between energy levels and \mathcal{K}_2



Application to p meson



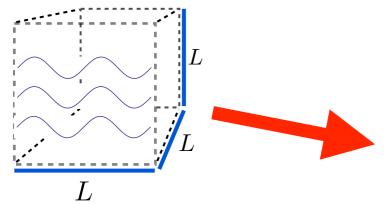
C. Morningstar

Multihadron challenges

3-particle quantization condition(s)

2 step method

2 & 3 particle spectrum from LQCD



Quantization conditions

$$\det [F_2^{-1} + \mathcal{K}_2] = 0$$
$$\det [F_3^{-1} + \mathcal{K}_{df,3}] = 0$$

Integral equations in infinite volume

Scattering amplitudes

$$\mathcal{M}_2$$
, \mathcal{M}_3 , \mathcal{M}_{23} ,...

Meaning of quantization condition

$$\det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$

$$F_3 \equiv \frac{F}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + [1 + \mathcal{K}_2 G]^{-1} \mathcal{K}_2 F} \right]$$

$$F =$$
 $G =$

• All quantities are infinite-dimensional matrices with indices describing 3 on-shell particles

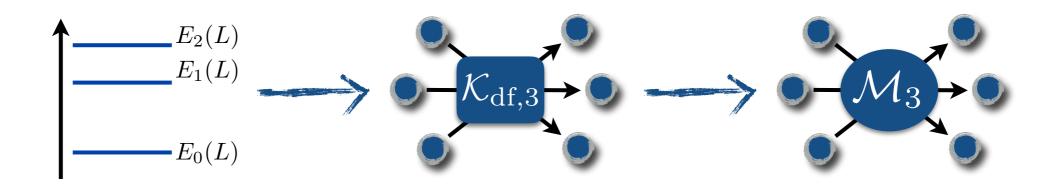
[finite volume "spectator" momentum: $\mathbf{k}=2\pi\mathbf{n}/L$] x [2-particle CM angular momentum: l,m]

• For large spectator-momentum **k**, the other two particles are below threshold; we must include such configurations by analytic continuation up to a cut-off at k~m

Status of relativistic approach

 Original work applied to scalars with G-parity & no subchannel resonances [Hansen & SRS, arXiv:1408.5933 & 1504.04248]

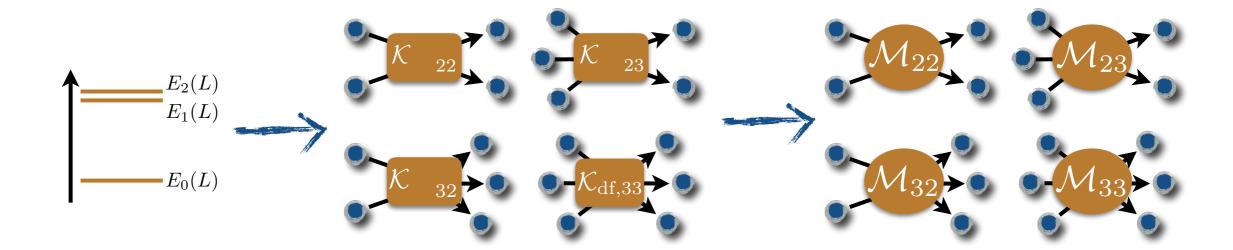
$$\det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$



$$\det\left[F_3^{-1} + K_{\text{df},3}\right] = 0$$

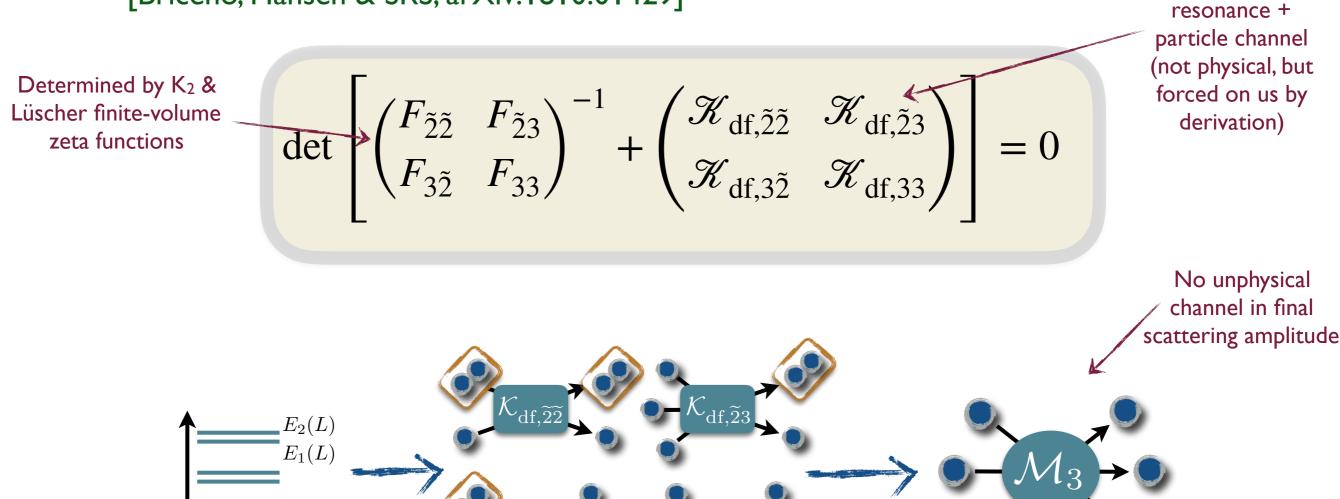
Status of relativistic approach

Second major step: removing G-parity constraint, allowing 2↔3
 processes [Briceño, Hansen & SRS, arXiv:1701.07465]



Status of relativistic approach

• Final major step: allowing subchannel resonance (i.e. pole in \mathcal{K}_2) [Briceño, Hansen & SRS, arXiv:1810.01429]



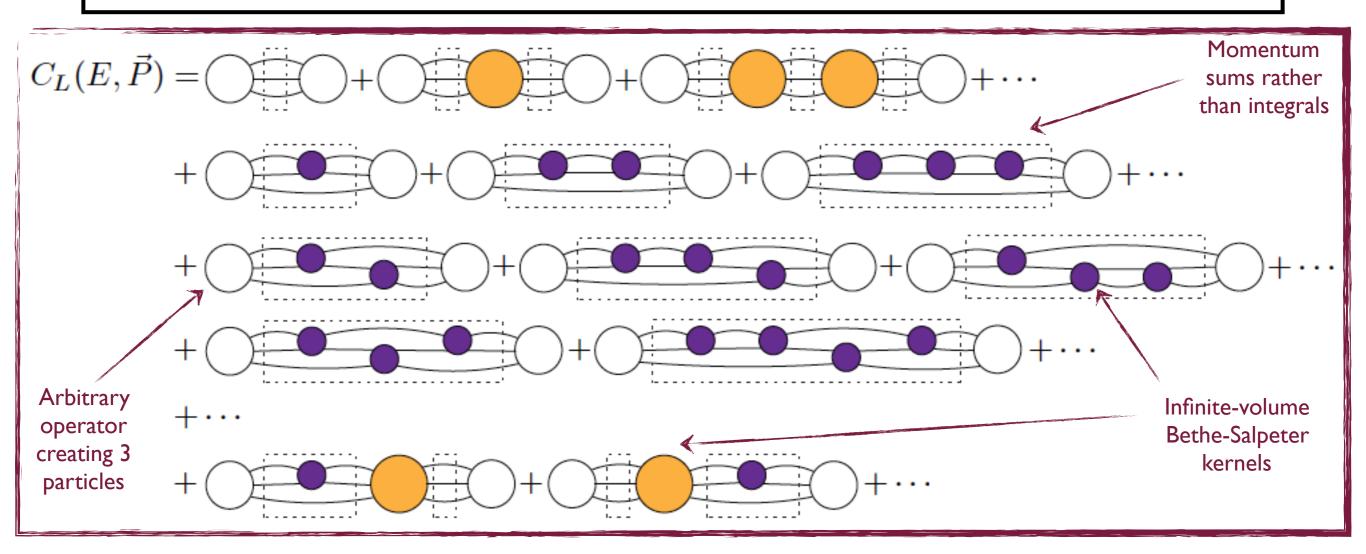
Sketch of derivation of 3-particle quantization condition

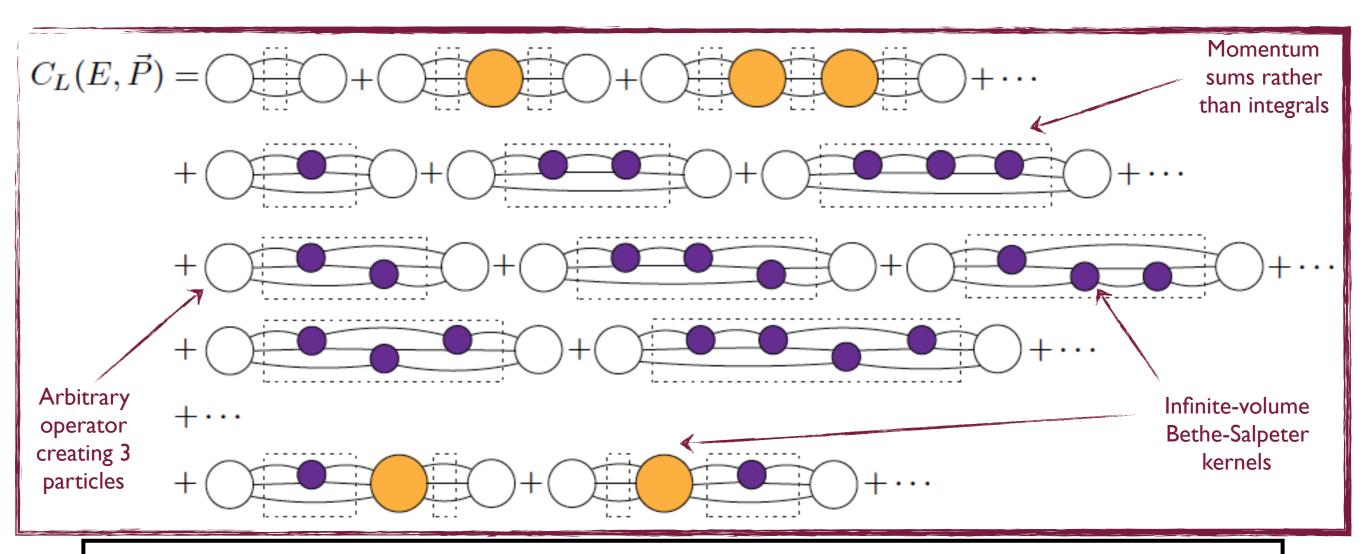
[Hansen & SRS, arXiv:1408.5933 & 1504.04248]

- Generic relativistic EFT, working to all orders
 - Do not need a power-counting scheme

(1)

- To simplify analysis: impose a global Z_2 symmetry (G parity) & consider identical scalars
- Obtain spectrum from poles in finite-volume correlator
 - Consider E_{CM} < 5m so on-shell states involve only 3 particles





- Replace sums with integrals plus sum-integral differences to extent possible
 - If summand has pole or cusp then difference ~I/Lⁿ and must keep (Lüscher zeta function)
 - If summand is smooth then difference ~ exp(-mL) and drop
- Avoid cusps by using PV prescription—leads to generalized 3-particle K matrix
- Subtract above-threshold divergences of 3-particle K matrix—leads to $\mathcal{K}_{df,3}$

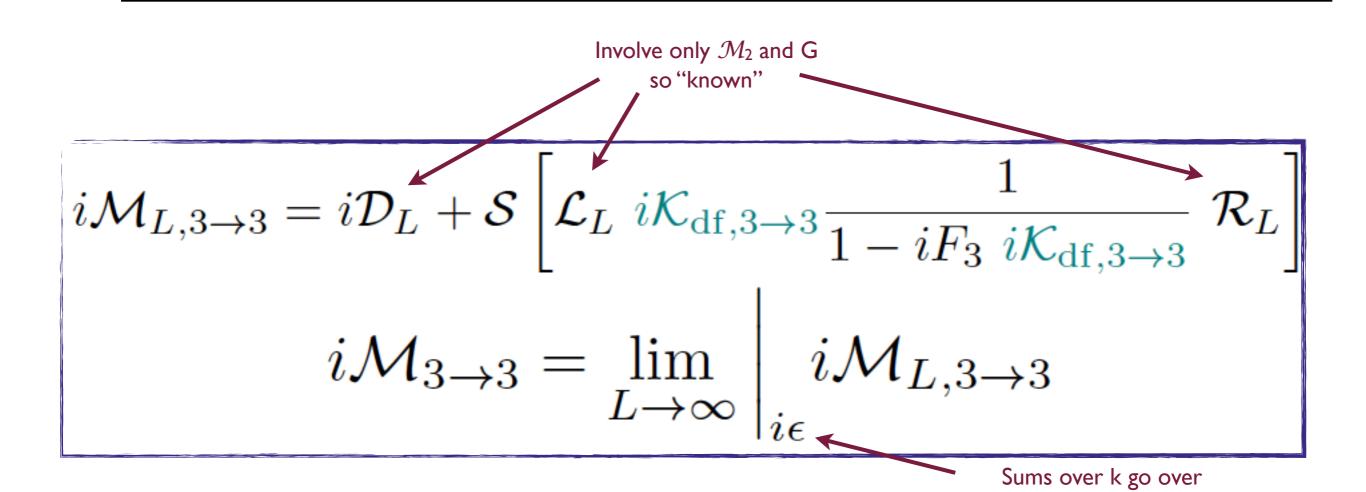
(2)

(3)

• Reorganize, resum, ... to separate infinite-volume on-shell relativistically-invariant non-singular scattering quantities (\mathcal{K}_2 , $\mathcal{K}_{df,3}$) from known finite-volume functions (F [Lüscher zeta function] & G ["switch function"])

$$\Rightarrow \det \left[F_3^{-1} + \mathcal{K}_{\mathrm{df},3} \right] = 0$$

- Relate $\mathcal{K}_{df,3}$ to \mathcal{M}_3 by taking infinite-volume limit of finite-volume scattering amplitude
 - ullet Leads to infinite-volume integral equations involving \mathcal{M}_2 & cut-off function H
 - Can formally invert equations to show that $\mathcal{K}_{df,3}$ (while unphysical) is relativistically invariant and has same properties under discrete symmetries (P,T) as \mathcal{M}_3



S. Sharpe, "Three-particle scattering from lattice QCD ..." I I/8/2018, MIAPP

to integrals with iE pole prescription

Numerical implementation: isotropic approximation

[Briceño, Hansen & SRS, arXiv:1803.04169]

Isotropic low-energy approximation

[Briceño, Hansen & SRS, 1803.04169]

- Scalar particles with G parity so no $2 \longleftrightarrow 3$ transitions and no subchannel resonances (e.g. $3 \pi^+$)
- 2-particle interactions are purely s-wave, and determined by the scattering length alone (which can be arbitrarily negative, $a \rightarrow -\infty$)
- Point-like three-particle interaction $\mathcal{K}_{df,3}$ independent of momenta, although can depend on $s=(E_{cm})^2$
- Reduces problem to I-d quantization condition, with intermediate matrices involve finite-volume momenta up to cutoff |k|~m
- Consider only P=0 (though formalism applies for all P)
- Analog in our formalism of the approximations used in other approaches: [Hammer, Pang, Rusetsky, 1706.07700; Mai & Döring, 1709.08222; Döring et al., 1802.03362; Mai & Döring, 1807.04746]

Isotropic low-energy approximation

[Briceño, Hansen & SRS, 1803.04169]

$$\det \left[F_3^{-1} + \mathcal{H}_{df,3} \right] = 0 \longrightarrow 1/\mathcal{K}_{df,3}^{iso}(E^*) = -F_3^{iso}[E, \vec{P}, L, \mathcal{M}_2^s]$$

$$F_3^{\text{iso}}(E,L) = \langle \mathbf{1} | F_3^s | \mathbf{1} \rangle = \sum_{k,p} [F_3^s]_{kp} \qquad [F_3^s]_{kp} = \frac{1}{L^3} \left[\frac{\tilde{F}^s}{3} - \tilde{F}^s \frac{1}{1/(2\omega \mathcal{K}_2^s) + \tilde{F}^s + \tilde{G}^s} \tilde{F}^s \right]_{kp}$$

• Relation of $\mathcal{K}_{df,3}$ to \mathcal{M}_3 (matrix equation that becomes integral equation when $L \to \infty$)

$$\mathcal{M}_3 = \mathcal{S} \begin{bmatrix} \mathcal{D} + \mathcal{L} & 1 \\ 1/\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}} + F_{3,\infty}^{\mathrm{iso}} \mathcal{R} \end{bmatrix}$$

$$\mathcal{D}, \mathcal{L} \& \, \mathcal{R} \, \mathrm{depend} \qquad \qquad \mathsf{L} \to \infty \, \mathrm{limit \, of}$$

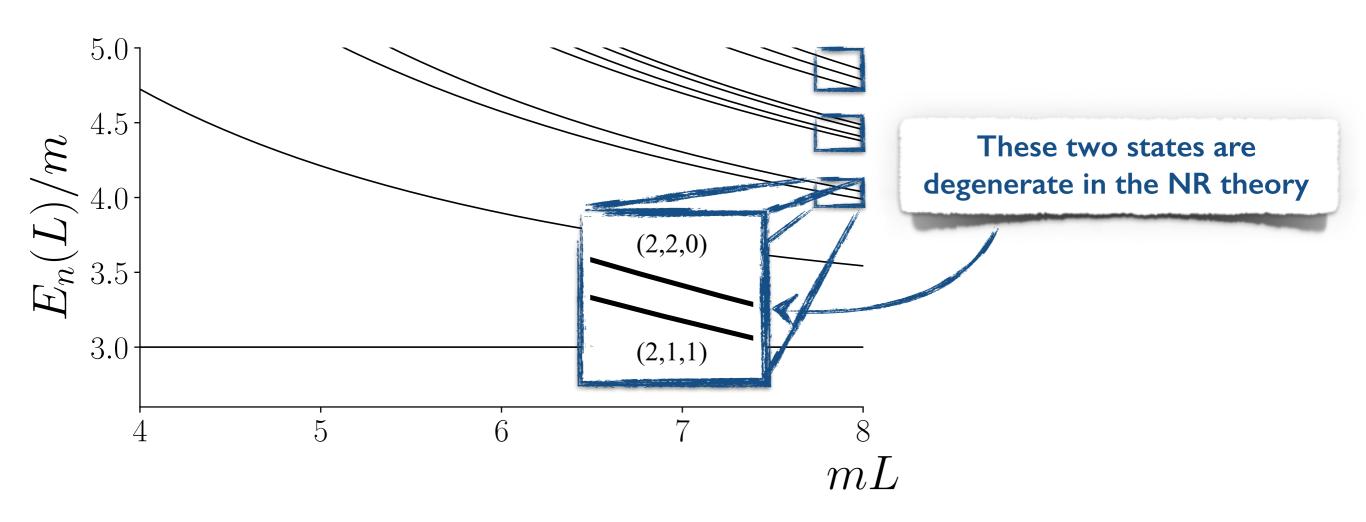
$$\mathrm{on} \, \mathcal{M}_2 \, \& \qquad \qquad \mathsf{F}_3^{\mathrm{iso}} \, \mathrm{depends \, on}$$

$$\mathrm{kinematical \, factors} \qquad \mathcal{M}_2 \, \& \, \mathrm{kinematical \, factors}$$

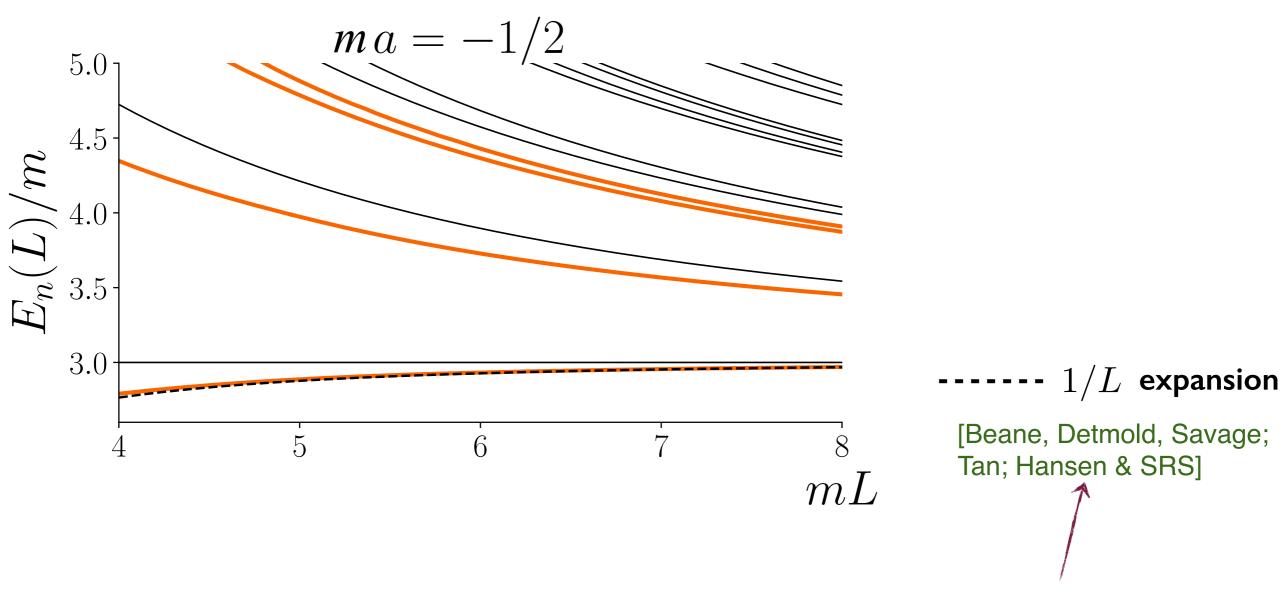
- Useful benchmark: deviations measure impact of 3-particle interaction
 - Caveat: scheme-dependent since $\mathcal{K}_{df,3}$ depends on cut-off function H
- Meaning of limit for \mathcal{M}_3 :

$$i\mathcal{M}_3 = \mathcal{S}\left[\begin{array}{c} i\mathcal{M}_2 \\ i\mathcal{M}_2 \end{array} + \begin{array}{c} i\mathcal{M}_2 \\ i\mathcal{M}_2 \end{array} + \cdots \right]$$

Non-interacting states

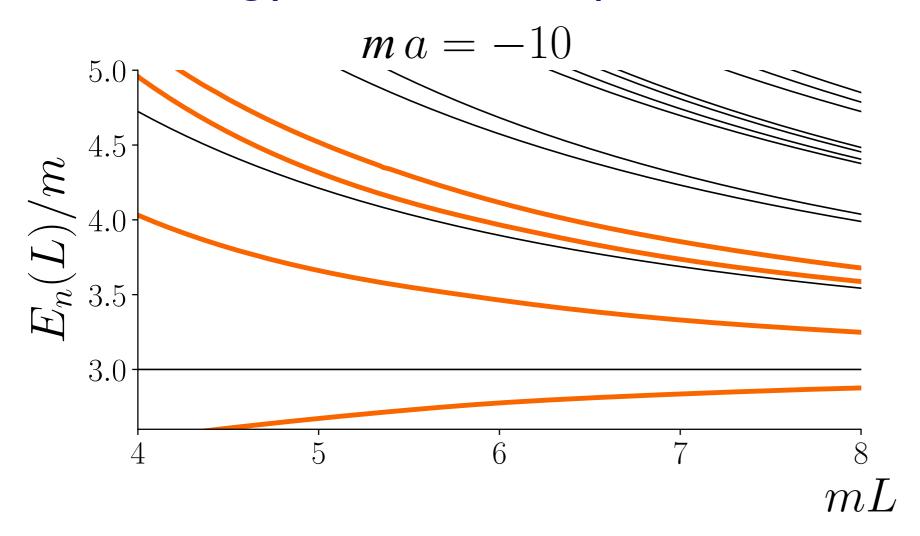


Weakly attractive two-particle interaction



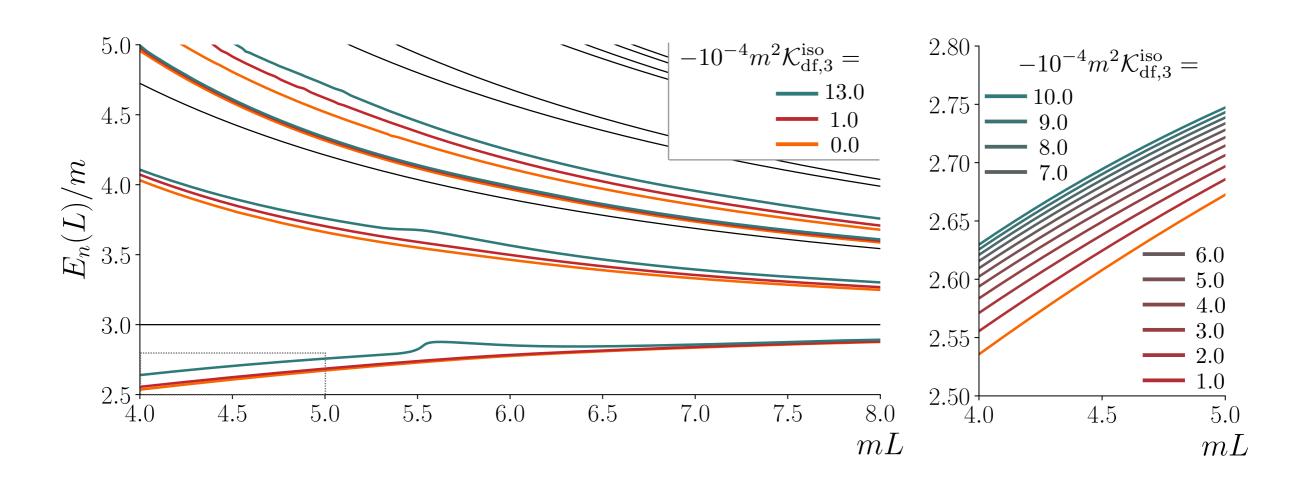
2-particle interaction enters at I/L⁴, 3-particle interaction (and relativistic effects) enter at I/L⁶

Strongly attractive two-particle interaction



Impact of K_{df,3}

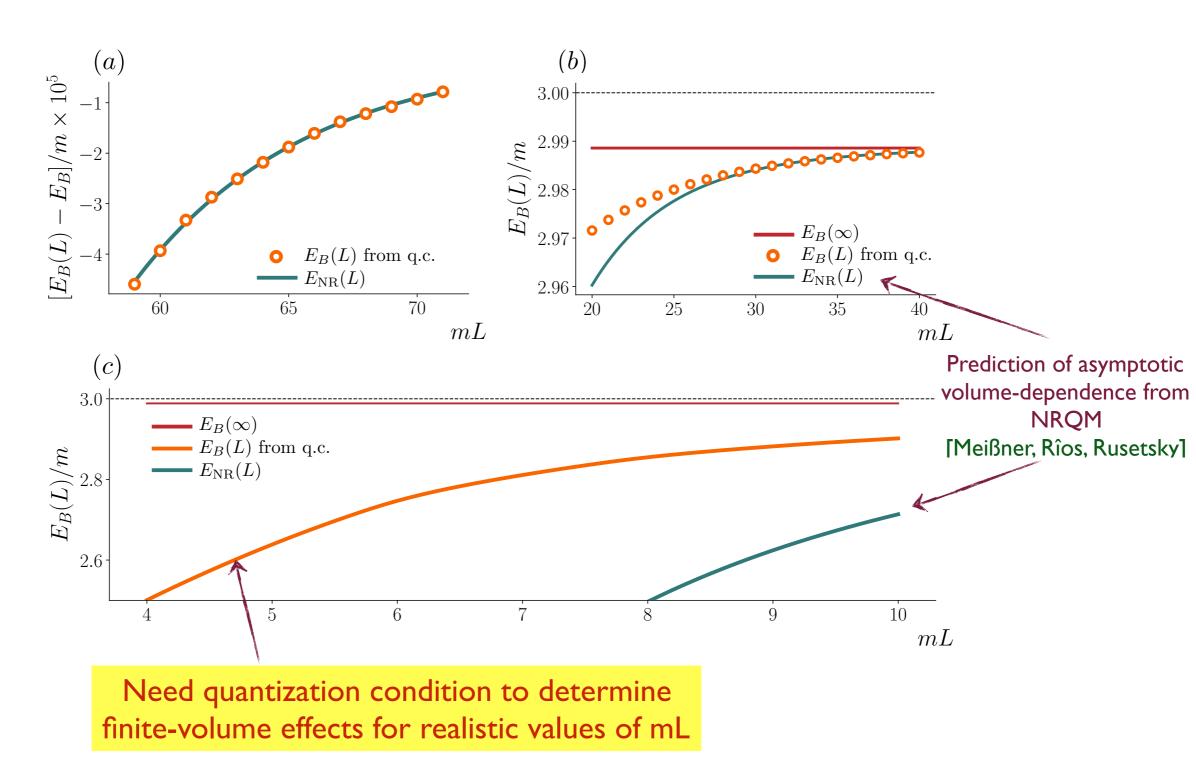
ma = -10 (strongly attractive interaction)



Local 3-particle interaction has significant effect on energies, especially in region of simulations (mL<5), and thus can be determined

Volume-dependence of 3-body bound state

am= -10^4 & m²K_{df,3}iso=2500 (unitary regime)

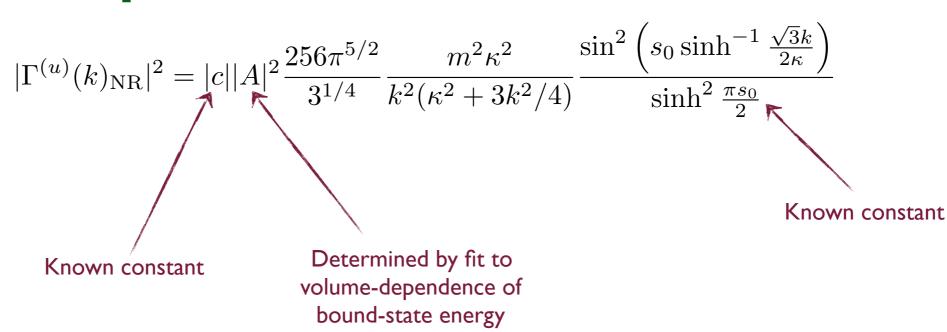


Bound state wave-function

- Work in unitary regime (ma=-10⁴) and tune $\mathcal{K}_{df,3}$ so 3-body bound state at E_B=2.98858 m
- ullet Solve integral equations numerically to determine $\mathcal{M}_{ ext{df,3}}$ from $\mathcal{K}_{ ext{df,3}}$
- Determine wavefunction from residue at bound-state pole

$$\mathcal{M}_{df,3}^{(u,u)}(k,p) \sim -\frac{\Gamma^{(u)}(k)\Gamma^{(u)}(p)^*}{E^2 - E_B^2}$$

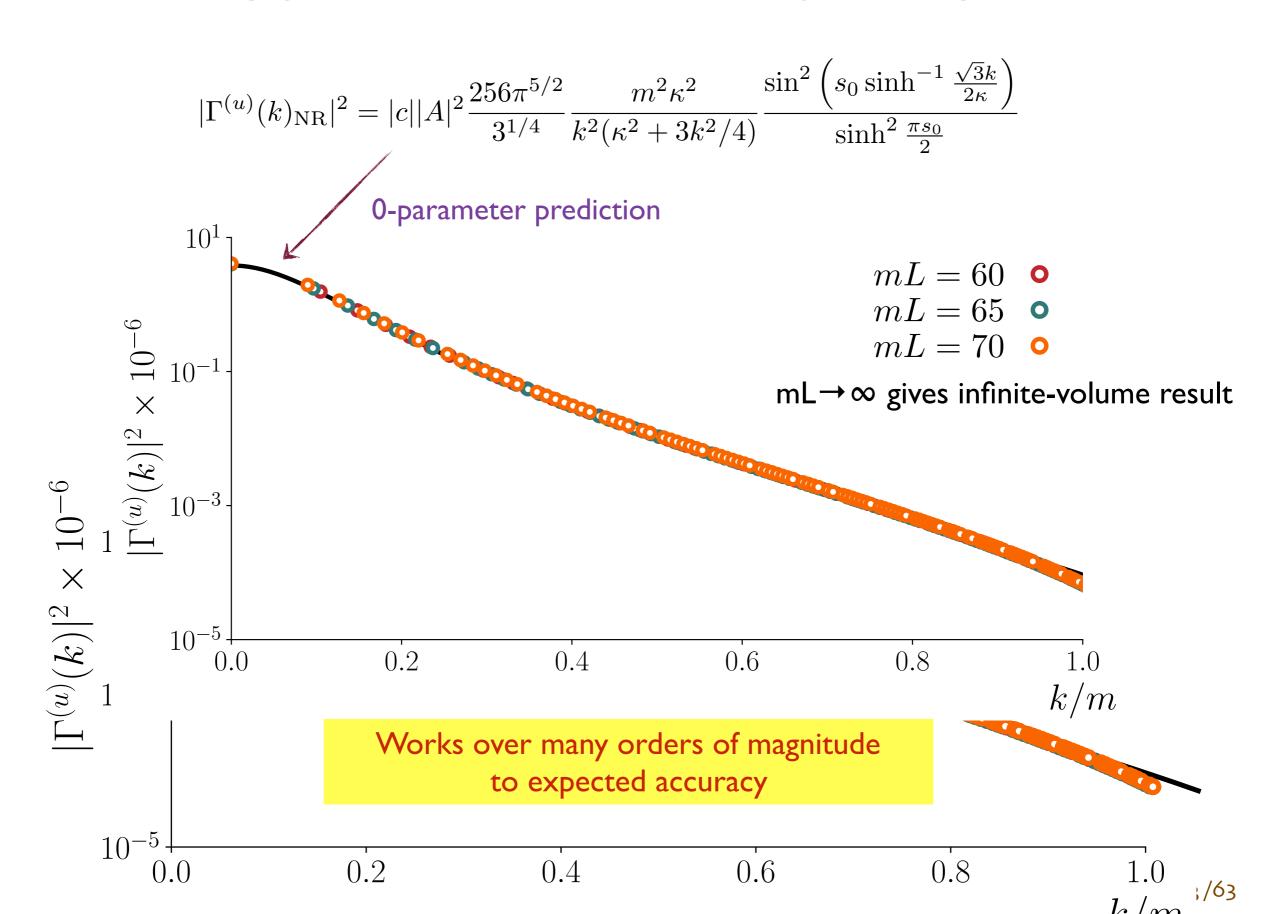
 Compare to analytic prediction from NRQM in unitary limit [Hansen & SRS, 1609.04317]



 10^1

mL=60 •

Bound state wave-function

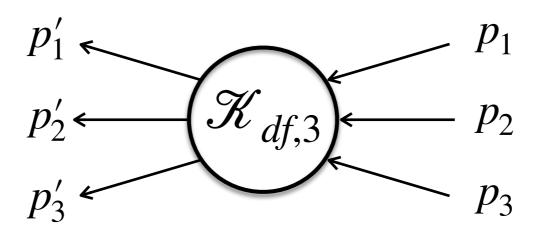


Beyond isotropic: including higher partial waves

[Blanton, Romero-López & SRS, in progress]

Beyond the isotropic approximation

- In 2-particle case, assume s-wave dominance at low energies, then systematically add in higher waves (suppressed by q²¹)
- We are implementing the same general approach for $\mathcal{K}_{df,3}$, making use of the facts that it is relativistically invariant and completely symmetric under initial- & final-state permutations, and expanding about threshold



 We work in the G-parity invariant theory with 3 identical scalars, so the first channel beyond s-wave has I=2 (d-wave)

Beyond the isotropic approximation

$$p'_1$$
 p'_2
 $\mathcal{K}_{df,3}$
 p_2
 p_3

$$\Delta = s - 9m^{2}$$

$$\Delta_{1} = (p_{2} + p_{3})^{2} - 4m^{2} \text{ etc.}$$

$$\Delta'_{1} = (p'_{2} + p'_{3})^{2} - 4m^{2} \text{ etc.}$$

$$t_{ii} = (p_{i} - p'_{i})^{2}$$

$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso}(E) + c_A \mathcal{K}_{3A} + c_B \mathcal{K}_{3B} + \mathcal{O}(\Delta^3)$$

$$\mathcal{K}_{df,3}^{iso} = c_0 + c_1 \Delta + c_2 \Delta^2$$

 c_0 is the leading term—only term kept in isotropic approx

$$\mathcal{K}_{3A} = \sum \left(\Delta_i^2 + \Delta_i^{'2} \right)$$

 c_1 is coefficient of the <u>only</u> linear term

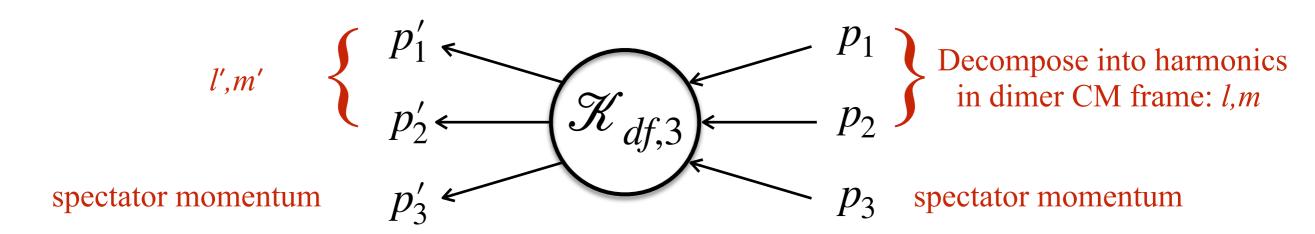
$$\mathcal{K}_{3B} = \sum_{i,j=1}^{3} t_{ij}^2$$

Only three coefficients needed at quadratic order:

$$\mathbf{c}_2$$
, c_A & c_B

Many fewer than the 7 angular variables + s dependence present at arbitrary energy!

Decomposing into spectator/dimer basis

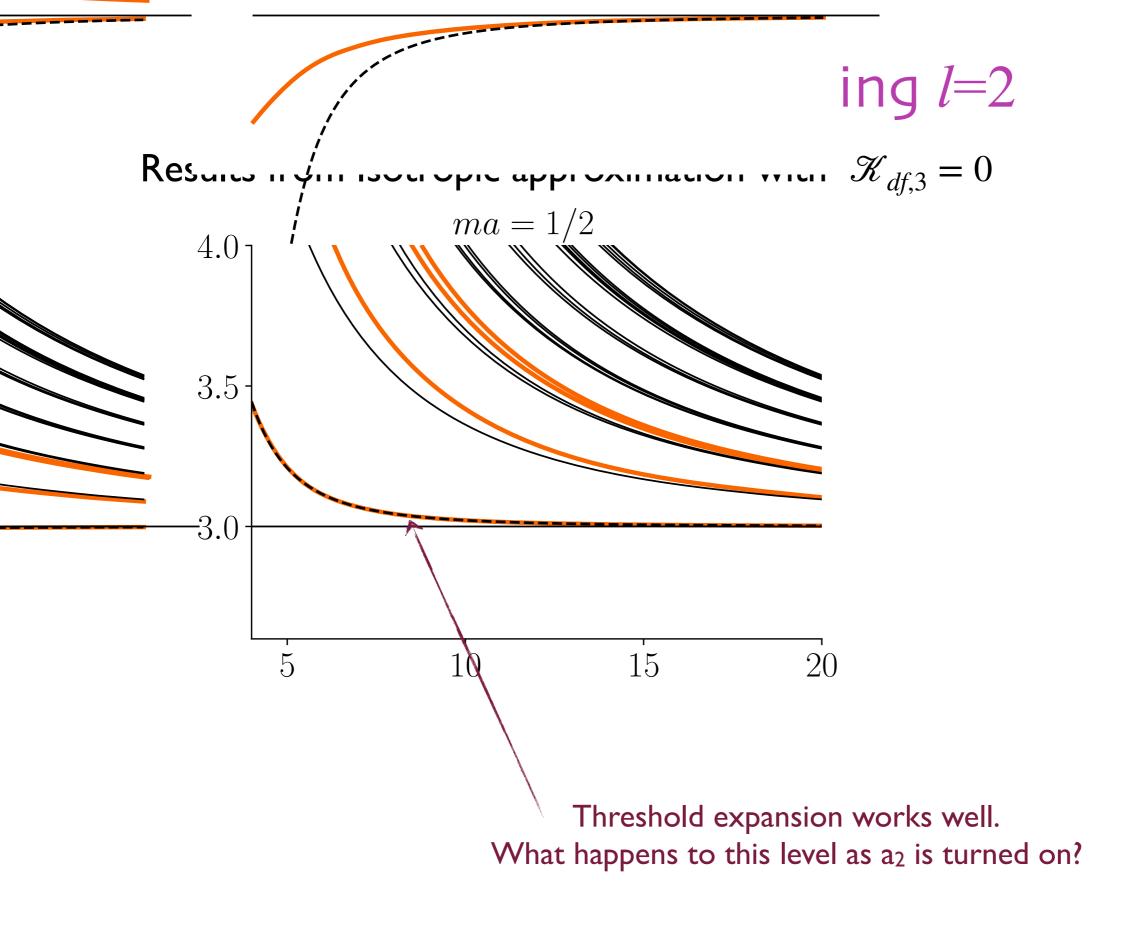


$$\mathcal{K}_{3A}$$
, \mathcal{K}_{3B} \Rightarrow $l'=0,2 \& l=0,2$

For consistency, need $\mathcal{K}_{2}^{(0)} \sim 1 + q^2 + q^4 \& \mathcal{K}_{2}^{(2)} \sim q^4$

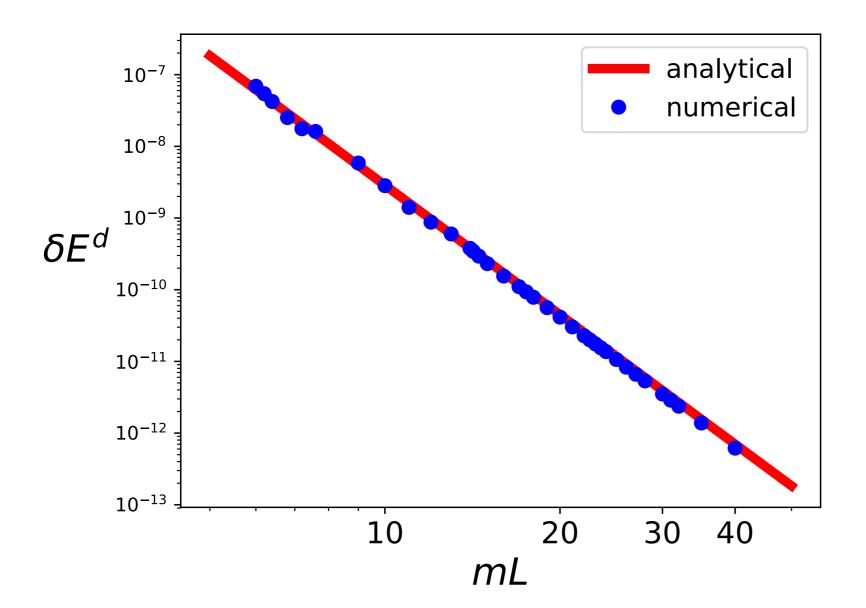
$$\frac{1}{\mathcal{K}_{2}^{(0)}} = \frac{1}{16\pi E_{2}} \left[\frac{1}{a_{0}} + r_{0} \frac{q^{2}}{2} + P_{0} r_{0}^{3} q^{4} \right] \qquad \frac{1}{\mathcal{K}_{2}^{(2)}} = \frac{1}{16\pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}}$$

Implemented quantization condition through quadratic order, for **P**=0, including projection onto overall cubic group irreps



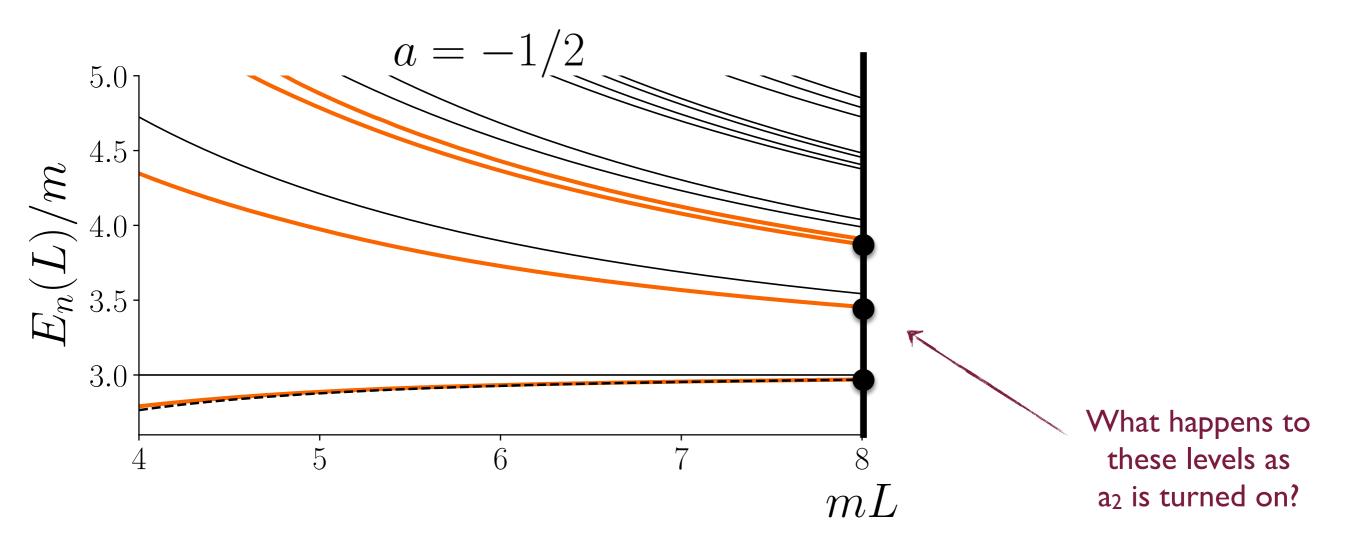
Determine $\delta E^d = \left[E(a_2, L) - E(a_2 = 0, L) \right]/m$ using quantization condition

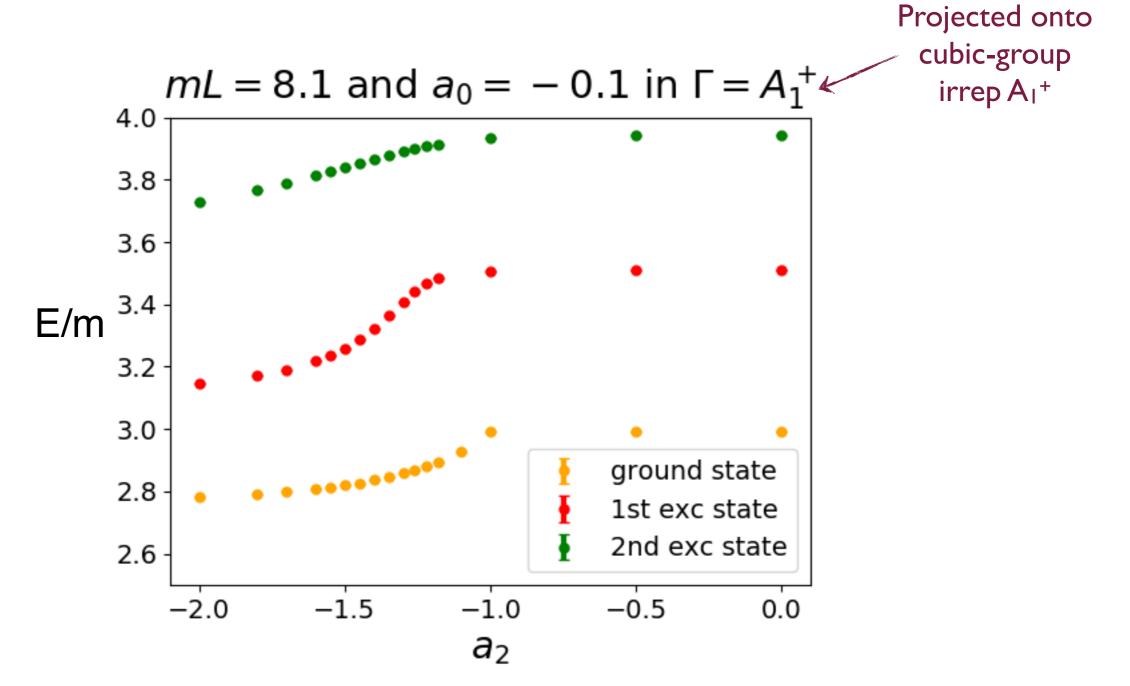
Compare to prediction:
$$\delta E^d = 294 \frac{(a_0 m)^2 (a_2 m)^5}{(mL)^6} + \mathcal{O}(a_0^3/L^6, 1/L^7)$$



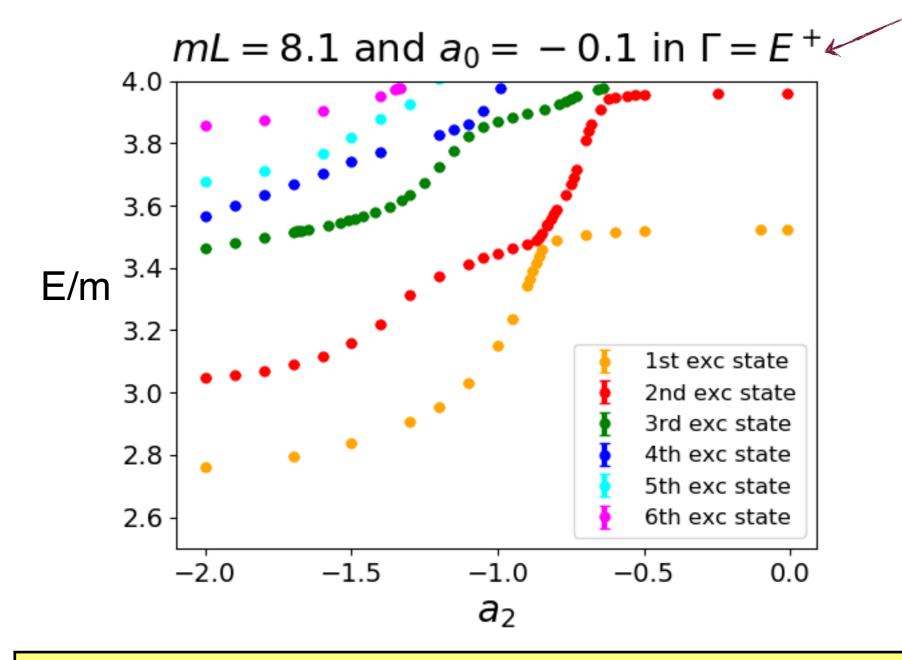
Works well (also for a₀ and a₂ dependence)
Tiny effect but checks our numerical implementation

Results from Isotropic approximation with $\mathcal{K}_{df,3} = 0$





Projected onto cubic-group irrep E+



d-wave attraction can have very significant (and measurable) effect on energy levels

Outlook

- Substantial progress on three-particle formalism
 - Extensions to higher spins, nonidentical particles, multiple K-matrix poles, and Lellouch-Lüscher factors are needed, but will likely be straightforward
 - Need to better understand the relationship to the other methods [Hammer, Pang & Rusetsky; Mai & Döring]
- The major issue is how to make the formalism practical
 - Numerical experiments need to be extended so that they apply in realistic contexts, including relating $\mathcal{K}_{df,3}$ to \mathcal{M}_3 above threshold
 - Successful extraction of 3-body amplitude from simulations of ϕ^4 theory [Roméro-Lopez et al.]; application to QCD simulations is underway [HADSPEC collab.]
- Moving to 4+ particles in this fashion looks challenging but does not obviously introduce new theoretical issues