Generalizing the Lellouch-Luscher formula to three-particle decays

Steve Sharpe University of Washington

Based on work with Max Hansen and Fernando Romero-López:
[arXiv: 2IOI.IO246] (JHEP)

Summary

- We derive a general formalism allowing the calculation of $1 \xrightarrow{\mathscr{H}_{W}} 3$ decay amplitudes using lattice QCD (LQCD)
- Formalism for $1 \xrightarrow{\mathscr{H}_{W}} 2$ (e.g. $K \rightarrow \pi \pi$) is a standard LQCD tool [Lellouch \& Lüscher, 200I]
- Recently, considerable progress made in determining $3 \rightarrow 3$ amplitudes from the spectrum of 3 particle states obtained using LQCD [Refs in backup slides]
- We use the generic effective field theory (RFT) approach [Hansen \& SS, `I4, `I5; Hansen, Romero-López \& SS, `00]
- We extend the $3 \rightarrow 3$ formalism to $0 \xrightarrow{J} 3$ and $1 \xrightarrow{\mathscr{H}_{W}} 3$ processes involving 3 degenerate (but not necessarily identical) spinless particles in the final state
- Several phenomenologically relevant applications
- $K \rightarrow 3 \pi$: LQCD can now (in principle) determine CP-conserving and violating amplitudes
- $\eta \rightarrow 3 \pi$ (at first order in isospin breaking): alternative determination of $m_{u}-m_{d}$
- $\gamma^{*} \rightarrow 3 \pi$: component of hadronic contributions to muonic $g-2$

Schematic of $3 \rightarrow 3$ formalism

2- and 3-particle finite-volume spectrum from LQCD

Infinite-volume integral eqs.

- $\mathscr{K}_{\mathrm{df}, 3}$ is a Lorentz-invariant, infinite-volume (but scheme dependent) $3 \rightarrow 3 \mathrm{~K}$ matrix
- It is real, and smooth aside from possible 3-particle resonance poles
- LQCD applications require a parametrization of $\mathscr{K}_{\text {df, } 3}$, e.g. a threshold expansion
- Integral equations ensure unitarity of \mathscr{M}_{3}, and incorporate initial- and final-state interactions

Schematic of $1 \xrightarrow{W} 3$ formalism

$\langle 3 \pi, L| \mathscr{H}_{W}|K, L\rangle$
finite-volume matrix element from LQCD

Constraint conditions

Infinite-volume integral eqs.

- $A_{K 3 \pi}^{\mathrm{PV}}$ is a Lorentz-invariant infinite-volume (but scheme dependent) $1 \xrightarrow{\mathscr{H}_{W}} 3$ amplitude
- It is real (aside from phases in \mathscr{H}_{W}) and smooth
- LQCD applications require a parametrization of $A_{K 3 \pi}^{\mathrm{PV}}$
- Integral equations incorporate final-state interactions into $T_{K 3 \pi}$

Ingredients from LQCD

(1) Finite-volume matrix element: $\langle 3 \pi, L| \mathscr{H}_{W}|K, L\rangle$

Method of derivation

- Determine all-orders expressions for $3 \rightarrow 3$ and $1 \xrightarrow{\mathscr{H}_{W}} 3$ finite-volume correlators in generic relativistic EFT in which d.o.f. are $\pi \mathrm{s}$ and Ks

- Dominant $1 / L^{n}$ finite-volume dependence arises from 3π cuts
- Cuts connected by short-distance infinite-volume amplitudes in which the 3π poles regulated by PV prescription

Results (step 1)

- Residue of finite-volume matrix determines vector v

$$
\mathcal{R}_{\Lambda \mu}\left(E_{n}^{\Lambda}, \boldsymbol{P}, L\right)=\lim _{P_{4} \rightarrow i E_{n}^{\Lambda}}-\left(E_{n}^{\Lambda}+i P_{4}\right) \mathbb{P}_{\Lambda \mu} \cdot \frac{1}{F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}} \cdot \mathbb{P}_{\Lambda \mu}=v\left(E_{n}^{\Lambda}, \boldsymbol{P}, \Lambda \mu, L\right) v^{\dagger}\left(E_{n}^{\Lambda}, \boldsymbol{P}, \Lambda \mu, L\right) .
$$

- Each finite-volume matrix element determines a projection of $A_{K 3 \pi}^{\mathrm{PV}}$

$$
\sqrt{2 E_{K}(\boldsymbol{P})} L^{3}\left\langle E_{n}, \boldsymbol{P}, \Lambda \mu, L\right| \mathcal{H}_{W}(0)|K, \boldsymbol{P}, L\rangle=v^{\dagger} A_{K 3 \pi}^{\mathrm{PV}}
$$

- With enough matrix elements can determine parameters in $A_{K 3 \pi}^{\mathrm{PV}}$

$$
A_{K 3 \pi}^{\mathrm{PV}}=A^{\mathrm{iso}}+A^{(2)} \sum_{i} \Delta_{i}^{2}+A^{(3)} \sum_{i} \Delta_{i}^{3}+A^{(4)} \sum_{i} \Delta_{i}^{4}+\mathcal{O}\left(\Delta^{5}\right)
$$

 Lorentz invariance, particle-interchange symmetry

$$
A^{\mathrm{iso}}=\sum_{n=0}^{\infty} \Delta^{n} A^{\mathrm{ison}, \mathrm{n}}, \quad \Delta=\frac{m_{K}^{2}-9 m_{\pi}^{2}}{9 m_{\pi}^{2}} . \quad \Delta_{i}=\frac{s_{i}-4 m_{\pi}^{2}}{9 m_{\pi}^{2}}, \quad s_{i}=\left(p_{j}+p_{k}\right)^{2}=\left(P-p_{i}\right)^{2}
$$

Results (step 2)

Now amputated

- Consider finite-volume decay matrix element in EFT

$$
T_{K 3 \pi, L}^{(u)}=\mathcal{L}_{L}^{(u)} \frac{1}{1+\mathcal{K}_{\mathrm{df}, 3} F_{3}} A_{K 3 \pi}^{\mathrm{PV}}=
$$

- Take appropriate $L \rightarrow \infty$ limit (with ie prescription) and obtain decay amplitude

$$
\begin{aligned}
T_{K 3 \pi}^{(u)}(\boldsymbol{k})_{\ell m}=\left.\lim _{\epsilon \rightarrow 0^{+}} \lim _{L \rightarrow \infty} T_{K 3 \pi, L}^{(u)}(\boldsymbol{k})_{\ell m}\right|_{E \rightarrow E+i \epsilon} & T_{K 3 \pi}\left(\boldsymbol{k}, \widehat{\boldsymbol{a}}^{*}\right)
\end{aligned} \begin{array}{|l}
\\
\\
\end{array}=T_{K 3 \pi}^{(u)}\left(\boldsymbol{k}, \widehat{\boldsymbol{a}}_{K 3}(\boldsymbol{k})_{\ell m}\right\}, T_{K 3 \pi}^{(u)}\left(\boldsymbol{a}, \widehat{\boldsymbol{b}}^{*}\right)+T_{K 3 \pi}^{(u)}\left(\boldsymbol{b}, \widehat{\boldsymbol{k}}^{*}\right), ~ l
$$

- Resulting integral equations depend on $\mathscr{K}_{\text {df, } 3}$ and \mathscr{K}_{2}, and connect $A_{K 3 \pi}^{\mathrm{PV}}$ to $T_{K 3 \pi}$
- Similar to integral equations arising in $3 \rightarrow 3$ scattering, solutions to which have recently been obtained numerically [Hansen et al., 2009.0493 I; Jackura et al. 20I0.09820]

Isotropic approximation

- $A_{K 3 \pi}^{\mathrm{PV}}$ and $\mathscr{K}_{\mathrm{df}, 3}$ are independent of momenta, and \mathscr{K}_{2} is pure s-wave
- Only a single finite-volume matrix element from LQCD is needed to determine $A_{K 3 \pi}^{\mathrm{PV}}$
- Integral equations still needed, but simplify considerably
- Can combine two steps \& give single expression (ignoring isospin)

$$
\begin{aligned}
& \left.\left|T_{K 3 \pi}^{\text {iso }}\left(E^{*}, m_{12}^{2}, m_{23}^{2}\right)\right|^{2}=2 E_{K}(\boldsymbol{P}) L^{6}\left|\left\langle E_{n}, \boldsymbol{P}, A_{1}, L\right| \mathcal{H}_{W}(0)\right| K, \boldsymbol{P}, L\right\rangle\left.\right|^{2} \\
& \quad \times\left|\mathcal{L}^{\text {iso }}\left(E^{*}, m_{12}^{2}, m_{23}^{2}\right) \frac{1}{1+\mathcal{K}_{\mathrm{df}, 3}^{\text {is }}\left(E^{*}\right) F_{3}^{\infty, \text { iso }}\left(E^{*}\right)}\right|^{2}\left(\frac{\partial F_{3}^{\text {iso }}(E, \boldsymbol{P}, L)^{-1}}{\partial E}+\frac{\partial \mathcal{K}_{\mathrm{df}, 3}^{\text {iso }}\left(E^{*}\right)}{\partial E}\right) \\
& \text { Analog of Lellouch-Lüscher factor }
\end{aligned} \underbrace{\begin{array}{l}
\text { lving single } \\
\text { inn involving; } \\
\text { two-particle } \\
\text { teractions }
\end{array}}_{\begin{array}{l}
\text { Incorporates three-particle } \\
\text { final-state interactions }
\end{array}}
$$

Obtain by solving single integral equation involving; Incorporates two-particle final-state interactions

Analogous to expression obtained using leading-order NREFT in [Müller \& Rusetsky, 20 I2.I3957]

Comparison with LL

- $1 \xrightarrow{\mathscr{H}_{W}} 3$ result in isotropic approximation (and without isospin)

$$
\begin{aligned}
& \left.\left|T_{K 3 \pi}^{\text {iso }}\left(E^{*}, m_{12}^{2}, m_{23}^{2}\right)\right|^{2}=2 E_{K}(\boldsymbol{P}) L^{6}\left|\left\langle E_{n}, \boldsymbol{P}, A_{1}, L\right| \mathcal{H}_{W}(0)\right| K, \boldsymbol{P}, L\right\rangle\left.\right|^{2} \\
& \quad \times\left|\mathcal{L}^{\text {iso }}\left(E^{*}, m_{12}^{2}, m_{23}^{2}\right) \frac{1}{1+\mathcal{K}_{\mathrm{df}, 3}^{\text {iso }}\left(E^{*}\right) F_{3}^{\infty, \text { iso }}\left(E^{*}\right)}\right|^{2}\left(\frac{\partial F_{3}^{\text {iso }}(E, \boldsymbol{P}, L)^{-1}}{\partial E}+\frac{\partial \mathcal{K}_{\mathrm{dff}, 3}^{\text {iso }}\left(E^{*}\right)}{\partial E}\right)
\end{aligned}
$$

- $1 \xrightarrow{\mathscr{H}_{W}} 2$ result in s-wave approximation (only case used in practice to date)

$$
\begin{aligned}
\left|T_{K 2 \pi}(E)\right|^{2}= & \left.2 M_{K} L^{6}\left|\left\langle E_{n}, A_{1}, L\right| \mathcal{H}_{W}(0)\right| K, L\right\rangle\left.\right|^{2} \\
& \times\left|\frac{1}{1-i \mathcal{K}_{2}(E) \rho(E)}\right|^{2}\left(\frac{\partial F(E, L)^{-1}}{\partial E}+\frac{\partial \mathcal{K}_{2}(E)}{\partial E}\right)
\end{aligned}
$$

Alternative form of Lellouch-Lüscher result

Includes Watson phase

Size of finite-volume corrections

- $1 \rightarrow 3$ result in isotropic approximation (and without isospin)

$$
\begin{aligned}
& \left.\left|T_{K 3 \pi}^{\text {iso }}\left(E^{*}, m_{12}^{2}, m_{23}^{2}\right)\right|^{2}=2 E_{K}(\boldsymbol{P}) L^{6}\left|\left\langle E_{n}, \boldsymbol{P}, A_{1}, L\right| \mathcal{H}_{W}(0)\right| K, \boldsymbol{P}, L\right\rangle\left.\right|^{2} \\
& \times\left|\mathcal{L}^{\text {iso }}\left(E^{*}, m_{12}^{2}, m_{23}^{2}\right) \frac{1}{1+\mathcal{K}_{\mathrm{df}, 3}^{\text {iso }}\left(E^{*}\right) F_{3}^{\infty, \text { iso }}\left(E^{*}\right)}\right|^{2}\left(\frac{\partial F_{3}^{\text {iso }}(E, \boldsymbol{P}, L)^{-1}}{\partial E}+\frac{\partial \mathcal{K}_{\mathrm{df}, 3}^{\text {iso }}\left(E^{*}\right)}{\partial E}\right) \\
& \text { (2) } \\
& \mathscr{K}_{\mathrm{df}, 3}^{\text {iso }} \text { assumed energy } \\
& \text { independent }
\end{aligned}
$$

Summary \& Outlook

- We have derived a general, relativistically-invariant, formalism allowing the calculation of $1 \xrightarrow{\mathscr{H}_{W}} 3$ and $0 \xrightarrow{J} 3$ decay/transition amplitudes using LQCD
- It piggybacks on the recent progress on $3 \rightarrow 3$ amplitudes
- It holds for any such process involving three degenerate spinless particles in the final state
- It requires two steps, the first accounting for finite-volume effects, and the second incorporating the effects of final-state interactions
- We hope that applications will be possible in the near future
- Distillation and other algorithmic advances allow the calculation of the necessary quark contractions
- $\gamma^{*} \rightarrow 3 \pi$ is the simplest to study; isoscalar part of current couples to $I=0(\omega)$ channel
- $\eta \rightarrow 3 \pi$ is next simplest, as it involves insertion of quark bilinear; couples to $\mathrm{I}=\mathrm{I}$
- $K \rightarrow 3 \pi$ is most challenging, with \mathscr{H}_{W} a four-fermion operator, leading to more complicated contractions, and $\mathrm{I}=0, \mathrm{I}$ and 2 final states

Thanks Any questions?

Backup slides

Scope \& Notation

- Identical spinless particles of mass m (e.g. $3 \pi^{+}$)
- Z_{2} symmetry — no $2 \rightarrow 3$ transitions
- All quantities in QC3 are infinite-dimensional matrices with indices $\{\vec{k}, \ell, m\}$ describing 3 on-shell particles with total energy-momentum (E, \vec{P})

$$
\text { e.g. }\left[\mathscr{K}_{\mathrm{df}, 3}^{(u, u)}\right]_{k \ell m ; p \ell^{\prime} m^{\prime}}
$$

F_{3} collects 2-particle interactions

$$
F_{3}=\left[\frac{\widetilde{F}}{3}-\widetilde{F} \frac{1}{\left(2 \omega L^{3} \mathscr{K}_{2}\right)^{-1}+\widetilde{F}+\widetilde{G}} \widetilde{F}\right]
$$

- F \& G are known geometrical functions,

$$
\left(E-\omega_{k}, \vec{P}-\vec{k}\right) \rightarrow \xlongequal{\hdashline \cdots:-\cdots}
$$ containing cutoff function H

$$
\begin{aligned}
& \widetilde{F}_{p \ell^{\prime} m^{\prime} ; k \ell m}=\frac{1}{2 \omega_{k} L^{3}} \delta_{p k} H(\vec{k}) F_{\mathrm{PV}, \ell^{\prime} m^{\prime} ; \ell m}\left(E-\omega_{k}, \vec{P}-\vec{k}, L\right) \\
& \widetilde{G}_{p \ell^{\prime} m^{\prime} ; k \ell m}=\frac{1}{2 \omega_{p} L^{3}}\left(\frac{k^{*}}{q_{p}^{*}}\right)^{\ell^{\prime}} \frac{4 \pi Y_{\ell^{\prime} m^{\prime}}\left(\hat{k}^{*}\right) H(\vec{p}) H(\vec{k}) Y_{\ell m}^{*}\left(\hat{p}^{*}\right)}{(P-k-p)^{2}-m^{2}}\left(\frac{p^{*}}{q_{k}^{*}}\right)^{\ell} \frac{1}{2 \omega_{k} L^{3}}
\end{aligned}
$$

RFT 3-particle papers

Max Hansen \& SRS:

"Relativistic, model-independent, three-particle quantization condition,"
arXiv:1408.5933 (PRD) [HS14]
"Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude," arXiv:1504.04028 (PRD) [HS15]
"Perturbative results for 2-\& 3-particle threshold energies in finite volume," arXiv: 1509.07929 (PRD) [HSPT15]
"Threshold expansion of the 3-particle quantization condition,"
arXiv:1602.00324 (PRD) [HSTH15]
"Applying the relativistic quantization condition to a 3-particle bound state in a periodic box," arXiv: 1609.04317 (PRD) [HSBS16]
"Lattice QCD and three-particle decays of Resonances," arXiv: 1901.00483 (Ann. Rev. Nucl. Part. Science) [HSREV19]

Raúl Briceño, Max Hansen \& SRS:

"Relating the finite-volume spectrum and the 2-and-3-particle S-matrix for relativistic systems of identical scalar particles," arXiv:1701.07465 (PRD) [BHS17]
"Numerical study of the relativistic three-body quantization condition in the isotropic approximation," arXiv:1803.04169 (PRD) [BHS18]
"Three-particle systems with resonant sub-processes in a finite volume," arXiv:1810.01429 (PRD 19) [BHS19] SRS
"Testing the threshold expansion for three-particle energies at fourth order in φ^{4} theory," arXiv:1707.04279 (PRD) [SPT17]

Tyler Blanton, Fernando Romero-López \& SRS:

"Implementing the three-particle quantization condition including higher partial waves," arXiv:1901.07095 (JHEP) [BRS19]
"I=3 three-pion scattering amplitude from lattice QCD," arXiv:1909.02973 (PRL) [BRS-PRL19]

$18 / 12$

Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:

"Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states", arXiv:1908.02411 (JHEP) [BBHRS19]

Raúl Briceño, Max Hansen, SRS \& Adam Szczepaniak:
"Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism,"
arXiv:1905.11188 (PRD)

Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni, SRS \& A. Szczepaniak:
"On the Equivalence of Three-Particle Scattering Formalisms," arXiv:1905.12007 (PRD)

Max Hansen, Fernando Romero-López, SRS:

"Generalizing the relativistic quantization condition to include all three-pion isospin channels", arXiv:2003.10974 (JHEP) [HRS20]
"Decay amplitudes to three particles from finite-volume matrix elements," arXiv: 2101.10246 (JHEP)

Tyler Blanton \& SRS:

"Alternative derivation of the relativistic three-particle quantization condition,"
arXiv:2007.16188 (PRD) [BS20a]
"Equivalence of relativistic three-particle quantization conditions,"
arXiv:2007.16190 (PRD) [BS20b]

"Relativistic three-particle quantization condition for nondegenerate scalars,"
arXiv:2011.05520 (PRD)
"Three-particle finite-volume formalism for $\pi^{+} \pi^{+} K^{+}$and related systems,"
arXiv:2105.12904 (PRD under review)

Tyler Blanton, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López \& SRS " $3 \pi^{+} \& 3 K^{+}$interactions beyond leading order from lattice QCD," arXiv: 2106.05590 (JHEP under review)

Other work

\star Implementing RFT integral equations

- A. Jackura et al., 2010.09820 [Solving s-wave RFT integral equations in presence of bound states]
- M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating $3 \pi^{+}$spectrum and using to determine three-particle scattering amplitude]

* Reviews

- A. Rusetsky, 1911.01253 [LATTICE 2019 plenary]
- M. Mai, M. Döring and A. Rusetsky, 2103.00577 [Review of formalisms and chiral extrapolations]

\star NREFT approach

- H.-W. Hammer, J.-Y. Pang \& A. Rusetsky, 1706.07700, JHEP \& 1707.02176, JHEP [Formalism \& examples]
- M. Döring et al., 1802.03362, PRD [Numerical implementation]
- J.-Y. Pang et al., 1902.01111, PRD [large volume expansion for excited levels]
- F. Müller, T. Yu \& A. Rusetsky, 2011.14178, PRD [large volume expansion for I=1 three pion ground state]
- F. Romero-López, A. Rusetsky, N. Schlage \& C. Urbach, 2010.11715, JHEP [generalized large-volume exps]
- F. Müller \& A. Rusetsky, 2012.13957, JHEP [Three-particle analog of Lellouch-Lüscher formula]

Alternate 3-particle approaches

\star Finite-volume unitarity (FVU) approach

- M. Mai \& M. Döring, 1709.08222, EPJA [formalism]
- M. Mai et al., 1706.06118 , EPJA [unitary parametrization of M_{3} involving R matrix; used in FVU approach]
- A. Jackura et al., 1809.10523, EPJC [further analysis of R matrix parametrization]
- M. Mai \& M. Döring, 1807.04746, PRL [3 pion spectrum at finite-volume from FVU]
- M. Mai et al., 1909.05749,PRD [applying FVU approach to $3 \pi^{+}$spectrum from Hanlon \& Hörz]
- C. Culver et al., 1911.09047, PRD [calculating $3 \pi^{+}$spectrum and comparing with FVU predictions]
- A. Alexandru et al., 2009.12358, PRD [calculating $3 K^{-}$spectrum and comparing with FVU predictions]
- R. Brett et al., 2101.06144 [determining $3 \pi^{+}$interaction from LQCD spectrum]

\star HALQCD approach

- T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

