Lattice QCD: successes, challenges & future outlook

Stephen R. Sharpe University of Washington

SFSU colloquium, March 13, 2017

- Quantum ChromoDynamics is a peculiar theory
 - Quarks are absolutely confined
 - Quark properties are obscured

- QCD is a "background" in search for new physics
 - Must understand "old physics" of the standard model (SM) to find "new physics"
 - True both at "energy frontier" (LHC) and at "intensity frontier" (rare decays)
- QCD is strongly coupled, non-perturbative
- Lattice QCD is now a mature method that allows us to make precise predictions of properties of QCD

Intensity frontier probes extremely high scales

AGS @ BNL (E=33 GeV/c² protons)

• In 1961, Fitch and others measured the K_L - K_S mass difference: $\Delta M \approx 3.5 \ 10^{-12} \text{ GeV}$

We still do not know whether this result is consistent with the SM !

KTeV @ Fermilab: arXiv:0805.003 I

NA48 @ CERN: Cern website

 In 1999, KTeV & NA48 measured CP violation in K→ππ decays [ε'/ε=1.63(26) 10⁻³]

We still do not know whether this result is consistent with the SM !

Fermilab website

- Fermilab's muon g-2 experiment is about to start running
 - Will reduce error by a factor of ~5

We want to know whether the result obtained is consistent with the SM !

Outline

- Standard model & searching for physics beyond
- QCD & Lattice QCD (LQCD)
- High precision lattice QCD
- Constraining the Standard Model with LQCD
- Extending the LQCD frontier
- Future outlook

Standard Model (SM)

weak bosons

• EM sector tested to extraordinary precision

$$4\pi/e^2 = \alpha^{-1} = 137.035\,999\,084(55) \qquad \mbox{Electron g-2, 2008} \\ 4\pi/e^2 = \alpha^{-1} = 137.035\,998\,78(91) \qquad \mbox{Rb, 2006} \label{eq:phi}$$

- Weak sector tested to few parts in 1000
- This is possible because couplings are weak enough to use perturbation theory

$$g_e - 2 = \frac{\alpha}{\pi} + C_2 \left(\frac{\alpha}{\pi}\right)^2 + C_3 \left(\frac{\alpha}{\pi}\right)^3 + C_4 \left(\frac{\alpha}{\pi}\right)^4 + C_5 \left(\frac{\alpha}{\pi}\right)^5 + \dots$$

QCD is more challenging

Shortcomings of the SM

- No dark matter or dark energy
- Predicts insufficient baryogenesis

- NASA
- Why 3 generations? Why the observed pattern of quark & lepton masses and weak couplings?
- Weak scale relative to Planck scale

• At the highest energies—LHC

coffeeshopphysics.com

In rare decays or precision measurements

- Do all CP-violating processes in K and B decays agree with the SM?
- Do precision measurements such as g_{μ} -2 agree with SM predictions?

Dark matter searches

• Quarks become jets at the LHC

Disentangling requires perturbative QCD and modeling of non-perturbative confinement physics

quantumdiaries.org

proton

а

u

- "Brown muck" distorts hadronic decays
- E.g. CP-violation in kaon-antikaon mixing

Quark level process that might hope to calculate in perturbation theory is really a hadronic process that involves non-perturbative QCD

- "Brown muck" distorts hadronic decays
- Distortions can be huge, e.g. $\Delta I = \frac{1}{2}$ rule

$$\frac{\Gamma(K^0_S \to \pi \pi)}{\Gamma(K^+ \to \pi \pi)} \approx 330$$

Same underlying quark weak decay: $s \longrightarrow \bar{u}ud$

 Must be able to calculate these "distortions" to interpret many rare decay experiments

18

 Dark matter searches need nonperturbative QCD form factors for interpretation

Outline

- Standard model & searching for physics beyond
- QCD & Lattice QCD
- High precision lattice QCD
- Constraining the Standard Model with LQCD
- Extending the LQCD frontier
- Future outlook

Lattice QCD

Use Feynman path integral definition of QM

- $Z_E = \int \prod dU d\overline{q} \, dq \, e^{-S_E^{\text{lat}}}$
- Non-perturbative regularization of QFT
- Provides rigorous definition of QCD
 - Take $a \rightarrow 0$ by sending $g(a) \rightarrow 0$
- Amenable to numerical simulation using Monte Carlo methods

Simulating fermions is hard

$$\begin{split} Z_{\rm QCD} &= \int \prod dU d\bar{q} \, dq \, e^{-S_E^{\rm lat}} \\ &= \int dU e^{-S_{\rm glue}^{\rm lat}} \prod_q \det \left(D_\mu^{\rm lat} \gamma_\mu + m \right) \\ &\underset{\text{loops}}{\text{gluon}} \quad q \quad \text{fermion loops} \end{split}$$

- Fermion determinant leads to non-local effective gauge action
- Orders of magnitude more difficult to simulate than the "pure gluon" theory

Timeline

- Cray I, IMFlop/s 1974, invention of lattice QCD (K.Wilson) 1980, simulations of pure gluon theory demonstrate confinement (M. Creutz) CPU speedup, theoretical & algorithmic Cray 2, IGFlop/s advances have allowed lattice OCD to become a precision tool ITFlop/s Blue gene P, I PFlop/s 2000's: fully unquenched era (light quark loops) 2009-10: simulations with physical up, down and strange quark masses
 - Present: inclusion of electromagnetism; studies of light nuclei; ... Blue gene Q,

10 PFlop/s

State of the art

44x 44x 44x 288 lattice [MILC collaboration]

Highly Improved Staggered (HISQ) fermions Physical quark masses (in isospin limit: m_u=m_d)

Need to invert matrices of size $\sim (3 \times 10^9) \times (3 \times 10^9)$

State of the art

Extrapolating to the physical point

Outline

- Standard model & searching for physics beyond
- QCD & Lattice QCD
- High precision lattice QCD
- Constraining the Standard Model with LQCD
- Extending the LQCD frontier
- Future outlook

Few percent accuracy, and complete consistency

Fermion loops are needed!

Several predictions

Isospin splittings

Quark masses

$(m_u + m_d)/2 = 3.37(8) \text{ MeV} [N_f=2+1]$

Flavo(u)r Lattice Averaging Group

Eur. Phys. J. C (2017) 77:112 DOI 10.1140/epjc/s10052-016-4509-7 THE EUROPEAN PHYSICAL JOURNAL C

Review

Review of lattice results concerning low-energy particle physics

Flavour Lattice Averaging Group (FLAG)

S. Aoki¹, Y. Aoki^{2,3,17}, D. Bečirević⁴, C. Bernard⁵, T. Blum^{3,6}, G. Colangelo⁷, M. Della Morte^{8,9}, P. Dimopoulos^{10,11}, S. Dürr^{12,13}, H. Fukaya⁴, M. Golterman¹⁵, Steven Gottlieb¹⁶, S. Hashimoto^{17,18}, U. M. Heller¹⁹, R. Horsley²⁰, A. Jüttner^{21,a}, T. Kaneko^{17,18}, L. Lellouch²², H. Leutwyler⁷, C.-J. D. Lin^{22,23}, V. Lubicz^{24,25}, E. Lunghi¹⁶, R. Mawhinney²⁶, T. Onogi¹⁴, C. Pena²⁷, C. T. Sachrajda²¹, S. R. Sharpe²⁸, S. Simula²⁵, R. Sommer²⁹, A. Vladikas³⁰, U. Wenger⁷, H. Wittig³¹

- Reviews every 2⁺ years: provide "vetted" averages
- "PDG or HFAG for Lattice QCD"

Outline

- Standard model & searching for physics beyond
- QCD & Lattice QCD
- High precision lattice QCD
- Constraining the Standard Model with LQCD
- Extending the LQCD frontier
- Future outlook

CKM matrix & CP violation

CKM matrix & CP violation

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Unitary matrix
CP violation!

- Each element can be measured in several ways
- Consistency of SM requires all measurements to agree, and that V_{CKM} be unitary
- CP violating parameter η must explain observed CP violation in Kaon and B meson systems
- New physics would shows up as inconsistencies

Need for non-perturbative QCD

$$\begin{pmatrix} \mathbf{V}_{\mathbf{ud}} & \mathbf{V}_{\mathbf{us}} & \mathbf{V}_{\mathbf{ub}} \\ \pi \to \ell \nu & K \to \ell \nu & B \to \pi \ell \nu \\ K \to \pi \ell \nu & K \to \pi \ell \nu \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{V}_{\mathbf{cd}} & \mathbf{V}_{\mathbf{cs}} & \mathbf{V}_{\mathbf{cb}} \\ D \to \ell \nu & D_s \to \ell \nu & B \to D \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B \to D^* \ell \nu \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{V}_{\mathbf{td}} & \mathbf{V}_{\mathbf{ts}} & \mathbf{V}_{\mathbf{tb}} \\ B_d \leftrightarrow \overline{B}_d & B_s \leftrightarrow \overline{B}_s \\ K_0 \leftrightarrow \overline{K}_0 & K_0 \leftrightarrow \overline{K}_0 \end{pmatrix}$$

Example: $K \rightarrow \pi$ form factor

- **Experimental measurement:** $\overline{K}^0 \longrightarrow \pi^+ e^- \overline{\nu}$
- Underlying process:
- CKM element:
- Required matrix element: $\langle \pi(p_2) | V_\mu | K(p_1) \rangle \sim f_+(0)$

 $s \longrightarrow ue^-\overline{\nu}$

 V_{us}

Lattice QCD calculation:

Results for $K \rightarrow \pi$ form factor

$f_+(0) = 0.9704(33) [N_f=2+1+1]$

Results for Vud & Vus

Values determined using f_{π} , $f_K \& f_+(0)$

tension with non-lattice estimates?

Unitarity confirmed: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.980(9)$

Some tensions

...but overall consistency

$$V_{CKM} = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho) (i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Outline

- Standard model & searching for physics beyond
- QCD & Lattice QCD
- High precision lattice QCD
- Constraining the Standard Model with LQCD
- Extending the LQCD frontier
- Future outlook

"Gold plated"

- Processes involving single hadrons are (by now) straightforward to calculate using LQCD
 - Hadron masses, decay constants, form factors, quark masses, α_s, K, D & B mixing matrix elements

• E.g.
$$B_K = 0.76 \pm 0.01$$
 [FLAG16]

Beyond "gold plated"

- Processes involving two hadrons are now beginning to be accessible
 - E.g. $K \rightarrow \pi \pi$ decays
 - Does the SM reproduce the $\Delta I = I/2$ rule?

$$\frac{\Gamma(K^0_S \to \pi\pi)}{\Gamma(K^+ \to \pi\pi)} \approx 330$$

• Does the SM reproduce direct CP-violation in $K \rightarrow \pi \pi$?

$$\frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} \frac{\Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^+ \pi^-)} \approx 1 - 6 \operatorname{Re}(\epsilon'/\epsilon)$$

$$\epsilon'/\epsilon = 1.63(0.26) \ 10^{-3}$$

$K \rightarrow \pi \pi$ amplitude

gluons & sea-quark loops now implicit

Euclidean time

Many Wick contractions—some with poor signal/noise

$K \rightarrow \pi \pi$ amplitude

gluons & sea-quark loops now implicit

Euclidean time

Many Wick contractions—some with poor signal/noise

$K \rightarrow \pi \pi$ amplitude

gluons & sea-quark loops now implicit

Euclidean time

Many Wick contractions—some with poor signal/noise

Calculational challenges

- Quark-disconnected Wick contractions
 - Solved using new noise-reduction methods
- Breaking of chiral symmetry by lattice action
 - Solved using Domain-wall fermions
- Connecting finite-volume matrix element to measured infinite-volume one

$$_L\langle \pi\pi|\mathcal{H}_W|K\rangle_L \longrightarrow \langle \pi\pi|\mathcal{H}_W|K\rangle$$

Solved by large box (~6 fm) & using QFT to relate finite & infinite volume two-pion states [Lüscher, ...]

Pioneering $K \rightarrow \pi \pi$ results

• Amplitude for $K^+ \rightarrow \pi\pi$ (isospin 2 final state) <u>at physical</u> <u>quark masses</u> in fully controlled calculation

[RBC/UKQCD 1502.00263]

- Result: Re(A₂) = 1.50 (15) GeV
- Consistent with experiment! Re(A₂)=1.479(3) 10⁻⁸ GeV (K⁺ decays)

Pioneering $K \rightarrow \pi \pi$ results

- Amplitude for isospin 0 $\pi\pi$ final state <u>at physical point</u> (but so far with only a single lattice spacing a \approx 0.15fm) [RBC/UKQCD 1505.07863]
 - Result (without all errors controlled): $Re(A_0) = 4.7(1.6) \ 10^{-7} \text{ GeV}$
 - Consistent with experiment: $Re(A_2)=3.3(2) \ 10^{-7} \text{ GeV}$
 - Reproduces the $\Delta I = \frac{1}{2}$ rule from first principles!
- Fully controlled results in next few years

- CP violation in $K \rightarrow \pi \pi$
 - First result obtained: $\epsilon'/\epsilon = 0.1(7) 10^{-3}$ [RBC/UKQCD 1505.07863]
 - Will know in a few years if SM explains $\epsilon'/\epsilon = 1.63(26) \ 10^{-3}$
- Calculation of $K_L K_S$ mass difference ΔM_K
 - Method developed and tested: fully controlled result in 3-5 years?

Muon g-2

• Magnetic moment of muon is proportional to its spin

 $\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{S}$ $g = 2 + \frac{a_{\mu}}{2}$ $a_{\mu} = \frac{\alpha_{EM}}{2\pi} + \dots$

• Dominant theory error is from QCD!

Muon g-2

• Lattice result from direct calculation at physical masses in few yrs [RBC Collab., Blum et al. and other groups]

• Methods now have 20% statistical errors; systematics under study

Outline

- Standard model & searching for physics beyond
- QCD & Lattice QCD
- High precision lattice QCD
- Constraining the Standard Model with LQCD
- Extending the LQCD frontier
- Future outlook

Experimental frontier

Ruth Van de Water

Coming in the near future

- 3 or more particles, e.g. $K \rightarrow \pi \pi \pi$
- Resonance properties from Lattice QCD

- 3 or more particles, e.g. $K \rightarrow \pi \pi \pi$
- Resonance properties from Lattice QCD

Open problems

Non-zero density (e.g. center of neutron stars)

Real-time processes (e.g hadronization of jets)

• Decays with many open channels, e.g. $B \rightarrow \pi\pi$

Qualitative understanding of confinement/vacuum

• Lattice formulation of chiral gauge theories

Thank you! Questions?