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Overview: present status

3

ρ
π π

ππ
Δ

N

ππ
N

Physical quark masses Mπ = 200 MeV
E.g.: Wang, Leinweber, Liu, Liu, Sun, Thomas, Wu, Xing, Yu, 

2502.03700
 Bulava, Hanlon, Hörz, Morningstar, Nicholson, Romero-López, 
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 resonanceΔ
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Mπ ≈ 200 MeV
MN ≈ 950 MeV
a = 0.063 fm
L3 × T = 643 × 128

 Bulava, Hanlon, Hörz, Morningstar, Nicholson, Romero-López, Skinner, Varnas, Walker-Loud, 2208.03867



S. Sharpe, ``Scattering amplitudes from LQCD,”  CSU, 10/14/25 /45

Overview: present frontier
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Overview: “near” future
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Formalism: Hansen, Romero-López, SRS, 2101.10246
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Formalism: Hansen, Romero-López, SRS, … in prep.
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π−π−

Formalism: Hansen, Romero-López, SRS, 2003.10974
First LQCD results and alternative formalism: 
Yan, Mai, Garofalo, Meißner, Liu, Liu, Urbach, 2407.16659

https://arxiv.org/abs/2003.10974
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Outline

• Motivation

• The fundamental issue

• Summary of formalism

• Applications of three-particle formalism
• Three-particle amplitudes involving pions & kaons at physical quark masses

•  scattering, relevant for 

• New issue: unexpected subthreshold singularities

• Outlook

DDπ T+
cc

7
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Motivation
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Underlying motivations
• Determine properties of strong interaction resonances from QCD

• E.g. exotics such as Tcc(3875)+ → DD* → DDπ

9
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Cornucopia of exotics

10

New states

K-matrix

N/D

2

+ data from Babar, Belle, COMPASS, …
[I. Danilkin, talk at INT workshop, March 23]
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Underlying motivations

• Calculate weak decay amplitudes within the Standard Model, in order 
to search for new physics

• E.g.  (essentially done),  (method known), &  
(open question)

K → 2π K → 3π D → π+π−, K+K−

11

• Determine properties of strong interaction resonances from QCD

• E.g. exotics such as 

• Determine three particle “forces” for , …

• Needed to understand neutron star EoS, properties of large nuclei, …

Tcc(3875)+ → DD* → DDπ

3n, 3π, 3K
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The fundamental issue

12
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On the one hand…
• LQCD determines energies and properties of finite-volume eigenstates

• Obtained by fits to (numerically-evaluated) Euclidean correlation functions:

∫L
d3x e−i ⃗P ⋅ ⃗x

L⟨Ω |σ3π(τ, ⃗x)σ†
3π(0) |Ω⟩L ∝ ∑

n
L⟨0 |σ†

3π(0) |3π, ⃗P , n⟩L

2
e−Enτ; (τ > 0)

Assuming  box with PBC

⃗P = 2π ⃗n /L
L3 Lives on timeslice

σ3π ∼ 3π+ Tower of finite-volume states 
with quantum numbers of , 
with momentum , and living 

in irreps of cubic group

3π+

⃗P

Energies of said states

τ

L σ†
3πσ3π

u u

u

d

d

d
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On the one hand…
• LQCD determines energies and properties of finite-volume eigenstates

• Obtained by fits to (numerically-evaluated) Euclidean correlation functions:

∫L
d3x e−i ⃗P ⋅ ⃗x

L⟨Ω |σ3π(τ, ⃗x)σ†
3π(0) |Ω⟩L ∝ ∑

n
L⟨0 |σ†

3π(0) |3π, ⃗P , n⟩L

2
e−Enτ; (τ > 0)

•  are physical quantities!

• Can determine 5-10 levels for each choice of quantum numbers ( , irrep, …)

• Can now begin to calculate with physical quark masses

• Results come with statistical & systematic errors (e.g. need )

• Today, I assume that the physical  are provided by LQCD simulations

En
⃗P

a → 0

En
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…while on the other
• We want infinite-volume scattering amplitudes, e.g.

ℳ3 ∼
In state Out state

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)
?

• How do we relate these? A finite-volume QFT problem.
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A related question:
• LQCD can also calculate matrix elements between finite-volume states

L⟨Ω |σ3π(τf , ⃗P )[∫L
d3xℋW(0, ⃗x)]K†(τi, ⃗P ) |Ω⟩L ∝ ∑

n′￼,n

cn′￼,ne−Enτf
L⟨3π, ⃗P , n′￼|ℋW(0) |K, n⟩LeEK′￼nτi

τf > 0

A physical quantity if En′￼= En

• How are these related to decay amplitudes?

τi < 0

𝒜(K → 3π) = out⟨3π |ℋW(0) |K⟩
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Summary of formalism

17
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2-particle formalism

18

Two-particle  
spectrum 

E0

E2

E3

E1

E4

Quantization 
condition: QC2

Fit

K-matrix

Parametrize:

Unitarity  
relation

Scattering  
amplitude

ℳ2 = 𝒦2
1

1 − iρ𝒦2

ρ =
η q*2

8πE*• QC2 valid up to corrections  

• QC2 valid up to inelastic threshold

• Matrix indices are CM-frame 

•  is an infinite-volume quantity; diagonal in 

•  depends on ; mixes 

• In practical applications, must truncate in  

∝ exp(−MπL)

ℓ, m

𝒦2 ℓ, m

F E, P, L ℓ, m

ℓ

[Lüscher, 1986-91 + many subsequent works]
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3-particle formalism

19

E0

E2

E3

E1

E4

two-particle  
spectrum 

Three-particle 
spectrum 

Quantization 
conditions

K-matrices

Fit

Parametrize:

[Blanton, Romero-López, SRS, JHEP 2019]

Scattering  
amplitudes

Integral 
equations 
(Infinite 
volume)

Unitarity  
relations

  [Briceño et al., PRD 2018] 
 [Hansen et al., PRL 2021] 

   [Jackura et al., PRD 2021] 
  [Dawid et al., 2303.04394] 

E0

E1

E2

E3

[Hansen & SRS, 2014 & 2015 + many subsequent works]
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• QC3 valid up to corrections  

• QC3 valid up to first inelastic threshold, e.g.  for 3 pion system

• Matrix indices are spectator finite-volume momentum , and pair CM-frame 

• Formalism includes smooth cutoff in ; must truncate “by hand” in 

∝ exp(−MπL)

E* = 5Mπ

k ℓ, m

k ℓ

QC3

20

det
kℓm

[F−1
3 + 𝒦df,3] = 0

F3 =
1

2ωL3 [ F
3

− F
1

1/𝒦2,L + F + G
F]

p
k

�
k k
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Relating  to 𝒦df,3 ℳ3
ℳ3 = lim

L→∞
𝒮 {𝒟(u,u)

L + ℳ(u,u)
df,3,L} = 𝒟 + ℳdf,3

ℳ2
ℳ2

ℳ2
ℳ2

ℳ2+ +…G G G𝒟 = 𝒮{ }
•  contains all divergent contributions to , but depends on cutoff function 𝒟 ℳ3 H( ⃗k)

•  is divergence-free, equals  at leading order, and is also cutoff-dependentℳdf,3 𝒦df,3

ℳ2

ℳdf,3 = 𝒦df,3 + 𝒮{ 𝒦df,3
ℳ2 ρ 𝒦df,3

ρ ℳ2+ +…}
• “Decorations” ensure that  is unitary

• Methods for solving integral equations, and analytically continuing to complex 
momenta,  are now well established [Briceño, Dawid, Hansen, Islam, Jackura, 2020-23]

• In practice, project on definite overall 

ℳ3

JP
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Status: formalism
• 3 identical spinless particles [Hansen & SRS 14,15 (RFT); Hammer, Pang, Rusetsky 17 (NREFT); 

Mai, Döring 17 (FVU)]

• Applications: , as well as  theory

• Mixing of two- and three-particle channels for identical spinless particles [Briceño, 
Hansen, SRS 17]

• 3 degenerate but distinguishable spinless particles, e.g  with isospin 0, 1, 2, 3 [Hansen, 
Romero-López, SRS 20];  case in FVU approach [Mai et al., 21]

• Potential applications: 

• 3 nondegenerate spinless particles [Blanton, SRS 20]
• Potential applications:  

• 2 identical +1 different spinless particles [Blanton, SRS 21]
• Applications: 

• 3 identical spin-½ particles [Draper, Hansen, Romero-López, SRS 23]
• Potential applications: 

•  for all isospins (also ) [Draper, Hansen, Romero-López, SRS 23]

• Potential applications:  incorporating LH cut

• Multiple three-particle channels:  [Draper & SRS 24]

• Potential applications: 

•  at maximal isospin [Hansen, Romero-López, SRS 23]

• Step on the way to Roper: 

3π+, 3K+ ϕ4

3π
I = 1

ω(782), a1(1260), h1(1170), π(1300), …

D+
s D0π−

π+π+K+, K+K+π+

3n, 3p, 3Λ

DDπ BBπ, KKπ
Tcc → D*D

ηππ + KKπ
b1(1235), η(1295)

Nππ
N(1440) → Nπ + Nππ
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 resonanceΔ

23

Δ
N

ππ
N

Clover fermions (CLS)

Mπ ≈ 200 MeV
MN ≈ 950 MeV
a = 0.063 fm
L3 × T = 643 × 128

 Bulava, Hanlon, Hörz, Morningstar, Nicholson, Romero-López, Skinner, Varnas, Walker-Loud, 2208.03867

two-meson  
spectrum 

E0

E2

E3

E1

E4

QC2 
Fit

Parametrize

Unitarity  
δ ⇔ ℳ2
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Application of 3-particle 
formalism:
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MIT-CTP/5845

QCD predictions for physical multimeson scattering amplitudes

Sebastian M. Dawid,1 Zachary T. Draper,1 Andrew D. Hanlon,2 Ben Hörz,3 Colin
Morningstar,4 Fernando Romero-López,5, 6 Stephen R. Sharpe,1 and Sarah Skinner4

1Physics Department, University of Washington, Seattle, WA 98195-1560, USA
2Department of Physics, Kent State University, Kent, OH 44242 USA

3Intel Deutschland GmbH, Dornacher Str. 1, 85622 Feldkirchen, Germany
4Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

5Albert Einstein Center, Institute for Theoretical Physics, University of Bern, 3012 Bern, Switzerland
6Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Dated: February 21, 2025)

We use lattice QCD calculations of the finite-volume spectra of systems of two and three mesons to
determine, for the first time, three-particle scattering amplitudes with physical quark masses. Our
results are for combinations of ⇡+ and K+, at a lattice spacing a = 0.063 fm, and in the isospin-
symmetric limit. We also obtain accurate results for maximal-isospin two-meson amplitudes, with
those for ⇡+K+ and 2K+ being the first determinations at the physical point. Dense lattice spectra
are obtained using the stochastic Laplacian-Heaviside method, and the analysis leading to scattering
amplitudes is done using the relativistic finite-volume formalism. Results are compared to chiral
perturbation theory and to phenomenological fits to experimental data, finding good agreement.

Introduction.—Predicting the properties and interac-
tions of hadrons directly from Quantum Chromodynam-
ics (QCD) is a formidable challenge with far-reaching
implications—from the emergence of nuclear forces and
the existence of exotic hadrons to precision tests of
the Standard Model through hadronic decays. Al-
though quark models [1] and effective field theory ap-
proaches [2, 3] have provided significant insights, first-
principles lattice QCD (LQCD) calculations have ma-
tured to the point that many questions about hadron
dynamics can be addressed quantitatively [4–10].

Existing LQCD calculations of multihadron processes
have predominantly focused on two-particle decay chan-
nels and often used quark masses heavier than their
physical values. By reducing the quark masses and
incorporating decay modes involving more than two
hadrons, it is possible to explore well-known three-pion
resonances such as the !(782) and a1(1260), exotic
tetraquarks such as Tcc ! DD⇡, the enigmatic Roper
resonance, N(1440) ! N⇡ + N⇡⇡, and even three-
nucleon forces. The successful development of three-body
tools for LQCD calculations [11–45] has transformed
these aspirations into a practical reality [46–63].

Three-body calculations from LQCD have addressed
increasingly complicated systems over the last decade.
We highlight three milestones from this active field.
First, the determination and analysis of a large num-
ber of 2⇡+ and 3⇡+ levels at M⇡ ⇡ 200 MeV, showing
the capabilities of LQCD techniques [51, 52, 54]. Sec-
ond, the calculation by the HadSpec collaboration of
the 3⇡+

! 3⇡+ scattering amplitude with JP = 0�

at M⇡ = 391 MeV [56], providing the first end-to-end
application of the three-particle formalism. Third, the
first constraints on the properties of three-particle reso-
nances, specifically the width and mass of the !(782) [63].
In this Letter, we present the results of a further bench-
mark calculation, namely that of three-meson scattering
amplitudes at physical quark masses. Furthermore, in

addition to the dominant JP = 0� amplitudes, we also
determine for the first time those with JP = 1+ and 2�.

Although our ultimate goal are three-particle reso-
nances, we first consider nonresonant systems in order
to work at physical quark masses, and examine all three-
particle combinations of ⇡+ and K+. The absence of res-
onances in these maximal-isospin systems simplifies the
LQCD calculations (no quark annihilation contractions)
and the finite-volume analysis (finite-volume spectrum
close to the non-interacting case), and enables compar-
isons with chiral perturbation theory (ChPT).

A byproduct of three-body calculations is that they
constrain the two-body amplitudes contributing via pair-
wise rescattering processes. Consequently, we accurately
determine the two-particle amplitudes in maximal isospin
channels—2⇡+, ⇡+K+, and 2K+—the latter two com-
puted for the first time with physical quark masses.
When possible, we compare these two-meson amplitudes
with phenomenological analyses of experimental data.

This Letter is released in parallel with a long article, in
which all details of the calculations are presented. Here
we present the highlights and a sketch of the methods.

Scattering amplitudes from lattice QCD.—LQCD cal-
culations are carried out in Euclidean spacetime and in
finite volumes. This complicates the extraction of scat-
tering amplitudes, which are real-time infinite-volume
observables. The finite-volume formalism provides the
necessary connection, converting one set of physical
quantities—finite volume energy levels—into another—
the desired scattering amplitudes [64].

In a finite volume with periodic boundary conditions,
stationary energies deviate from the non-interacting case
due to multihadron interactions. Intuitively, particles in
a large but finite box are mostly separate, but undergo
pairwise and triplet scatterings that shift the energy away
from its free value. Although all partial waves contribute
to this shift, higher waves are suppressed in a threshold
expansion, leading to a solvable inverse problem.
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Three PGBs at maximal isospin

25

3π+, 3K+, π+π+K+, K+K+π+

• Benchmark system, with simple repulsive dynamics
• First calculation at physical quark masses

• Study , including subchannels with 

• Compare to expectations from ChPT

• Use CLS ensembles (  improved Wilson) + GEVP

JP = 0−,1+,2− ℓ = 0,1,2

𝒪(a)

[Blanton, SRS, et al.,  
PRL 2020 & JHEP 2021] 
[Draper, SRS, et al.,  
JHEP 2023] 

Present work

MπL
5.41
4.42
4.20
4.05

π+

K+

π+

π+

π+

K+
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Example of spectrum

26
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Example of spectrum
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Noninteracting
Energy

E250: K+K+
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Example of spectrum
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Fits to spectra

29

2

(L/a)3 ⇥ (Lt/a) M⇡ [MeV] MK [MeV] M⇡L Ncfg

E250 96
3 ⇥ 192 130 500 4.05 505

D200 64
3 ⇥ 128 200 480 4.20 2000

N200 48
3 ⇥ 128 280 460 4.42 1712

N203 48
3 ⇥ 128 340 440 5.41 771

TABLE I. Key parameters for ensembles used in this work.
Ncfg is the number of gauge configurations.

Energies are extracted from Euclidean correlation
functions using a large set of operators with the system’s
quantum numbers. The resulting matrix of correlation
functions is analyzed as a generalized eigenvalue prob-
lem [65]. Energies are obtained from the Euclidean-time
dependence of the generalized eigenvalues.

The first step in the finite-volume formalism employs
two- and three-particle quantization conditions (QC2 and
QC3). They describe all power-law 1/Ln finite volume
effects, and are valid only up to corrections suppressed
by exp(�M⇡L). They are expressed as

det
�n

h
Fn

�
E⇤

n,P , L
��1

+ Kn(E
⇤
n)
i
= 0 , (1)

with n = 2 (n = 3) corresponding to QC2 (QC3). These
QCs depend on the total center of mass (c.m.) energy
E⇤

n of the n-body system, the total momentum P , and
the box size L. Each solution to the QCs corresponds to
a finite-volume energy level. In the QC2, K2 is the two-
particle K matrix, an infinite-volume quantity that is re-
lated to the two-particle scattering amplitude, M2. F2 is
a known finite-volume geometric function. In the QC3,
K3 is a three-particle K matrix describing short-range
three-body interactions, and F3 is a known matrix that
incorporates kinematic effects and two-particle interac-
tions via K2. The determinant is taken over indices, �n,
that characterize the n-body state at fixed energy: two-
body partial waves for the QC2, and pair partial waves
as well as the finite-volume momentum, p, and flavor of
the third, “spectator”, particle for the QC3. The matri-
ces in the QCs are finite, because we keep only two-body
interactions up to a highest partial wave, `  `max, and,
in the QC3, a cutoff in spectator momentum, p  pmax.
The latter condition defines a scheme for K3, which is an
unphysical intermediate object.

In order to constrain K2 and K3, simple parametriza-
tions of their kinematic dependence must be assumed.
K2 is parametrized as an expansion about threshold, us-
ing the standard effective-range expansion (2K+) or a
form incorporating the Adler zero (2⇡+ and ⇡+K+) [66].
These forms are truncated, and in practice involve 2 � 4
parameters. Partial waves beyond ` > 2 are assumed to
vanish. Similarly, K3 is parametrized by a generalized
threshold expansion, using a truncation consistent with
that of K2 [25], and also includes 2 � 4 parameters.

For the systems studied here, the QCs are valid below
the first inelastic threshold, i.e. the c.m. energy at which
more than two (for the QC2) or three (for the QC3) par-

channels # levels # parameters �2/DOF

2⇡/3⇡ 34 + 32 6 1.14
2⇡/⇡K/2⇡K 24 + 25 + 23 9 1.23
2K/⇡K/2K⇡ 25 + 40 + 50 10 1.95

2K/3K 40 + 53 6 1.49

TABLE II. Examples of fits. Particle charges are omitted.

ticles can be on shell. For 2⇡+ and 3⇡+ the first inelastic
threshold corresponds to adding two pions due to G par-
ity. For all other systems with at least one kaon, the
inelastic threshold is obtained by adding a pion. We re-
strict our fits to the regions of validity, although we find
that the QCs work well for some range above.

The second step in the finite-volume formalism involves
using the K matrices as input into integral equations
whose solutions are the various three-particle amplitudes,
M3 [16, 34]. These equations produce amplitudes that
automatically satisfy unitarity [26, 67]. They are solved
as in Refs. [68–71], with results discussed below.

LQCD details.—We use the Nf = 2 + 1 CLS LQCD
ensembles [74] listed in Table I, with nonperturbatively
O(a)-improved Wilson fermions and the tree-level O(a2)-
improved Lüscher-Weisz gauge action. These have a fixed
lattice spacing, a ' 0.063 fm, isospin symmetry (mu =
md ⌘ m`), and lie on trajectory with constant 2m`+ms.
The main results of this work use the E250 ensemble,
which has approximately physical pion and kaon masses.
We neglect the slight mistuning of the quark masses and
treat them as physical. All ensembles have M⇡L > 4,
leading to small exponentially-suppressed effects.

Energy levels are obtained for 2⇡+, ⇡+K+, 2K+, 3⇡+,
2⇡+K+, 2K+⇡+, and 3K+ channels, using several fitting
approaches and two independent analyses. Correlated er-
rors are obtained using the jackknife method. The levels
are fit using the QC2 and QC3 to determine the K-matrix
parameters. Details of our most extensive fits are given
in Table II, all of which have a �2 per degree of freedom
(DOF) lower than 2.

Two-meson phase shifts.—Our most accurate results
are for the two-particle phase shifts. These are obtained
from combined correlated fits to two- and three-particle
spectra, leading to smaller errors than fits to the two-
particle spectra alone. Both 2K+ and ⇡+K+ have been
explored directly at the physical point for the first time,
while the 2⇡+ system was previously explored in Ref. [55].

In Fig. 1, we show the resulting phase shifts for the
lowest two partial waves. To illustrate the range of en-
ergy levels that contribute, we display the results that
would be obtained were one to keep only the dominant
partial wave contributing to each energy level. In this ap-
proximation, there is a one-to-one relation between each
energy and the phase shift. The curves are not fits to
these points, but include much more information.

As can be seen, we obtain results with small errors
for the s-wave phase shifts, while those for the higher
waves are consistent with zero within small errors, with

Parameters in  and : use threshold expansions𝒦2 𝒦3

E0

E2

E3

E1

E4

E0

E1

E2

E3

two-meson  
spectrum 

Three-meson 
spectrum 

Quantization 
conditions

K-matrices

Fit
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2-particle interactions
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FIG. 1. LQCD results for physical two-meson scattering phase shifts as a function of scattering momentum, k, in the lowest
two partial waves for each system. Errors are statistical. Dispersive results [72, 73] are also shown. The vertical dashed lines
indicate the inelastic threshold, above which the analysis breaks down. The “data points” are explained in the text.

some indication for a repulsive interaction in the 2K+

case. For 2⇡+ and ⇡+K+, we can compare our results to
those obtained using dispersive fits to the experimental
data [72, 73]. We find results that are consistent within
errors, and note that our errors are comparable in size.
For the 2K+ channel, there is no “experimental” result
available, so our result is a first-principles prediction.

FIG. 2. Kinematic configuration used in this work.

Three-meson amplitudes.—Having constrained K2 and
K3 from LQCD energies, we solve the integral equations
to obtain elastic three-meson scattering amplitudes. We
decompose the three-meson amplitude in partial waves

M3({p}; {k}) =
X

J

M
J
3 ({p}; {k}) , (2)

where {k} and {p} represent the set of three initial and
final momenta, respectively. We study fixed-J ampli-
tudes, M

J
3 , which depend on eight independent vari-

ables after considering Poincaré invariance. To obtain
a two-dimensional representation, we impose additional

FIG. 3. Squared magnitude of the 2K+⇡+ amplitude for
angular momentum J = 0, 1, 2 as a function of three kinematic
variables. From top to bottom: E dependence for ✓22 = 0 and
↵ = 120

�; ↵ dependence for E = 2(MK + M⇡) and ✓22 = 0;
✓22 dependence for E = 2(MK +M⇡) and ↵ = 120

�.

constraints by fixing certain relative orientations among
the momenta—a process we refer to as “choosing a kine-
matic configuration.”

We show our chosen kinematic configuration in Fig. 2.
Both the incoming and outgoing momenta lie in the same
plane. Each momentum lies along the bisector of a tri-
angle: an equilateral triangle for the incoming momenta,

E250: ~physical quark masses

Inelastic thresholds
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Scattering lengths
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• Simultaneous chiral fit to  scattering lengths

• Fit involves two LECs, one of which is determined with 2% stat. Errors

ππ, πK, KK

χ2/dof = 12.4/(11 − 2)
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Comparing  to ChPT𝒦df,3in Ref. [101] (and generalized to all isospins in Ref. [112])
using the NLO ChPT three-pion scattering amplitudes from
Refs. [113,114]. Very large NLO corrections were observed
in the quantities that are nonzero at LO, namely K0 and K1

in Eq. (44). Thus the disagreement of lattice results with LO
ChPTwas understood, while, at the same time, the range of
pion masses for which ChPT is convergent was seen to be
small, barely extending to the physical quark mass.
It is thus of considerable interest to confirm this picture

by determiningK0 andK1 at the physical point, as we have

done in this work. Given the expected chiral behavior
[Eq. (57)], however, we expect that Kdf;3 will be small and
difficult to extract with statistical significance. This is
indeed the case, as seen above. Nevertheless, we can test
whether the results we obtain are consistent, within errors,
with the expected chiral behavior. The results of this test are
shown in Fig. 20, where we see that indeed consistency is
observed.
The other coefficient that we determine, KB, begins at

NLO in ChPT, with a result determined in Ref. [101].

FIG. 19. Results for the d-wave scattering lengths for the two-pion (a) and two-kaon (b) systems. The results are fit to a linear
dependence on the quantity plotted on the x axis, with the intercept fixed to zero in the case of pions, as discussed in the text. The
physical point is indicated as a vertical line.

FIG. 20. Results for the coefficients K0 (a) and K1 (b) term in the threshold expansion of the three-pion Kdf;3. Orange circles are the
results of this work, using fits that include s and d waves, and KB (see Table III and Ref. [55]). The results of Ref. [51] are shown as red
squares (and come from a fit that include only s waves). LO [48] and NLO [101] predictions from ChPT are also shown. The error band
arises from uncertainties in LECs. Note that the horizontal axis is proportional to M4

π .

SEBASTIAN M. DAWID et al. PHYS. REV. D 112, 014505 (2025)

014505-28

• Parametrize  in a threshold expansion, keeping first two terms

• From fits to spectra, we find non vanishing results for these terms at heavier quark masses

• Compare to NLO Chiral Perturbation theory calculation of  for 
[Baeza-Ballesteros, Bijnens, Husek, Romero-López, SRS, Sjö, 2303.13206 (JHEP) & 2401.14293 (JHEP) ]

𝒦df,3

𝒦df,3 3π → 3π

Large NLO corrections in ChPT resolve LO inconsistency
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Physical 3-particle amplitudes
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Reaction plane
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at threshold  
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are chirally suppressed  
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Comparison with ChPT

34

Reaction plane

π+

π+
π+

Equilateral kinematic configuration

JP = 0− 36

(a) 3⇡ amplitude (b) ⇡⇡K amplitude

(c) KK⇡ amplitude (d) 3K amplitude

FIG. 28. Absolute value squared of the J
P = 0� three-meson amplitudes in the equilateral configuration for four pion masses,

as a function of the energy relative to threshold. In the 3⇡ case, the result is compared to the NLO ChPT prediction.

ing detailed results for the partial-wave projections of the
building blocks. In Sec. VI, we show results for the result-
ing amplitudes with several choices of kinematic configu-
rations and overall angular momentum, and comment on
their features. We also display the chiral dependence of
these amplitudes. For the case of 3⇡

+, we compare the
full amplitude to ChPT and find an increasingly good
agreement with decreasing pion mass.

Some systematic uncertainties remain unquantified.
First, although exponentially suppressed finite-volume
effects are expected to be small due to M⇡L > 4, they
are certainly present at the percent level. They could
be further quantified by working on additional, larger
volumes. Second, chiral fits are performed using NLO
ChPT expressions, which neglects higher-order contribu-
tions, which is a concern for the ensembles with larger
pion masses. Third, our calculations are conducted at a
single lattice spacing. Using Wilson Chiral Perturbation
Theory, we estimate discretization errors to be small, but
a detailed study of these effects will require additional
lattice spacings. Finally, our physical-point simulation
has slightly detuned light-quark masses, and does not
include isospin breaking. Despite these limitations, the
small statistical uncertainties highlight the strong con-
straining power of our results.

This work has successfully demonstrated the feasibil-

ity of studying physical three-meson systems at maximal
isospin. Building on this milestone, future efforts will fo-
cus on exploring the properties of three-meson resonances
at the physical point.
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Application of 3-particle 
formalism:
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Finite- and infinite-volume study of DDπ scattering
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Abstract: We develop a comprehensive framework for extracting the pole position and
properties of the doubly-charmed tetraquark T+

cc(3875) from lattice QCD data using the
relativistic three-particle formalism. This approach incorporates the effect of the one-pion
exchange diagram in DDπ and DD∗ scattering, making it applicable at energies coinciding
with the left-hand cut in the partial-wave projected DD∗ amplitude. We present an example
application of this framework to existing lattice QCD data at mπ = 280MeV. We solve
the integral equations describing the DDπ reaction, use LSZ reduction to determine the
corresponding DD∗ amplitude, and find the values of the infinite-volume two- and three-body
K matrices that lead to agreement with lattice DD∗ phase shifts within their uncertainties.
Using these K matrices in the three-particle quantization condition, we describe the finite-
volume DD∗ spectrum and find good agreement with the lattice QCD energies. Our results
suggest that, at this pion mass, the tetraquark appears as a pair of subthreshold complex poles
whose precise location strongly depends on the value of the DDπ three-particle K matrix.
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Abstract: We generalize the relativistic field-theoretic three-particle finite-volume scattering
formalism to describe generic DDπ systems in the charm C = 2 sector. This includes the
isospin-0 channel, in which the recently discovered doubly-charmed tetraquark Tcc(3875)+ is
expected to manifest as a pole in the DDπ → DDπ scattering amplitude. The formalism
presented here can also be applied to lattice QCD settings in which the D∗ is bound and,
in particular, remains valid below the left-hand cut in DD∗ scattering, thus resolving an
issue in previous analyses of lattice-determined finite-volume energies.
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Abstract: We perform a detailed comparison between three formalisms used in recent
studies of DD→ scattering at heavier-than-physical pion masses, which aim to understand the
properties of the doubly-charmed tetraquark, T+

cc (3875). These methods are the three-particle
relativistic field theory (RFT) formalism, the two-body Lippmann-Schwinger (LS) equation
with chiral effective field theory potentials, and the two-particle relativistic framework
proposed by Baião Raposo and Hansen (BRH approach). In a simplified single-channel
setting, we derive the conditions under which the infinite-volume integral equations from the
RFT and BRH approaches reduce to the LS form. We present numerical examples showing
that differences between these methods can be largely removed by adjusting short-range
couplings. We also address a number of technical issues in the RFT approach.
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Doubly-charmed tetraquark

36
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need three-body formalism!
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Adapted from: Fernando Romero-López
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• Several LQCD studies using QC2 in  channel

• Use heavier-than-physical quarks
• Find signature of virtual bound state
• But QC2 fails at left-hand cut, below which 

phase shift becomes complex

Tcc

 scatteringDD*

37

[Padmanath, Prelovsek, arXiv:2202.10110]

[Chen et al., 2206.06185] 
[Lyu et al. (HALQCD), 2302.04505] 
[Padmanath & Prelovsek, 2202.10110] 

D

D

D*

D*
π 1

u − M2
π

[Whyte, Thomas, Wilson, 2405.15741] 

Left-hand cut

• Several solutions to failure have been proposed, by generalizing the QC2

[Du et al (2408.09375), Abolnikov et al. (2407.04649), Bubna et al. (2402.12985), 

 Meng et al. (2312.01930), Raposo, Hansen (2311.18793, Raposo, Hansen, Briceño, Jackura (2502.19375)]

Mπ ≈ 280 MeV
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3-body solution

38

• Use QC3, but include  as a bound state in -wave  channel

• Finite-volume effects from -channel pion exchange naturally incorporated

D* p Dπ

u

[Hansen, Romero-López, SRS, 2401.06609, JHEP]
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• Important advantage of QC3 approach:

• Works for all choices of quark masses, including physical case of unbound D*
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Application to LQCD data

39

[Dawid, Romero-López, SRS, 2409.17059, JHEP]

• Proof of concept study to (limited) existing LQCD data with bound 

• Choose -wave  scattering amplitude to obtain , for given choice of 

• Choose reasonable -wave  and  amplitudes

• Eyeball fit to results of [Padmanath, Prelovsek, arXiv:2202.10110] requires inclusion of 

• Solve integral equations, analytically continue to  pole, use LSZ to obtain 

• Result shows appropriate behavior at and below left-hand cut
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Figure 6. Results for qb cot δα, obtained from the solution with a nonzero three-body K matrix,
m2

D KE
3 = 1.9 · 105, the same value as used in figure 5. Notation as in figure 4. The lower panel zooms

in near the left-hand cut. Gray, solid lines are ±|qb/mD|.

They show the alpha and beta eigenvalues of the Blatt-Biedenharn KDD∗ matrix, and the
mixing angle, respectively — see eq. (2.57).

We first note that, above the DD∗ threshold, cot δα (figure 6) is almost identical to
the truncated model’s cot δJ=1 (figure 5). This can be understood by the fact that the
mixing angle ϵ ≈ −π/64 for E > EDD∗ , nearly decoupling the 3S1 and 3D1 sectors of the
K matrix. Furthermore, we find that the β eigenvalue, shown in figure 7, is an order of
magnitude smaller than the α eigenvalue.

Below the DD∗ threshold, however, the situation is quite different. The mixing angle
rises rapidly and the behavior of cot δα differs markedly from that of cot δJ=1 in the truncated

– 28 –

• Virtual bound-state pole moves into 
complex plane!

• Looking forward: complete analysis 
requires more extensive LQCD 
spectra

•  &  levelsDD, Dπ, DDπ DD*
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Unexpected subthreshold 
singularities
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Abstract: We extend the relativistic field theoretic finite-volume formalism to Nωω scat-
tering states at maximal isospin, I = 5/2. As in previous work using the relativistic field
theory approach, we work to all orders in a generic low-energy e!ective theory, and de-
termine the quantization condition that relates finite-volume energies to intermediate K
matrices, and the integral equations connecting the latter to the physical scattering am-
plitudes. We discuss the parametrization of the K matrices, and explain in detail the new
features that arise in implementing the quantization condition due to the spin of the nu-
cleon in combination with the use of non-degenerate particles. As a concrete example, we
provide a sample numerical application including the ! resonance in the Nω subchannel.
The extension to the I = 3/2 and 1/2 channels is more involved, due to mixing with
Nω states, and we do not provide a complete formalism for these cases. We explain why
Nω states cannot be included by treating the nucleon as a pole in p-wave Nω scattering,
an approach that has been successful in studying DD→ scattering using the three-particle
DDω formalism. We additionally provide results for all isospins under the assumption
of no two-to-three mixing, thereby laying the groundwork for a follow-up paper in which
all Nωω → Nω systems are fully treated. Finally, we study the singularities in Nωω

amplitudes arising from Nωωω intermediate states, and find that our subthreshold cuto!
functions must be modified to avoid such singularities.
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Parameter space in QC3

41

• A key quantity in derivation is   Bethe-Salpeter kernel (3 Particle Irreducible)

• Must be nonsingular in range of kinematic parameters

• Otherwise introduce uncontrolled  finite-volume effects

B3, 3 → 3

L−n

Matrix indices are:
channel, spectator momentum, 

pair angular momentum, 
lab frame nucleon spin

dimensional flavor basis,
{

|(ωω)2N→ , |(Nω)3/2ω→

}
. (2.2)

Here, the first two entries in each triplet form the pair, with isospin denoted by the sub-
script. The first element of each pair is the primary member, the significance of which is
discussed in section A.

Our first main result, a relation between the finite-volume spectrum and intermediate K
matrices, takes the standard RFT form [17]. Up to exponentially suppressed finite-volume
e!ects, the quantization condition

det
ipωmms

(
1 + K̂df,3(Eε)F̂3(E,P , L)

)
= 0 , (2.3)

determines the interacting finite-volume energies En(L).
Solutions are valid provide that the corresponding CMF energy, given in terms of the

finite-volume energy E by
Eε =

√
E2 ↑ P 2 , (2.4)

lies within the range
√

M2
N

+ 2M2
ϑ + Mϑ < Eε < MN + 3Mϑ , (2.5)

i.e., above nonanalyticities induced by left-hand cuts, and below the inelastic threshold.
We emphasize that K̂df,3 depends on the CMF energy Eε whereas F̂3 depends separately on
the finite-volume-frame energy E, the total three-momentum in that frame P (an integer
three-vector multiple of 2ω/L), and the box length L. Suppressing these coordinates going
forward, the two key objects are defined as

F̂3 ↓
F̂

3 + F̂
1

1 ↑ M̂2,LĜ
M̂2,LF̂ , M̂2,L ↓

1
[K̂2,L]→1 ↑ F̂

. (2.6)

Each quantity with a caret is a matrix in the tensor-product space labeled by several
indices: the spectator-flavor index i, running over the two choices in eq. (2.2); the spectator
momentum p, running over allowed finite-volume momenta; the spin ε and z-component
m of the pair; and, finally, the z component of the spin of the nucleon, taking values
ms = ±1/2. The set of allowed p is truncated by a cuto! function that is built into the
formalism: see eq. (2.14) and surrounding discussion. The sum over ε is truncated by hand
in a manner to be discussed below (see, in particular, section 2.1). The net result is that, in
practical applications, the matrices are finite dimensional, and numerical implementation
is straightforward.

The derivation sketched in section A yields the following results for the component
matrices of the quantization condition. The F matrix is

F̂ =
(

FN 0
0 Fϑ

)

, (2.7)

– 4 –

QC3 for :Nππ

brute force scan over the eight-dimensional parameter space allowed by our cuto! functions
and kinematics. We find that the singularity does not appear anywhere in this space for
pion masses of interest.

Thus we conclude that tree diagrams do not provide an example of the potential
singularity suggested by section B.1.

B.3 Singularities in loop diagrams

Loop diagrams allow access to a wider range of kinematical configurations. The infrared
singularities of interest can be studied using the Landau equations and their generaliza-
tions [91–93]. This is a large and very active field, and we have found the Mathematica
package SOFIA to be particularly useful [94], as well as the work described in refs. [95–98].

The simplest loop diagram that leads to the singularity postulated in section B.1 is that
of figure 7(a) (and its time-reversed partner). It is immediately apparent that this diagram
has a threshold singularity at M12 = MN +2Mω, corresponding to the blue line in figure 5.
Note that the fact that p3 is complex does not impact the presence of the singularity, since
the third initial-state particle is a spectator to the loop.8 The existence of this diagram
demonstrates that, for a rigorous derivation of the finite-volume quantization condition,
one must modify the cuto! function to avoid the region to the right of the blue line in
figure 5.

10

20

30

1

2

3

(a)

10 1

20 2

330

(b)

Figure 7: Examples of loop contributions to 3PI TOPT Bethe-Salpeter kernel. Notation
as in figure 2. Numbers indicate momentum labels. Time runs from right to left.

Another loop diagram with the same singularity is shown in figure 7(b). This has
two Nωωω cuts, and if one solves the Landau equations using SOFIA for the symmetric
configuration of external momenta in which p→

i
= pi, then there is a singularity at M12 =

MN + 2Mω.
We now consider loop diagrams contributing to Kdf,3. These include all diagrams

contributing to the 3PI Bethe-Salpeter kernel, so that the singularity in M12 from the
diagrams of figure 7 applies to Kdf,3 as well. However, there are also diagrams with three-
particle cuts, in which these cuts are regulated by a PV prescription, so that integrals over
them do not lead to nonanalyticities. Examples of these diagrams are shown in figure 8.

8In the TOPT derivation of the quantization condition, all possible choices of spectator contribute for a
given 3 → 3 Bethe-Salpeter kernel [34], and one of the choices has p1 as the spectator momentum for this
diagram.
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• Parameter space (for pion spectator)

• Energy , momentum E P

spectator  
momentum 

π
p

πN

 pair  Decomposed into 

Nπ

ℓ, m

1

2
3
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Subthreshold singularities

42

spectator  
momentum 

π
p

 pair can be 
subthreshold

Nπ

Other  pair 
can exceed 

inelastic 
threshold

Nπ

0.0 0.1 0.2 0.3 0.4

p/MN

1.2
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 cu
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f

Original cutoff
Subthreshold region

Parameter space for P = 0, Mπ /MN = 0.2
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Summary & outlook
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Summary & Outlook
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• Two-particle sector is entering precision phase

• Frontier is two nucleons, and form factors of mesonic resonances

• Major steps have been taken in the three-particle sector

• Formalism well established & cross checked, and almost complete

• Several applications to three-particle spectra from LQCD

• Path to a calculation of  decay amplitudes is now open

• Next steps in implementation

•  for lighter quark masses 

•  ;  (I=0) (WZW term)

•  ;   [Roper]

• Improved, model-independent fitting & analytic continuation [Salg, Romero-López, Jay,  
2506.16161]

• Next steps in formalism

• ,  [for Roper] &  (all underway)

• Four particles!

K → 3π

T+
cc → D*D → DDπ

3π(I = 2) ↔ ρπ 3π(I = 0) ↔ ω(782) ↔ KK

Nππ ↔ Δπ Nππ + Nπ

NNN(I = 1
2 ) Nππ + Nπ NNπ + NN

https://arxiv.org/abs/2506.16161
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Long-term dream

45

D
π
π

ℋW

K+

π+

π+

K+

D ℋW

CP violation in D decays

Challenge: finite-volume mixing with 4π, 6π, ηη, …

π+ π+

π+ π+

η

η

K+

K+

4+-particle formalism not yet developed 
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ExoHad collaboration

46

exohad.org
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Thank you! 
Questions?
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Backup slides
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Explicit forms of F & G

49

•  &  are known geometrical functions, containing cutoff function  F G H(k)

Gpℓ′￼m′￼;kℓm = ( k*
q*p )

ℓ′￼
4πYℓ′￼m′￼( ̂k*)H( ⃗p)H( ⃗k)Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3
Relativistic form 

introduced in [BHS17]

F̃ pℓ′￼m′￼;kℓm = δpk H( ⃗k) Fℓ′￼m′￼;ℓm(E − ωk, ⃗P − ⃗k, L)

Fℓ′￼m′￼;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− PV∫
d3k

(2π)3

𝒴ℓ′￼m′￼( ⃗k*)𝒴*ℓm( ⃗k*) h( ⃗k)
2ωk2ωP−k(E − ωk − ωP−k)

𝒴ℓm( ⃗k*) = 4π ( k*
q* )

ℓ

Yℓm( ̂k*)
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Two-particle formalism

50

[Lüscher, 1986-91 + many subsequent works by many authors]

I will follow approach of [Kim, Sachrajda, & SS, 2005], generalized to 
use time-ordered PT following [Blanton & SS, 2020]
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Generic relativistic FT (RFT) approach

51

• Study Minkowski time, finite-volume correlator 

CL(E, ⃗P ) ≡ ∫L
d4x eiEt−i ⃗P ⋅ ⃗x⟨Ω |T {σ2π(x)σ†

2π(0)} |Ω⟩L

• For fixed , poles in  occur when ⃗P CL E = En

• Analyze in generic EFT for pions, (kaons, …) working to all orders in (TO)PT

• For simplicity, assume exact isospin symmetry

• Restrict kinematic range to 0 < E* = E2 − P2 < 4Mπ Infinite-volume
vertices

CL(E, ⃗P ) =

1
E − ω1 − ω2

E, ⃗P
+

1
−E − ω1 − ω2

+

1
E − ω1 − ω2

1
E − ω1 − ω2

Can go on shell Can go on shell Can go on shellCannot go on shell

+…

No need for 
in finite volume

iϵ
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Generic relativistic FT (RFT) approach

52

CL(E, ⃗P ) =
E, ⃗P

+ +

+…

+ +

+
• Cuts divide into:

• Relevant—can go on shell
• Irrelevant—cannot go on shell

• Three-momenta in loops are 
summed over finite-volume set
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Use Poisson summation formula

53

• Replace loop sums with integrals where summand/integrand is nonsingular

• Drop exponentially suppressed terms (  etc.) while keeping power-law dependencee−MπL, e−(MπL)2,

Exp. suppressed if  is smooth
and 

g( ⃗k)
g′￼∼ g/Mπ

= ∫ +𝒪(e−MπL)

Infinite-volume
Loop
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Expansion in relevant cuts

54

•  is the TOPT version of a Bethe-Salpeter kernel (2PI in s-channel)

•  and  are corresponding “endcaps”

B2

A′￼ A

CL(E, ⃗P ) = C(0)
L (E, ⃗P ) + AA′￼ A′￼ AB2 A′￼ AB2 AB2+ + +…

∫+ ∫+ +…B2 =
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+ ∑
ℓ′￼,m′￼;ℓ,m

f on
ℓ′￼m′￼(E*) Fℓ′￼m′￼;ℓm(E, ⃗P , L) gon

ℓm(E*)

55

Dealing with relevant cuts

AB2 B2
1
L3 ∑⃗

k

f(E, ⃗P , ⃗k)
1
2

1
4ωkωP−k

1
E − ωk − ωP−k

g(E, ⃗P , ⃗k)

= PV∫
d3k

(2π)3
f(E, ⃗P , ⃗k)

1
2

1
4ωkωP−k

1
E − ωk − ωP−k

g(E, ⃗P , ⃗k)

⃗P − ⃗k

⃗k

FPV;ℓ′￼m′￼;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− PV ∫
d3k

(2π)3

𝒴ℓ′￼m′￼( ⃗k*)𝒴*ℓm( ⃗k*) h( ⃗k)
2ωk2ωP−k(E − ωk − ωP−k)

•  is a known, calculable kinematic finite-volume functionF

On-shell projected in 
pair CM frame, and 
decomposed into 

harmonics

CM frame relative 
momentum

Harmonic polynomial

UV cutoff
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Key move

∑ =

AB2 B2 AB2 B2∫ AB2 B2

On On

= +

+∫ F
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Resummations

CL(E, ⃗P ) = C(0)
L (E, ⃗P ) + AA′￼ A′￼ AB2 A′￼ AB2 AB2+ + +…

= C(0)
L (E, ⃗P ) + AA′￼ A′￼ AB2 A′￼ AB2 AB2+ + +…∫ + F ∫ + F ∫ + F ∫ + F ∫ + F ∫ + F

= C∞(E, ⃗P ) + A′￼⋅ iF ⋅ A + A′￼⋅ iF ⋅ i𝒦2 ⋅ iF ⋅ A + A′￼⋅ iF ⋅ i𝒦2 ⋅ iF ⋅ i𝒦2 ⋅ iF ⋅ A + …

AB2 B2𝒦2 B2 ∫= + +… A A= AB2 ∫+ +…

= C∞(E, ⃗P ) + A′￼⋅ iF ⋅
1

1 + 𝒦2 ⋅ F
⋅ A
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Quantization condition (QC2)

CL(E, ⃗P ) = C∞(E, ⃗P ) + A′￼⋅ iF ⋅
1

1 + 𝒦2 ⋅ F
⋅ A

• QC2: finite-volume energies occur when

Has no L-dependent poles
Only source of L-dependent poles

det(F−1 + 𝒦2) = 0

• Matrix indices are CM-frame 

•  is an infinite-volume quantity: diagonal in 

•  depends on finite-volume size & geometry, mixes 

• In practical applications, must truncate in  

ℓ, m

𝒦2 ℓ, m

F ℓ, m

ℓ
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Step 2: relating  to 𝒦2 ℳ2
• Consider “finite-volume scattering amplitude”

AB2 B2B2 +…+ℳ(off)
2,L =

• Use similar steps as for : project on , project on shell, use “key move”C2,L ℓ, m

iℳ2,L = i𝒦2 + i𝒦2 ⋅ iF ⋅ i𝒦2 + … = i𝒦2
1

1 + F𝒦2

• Take  limit, regularizing integrals with  prescriptionL → ∞ iϵ

ℳ2,L → ℳ2, Fℓ′￼,m′￼;ℓ,m → − iδℓ′￼ℓδm′￼mρ, ρ = − i q*2 /16πE*

ℳ2 = 𝒦2
1

1 − iρ𝒦2

• Leads to standard relation between  & , showing that  is the standard, 
relativistic two-particle K matrix

ℳ2 𝒦2 𝒦2
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Matrix structure in QC3

60

• All quantities are infinite-dimensional matrices with indices  describing 3 on-shell particleskℓmi

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

[finite volume “spectator” momentum: ] x [2-particle CM angular momentum: ] x [spectator flavor: ]k = (2π /L)n ℓ, m i

• For large  (at fixed E, L), the other two particles are below threshold

• Must include such configurations, by analytic continuation, up to a cut-off at 
 [Polejaeva & Rusetsky, `12]

k

k ≈ m
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M3, Kdf,3

2 degrees of freedom

12 momentum  
     components

-10 Poincaré generators

8 degrees of freedom

18 momentum  
     components

-10 Poincaré generators

Divergence-free K matrix

61

• Kdf,3 has the same symmetries as M3: relativistic invariance, particle interchange, T-reversal

M2, K2

s=E*2 + θ s=E*2 + 7 “angles”

• Need more parameters to describe  than  (will be discussed in lecture 3)

• Why  and  appear in QC3, rather than  and , will be explained shortly

𝒦df,3 𝒦2

𝒦2 𝒦df,3 ℳ2 ℳdf,3
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Threshold expansion for 𝒦df,3

62

•  is a real, smooth function which is Lorentz, P and T invariant

• Expand about threshold in powers of , , …

𝒦df,3

Δ = (s − 9M2
π)/9M2

π t̃ij = (p′￼i − pj)2/9M2
π

Depend on CM energy Angular dependence

+𝒪(Δ3)

• Can separate terms in fit based on dependence on energy and rotational properties

• E.g. only  contributes to nontrivial irreps𝒦B


