Chiral perturbation theory with physical-mass ensembles

Steve Sharpe University of Washington

ChPT for LQCD: Does it have a future?

Steve Sharpe University of Washington

LQCD for ChPT?

Steve Sharpe University of Washington

Outline

• Brief history of ChPT for LQCD

- Will ChPT continue to be useful for LQCD?
- LQCD for ChPT

LQCD calculations need help

- Cannot simulate directly with physical theory
 - But can adjust knobs to approach the desired theory

m_u, m_d

a

S. Sharpe, "Future of ChPT for LQCD" 5/19/16 @ TUM-IAS EFT workshop

LQCD calculations need help

- Cannot simulate directly with physical theory
 - But can adjust knobs to approach the desired theory

 m_u, m_d

- Need ChPT to determine how to extrapolate
- ChPT systematically incorporates long-distance physics
 - PGBs dominate, and loops lead to non-analytic dependence on m_q and to leading dependence on L [exp(-M_{\pi}L)]
 - Discretization errors break continuum symmetries, distort the vacuum, and alter the PGB spectrum (and thus impact long-distance physics)

A simple example: $m_{\pi} vs m_{q}$

• Continuum SU(2) ChPT at NNLO for $m_u = m_d = m_q$

 Coefficients of logs are known, while analytic terms involve (*a priori* unknown) LECs

A simple example: $m_{\pi} vs m_{q}$

• Continuum SU(2) ChPT at NNLO for $m_u = m_d = m_q$

- Replacing loop integrals with finite-volume sums gives leading L dependence
- Including flavor/taste breaking in loops gives nonanalytic dependence on a

LQCD calculations need help

• Historically needed to extrapolate in $m_u = m_d = m_q$

Use of partial quenching

• Valence & sea masses can be tuned independently

• Cheaper to lower valence masses; improves chiral extrapolation

- Need PQChPT to determine how to extrapolate
 - Introduces few additional LECs (so PQing can be powerful)
- ChPT can also account for other approximations
 - Rooting (staggered fermions), mixed actions, twisted BC, Wilson-flow
 - Wilson, twisted-mass, staggered discretization effects

(Partial) timeline of ChPT for LQCD

(Partial) timeline of ChPT for LQCD

Success of r(ooted)S(taggered)PQXPT

 f_{π} vs m_q

 M_{π^2}/m_q vs m_q

Uses SU(3) rSPQChPT

Summary of present status

Almost all results rely on ChPT

Summary of history

- ChPT has played a crucial role in extrapolations
 - Particularly SU(2) ChPT: expansion in $(m_{\pi}/4\pi f_{\pi})^2$
 - Convergence of SU(3) ChPT fails close to physical m_s
 - Including discretization errors particularly important for staggered fermions*
- Consistency with chiral logs gave confidence in LQCD
- Hopes of simplifying calculation of K→ππ weak decay amplitudes did not pan out
 - ChPT relates to simpler K→π and K→0 amplitudes [Bernard et al. 1984, Laiho & Soni 2002/2005]
 - SU(3) ChPT simply not accurate enough, even at NNLO

Efficacy of HISQ fermions

[HPQCD 1510.07446]

- a² ln(a) terms from SChPT cancel to good numerical accuracy for HISQ fermions!
 - Continuum ChPT works almost as well for f_{π} , f_{K} , m_{π} , f_{D} and $B \rightarrow \pi$
 - Normal logs and logs from hairpin vertices cancel

D" 5/19/16 @ TUM-IAS EFT workshop

Outline

Brief history of ChPT for LQCD

- Will ChPT continue to be useful for LQCD?
- LQCD for ChPT

Era of physical quark masses

No longer need to extrapolate in quark masses

Combined with use of improved actions, simple analytic expansions in a² sufficient

Is this the situation?

• We are headed in this direction, but not there yet

- Many calculations not yet done at physical masses (e.g. baryon properties)
- Errors at physical masses are larger, so combining with higher masses improves errors
- Need to interpolate to physical quark masses

Combining physical & heavier m_q

- Use <u>either</u> physical mass ensembles only <u>or</u> full PQ analysis (using HMrASPQχPT !)
 - Latter has smaller statistical and continuum extrapolation errors

Other ongoing uses of ChPT for LQCD

- Extrapolating results for nuclei (pionfull EFT)
- Providing expressions for small volume (ε & δ) regimes & for simulations at fixed topological charge
 - Alternative methods for obtaining LECs
- Determining possible unphysical phases
 - So as to know how to avoid them (for Wilson-like & staggered fermions)
- Estimating systematic errors
 - FV effects in hadronic vac. pol. for g_µ-2 [Aubin et al. 2015]
- Providing checks of LQCD results & methods
 - $\pi\pi$ phase shifts at threshold, low-energy theorems for proton decay amp, ...

Phase structure when $m_u \neq m_d$

[Horkel & SS, 1409.2548, 1505.02218, 1507.03653]

- Present frontier: simulations including isospin breaking
 - Aim for physical values: $m_u \sim 2.4$ MeV, $m_d \sim 5.0$ MeV and $\alpha_{EM} = 1/137$

• Discretization effects more important as m decreases

- m_u becomes comparable to $a^2\Lambda^3 \approx 3$ MeV (1/a \approx 3GeV, $\Lambda \approx$ 0.3GeV)
- Particularly relevant for Wilson-like fermions where unphysical phases exist

Unphysical phase also in continuum CP-violating phase [Dashen, 1971]

WXPT: SU(2) with $m_u \neq m_d \& \alpha_{EM} \neq 0$

Issue for simulations

Infact, simulations appear to be outside unphysical phase

tm χ PT at max. twist: $m_u \neq m_d \& \alpha_{EM} \neq 0$

- Roles of two scenarios interchanged
- Again, simulations appear to lie outside unphysical phase

Tuning to max twist with $\alpha_{EM} \neq o$

- Up & down critical masses differ by $O(\alpha_{EM}/a)$
- "mpcac=0" method of tuning fails
- RMI23 collab. use PQ variant of m_{PCAC}=0
- Untuned theory has $\theta_{QCD} \neq 0$

- To study tuning, need PQtmXPT for $m_u \neq m_d \& \theta_{QCD} \neq 0!$
 - We find that PQ m_{PCAC}=0 method fails (only tune one linear combination)
 - We propose an alternative method (for the distant future when such simulations are possible!)
 - RMI23 avoid our criticism since they use expand perturbatively about the isospin-symmetric theory and use the electroquenched approximation

Outline

• Brief history of ChPT for LQCD

• Will ChPT continue to be useful for LQCD?

• LQCD for ChPT

How can LQCD help (continuum) ChPT?

• Providing LECs

- Both for SU(2) ChPT (with present simulations) and for SU(3) ChPT (with dedicated simulations having $m_s < m_s^{phys}$)
- Particularly needed for those describing quark mass dependence
- Studies of convergence (since can turn dials)
- Checking continuum approximation methods
 - e.g. for $\pi\pi$ phase shifts, nucleon σ -term, eventually for $\eta \rightarrow \pi\pi\pi$
- What else?

Studying convergence

• Careful studies with staggered & Wilson fermions [BMWc 1205.0788, 1310.3626, Dürr 1412.6434, Bernard 1510.02180]

Studying convergence

staggered quarks [BMWc 1205.0788]

- SU(2) χ PT converges for M_{π} \lesssim 350 MeV
- Chiral logs strongly favored over polynomial fits
- If $M_{\pi,\min} > M_{\pi,phys}$, NLO χ PT fits can work but mislead

Providing LECs

 N_f

FLAG3 estimate

 $N_f = 2 + 1$: $\Sigma^{1/3} = 274(8) \,\mathrm{MeV}$

FLAG3 estimate

$$=2+1:$$
 $\frac{F_{\pi}}{F}=1.0637(87)$

[FLAG3] Preliminary

Providing LECs

FLAG3 estimate

$$N_f = 2 + 1:$$
 $\bar{\ell}_3 = 2.81(1.23)$

FLAG3 estimate

[FLAG3] Preliminary

 $N_f = 2 + 1:$ $\bar{\ell}_4 = 4.10(30)$

Checking continuum (or maybe checking lattice?)

[Leutwyler, 1510.07511]

ππ scattering amplitudes

- ChPT + general properties of amplitudes + dispersion relations give precise description up to ~IGeV
- E.g., at $s=M_{K^2}$, $\delta_0-\delta_2 = 47.7(1.5)^{\circ}$ [Colangelo et al, 2001]
- Lattice result, 35.4(5.8)⁰ [RBC/UKQCD 1505.07863], differs by ~2σ

Nucleon sigma term

- Expt+ChPT+disp. rels. give: $\sigma_N = \frac{\hat{m}}{2M_N} \langle N(p) | \overline{u}u + \overline{d}d | N(p) \rangle = 59.1(3.5) \,\text{MeV}$
- Lattice result [BMWc 1510.08013] differs by ~4 σ : $\sigma_N = 38(3)(3)$ MeV

Thank you! Questions?