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I. Introduction.

General question:

→What effective string theory describes flux tubes in S U(N) gauge theories?

Two cases:

→ Open string

→ Closed string

During the last decade:

→ 3D, 4D with Z2, Z4,U(1), S U(N ≤ 6) (Caselle and collaborators, Gliozzi and collaborators,

Kuti and collaborators, Lüscher&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questions to be studied in D = 2 + 1 dimensional S U(N) theories:

→ Calculation of excited states, and states with p‖ � 0 and P = ±
→ What is the degeneracy pattern of these states?

→ What is the leading correction in E2
n?
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I. Introduction.
Open flux tube Closed flux tube
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I. Introduction.

General question:

→What effective string theory describes flux tubes in S U(N) gauge theories?

Two cases:

→ Open string
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→ 3D, 4D with Z2, Z4,U(1), S U(N ≤ 6) (Caselle and collaborators, Gliozzi and collaborators,
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→ What is the leading correction in E2
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II. Theoretical expectations A.

The Spectrum of the Nambu-Goto (NG) String Model

◦ Action of Nambu-Goto free bosonic string leads to:

→ Spectrum given by:

E2
NL ,NR ,q,w

= (σlw)2 + 8πσ
(

NL+NR
2 − D−2

24

)
+

(
2πq

l

)2
+ p2

⊥.

→ Described by:

1. The winding number w (w=1),

2. The winding momentum p‖ = 2πq/l with q = 0,±1,±2,

3. The transverse momentum p⊥ (p⊥ = 0),

4. NL and NR connected through the relation: NR − NL = qw.

NL =
∑
k>0

∑
nL(k)>0

nL(k)k and NR =
∑
k′>0

∑
nR(k′)>0

nR(k′)k′

→ String states are eigenvectors of P (In D = 2 + 1) with eigenvalues:

P = (−1)
∑m

i=1 nL(ki)+
∑m′

j=1 nR(k′j)
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II. Theoretical expectations B.
Effective string theory

◦ First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

En = σl +
4π
l

(
n − D − 2

24

)
+ O

(
1/l2

)
.

◦ Lüscher&Weisz effective string action (Lüscher&Weisz. 04):

→ Using open-closed string duality:

∗ For any D the O
(
1/l2 (1/l)

)
(Boundary term) is absent from En(E2

n)

→ Spectrum in D = 2 + 1 (Drummond ’04, Dass and Matlock ’06 for any D.):

En = σl +
4π
l

(
n − 1

24

)
− 8π2

σl3

(
n − 1

24

)2

+ O
(
1/l4

)

→ Equivalently:

E2
n = (σl)2 + 8πσ

(
n − 1

24

)
+ O

(
1/l3

)
,
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II. Theoretical expectations B.
Effective string theory

◦ First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

En = σl +
4π
l

(
n − D − 2

24

)
+ O

(
1/l2

)
.

◦ Lüscher&Weisz effective string action (Lüscher&Weisz. 04):

→ Using open-closed string duality:

∗ For any D the O
(
1/l2 (1/l)

)
(Boundary term) is absent from En(E2

n)

→ Spectrum in D = 2 + 1 (Drummond ’04, Dass and Matlock ’06 for any D.):

En = σl +
4π
l

(
n − 1

24

)
− 8π2

σl3

(
n − 1

24

)2

+ O
(
1/l4

)

→ Equivalently:

E2
n = E2

NG + O
(
1/l3

)
−→ Fit : E2

fit = E2
NG − σ

Cp(
l
√
σ
)p (p ≥ 3)
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III. Lattice Calculation
Our approach:

• Construct a large basis of operators (80 − 200) with transverse deformations.

• Calculate the correlation matrix Ci j,p,± (t) = 〈Φ†i,p,± (t)Φ j,p,± (0)〉).
• Use the variational technique to extract correlators of different states.

• Fit our results using single cosh fits, and look at large t mass plateaus.

Example:

t

T − t

Φi,p,± Φ
†
j,p,±

φL = Tr
{ }

and φR = Tr
{ }

Φp,± = 1
L‖L⊥

∑
x‖ ,x⊥ {φL ± φR} eipx‖
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III. Lattice Calculation

Monte-Carlo:

• We define our gauge theory on a 3D discretized periodic Euclidean space-time

with L × L⊥ × LT sites.

• We choose to use the standard Wilson action:

S W = β
∑

P

[
1 − 1

N
ReTrUP

]

with: β = 2N
ag2 .

• Simulation:

– We use a mixture of Kennedy-Pendelton heat bath and over-relaxation steps

for updating S U(2) subgroups of S U(N).

– We use Cabibbo-Marinary for updating S U(N).
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III. Lattice Calculation: Operators for P = +

×5 bl ×5 bl ×5 bl ×5 bl ×5 bl

×5 bl ×5 bl ×5 bl ×5 bl f (L‖, L⊥, bl)

×5 bl ×5 bl ×5 bl ×5 bl ×5 bl
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III. Lattice Calculation: Operators for P = −

×5 bl ×5 bl ×5 bl ×5 bl ×5 bl

×5 bl ×5 bl ×5 bl

×5 bl ×5 bl ×5 bl ×5 bl ×5 bl
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III. Lattice Calculation: Large Basis of Operators

Using this large basis of operators:

• We extract masses of excited states.(up to 15 states)

• It increases the Overlaps (using single exponential fits):

– Ground state ∼ 99 − 100%,

– First excited state ∼ 98 − 100% (∼ 90 − 95 with just ×5bl),

– Second excited state ∼ 95 − 99% (∼ 85 − 90 with just ×5bl),

• We can extract energies of non-zero winding momentum states.

• We can extract energies of P = − states.

• It increases computational time moderately.(ex. ×6 for L = 16a)

12



IV. Results: Spectrum of S U(3) and β = 21.0

Group: S U(3), a � 0.08 f m, Quantum Numbers: P = +,− and q = 0

√
σl

E/
√
σ

654321
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2

0

n = 0

n = 1

n = 2

n = 3

NG Prediction: E2
n = (σl)2 + 8πσ

(
n − 1

24

)
, where n = NL = NR since q = 0.
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IV. Results: Spectrum of S U(3) and β = 40.0

Group: S U(3), a � 0.04 f m, Quantum Numbers: P = +,− and q = 0
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IV. Results: Spectrum of S U(6) and β = 90.0

Group: S U(6), a � 0.08 f m, Quantum Numbers: P = +,− and q = 0
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IV. Results: Spectrum of S U(N)

Groups: S U(3) and S U(6), a � 0.04 f m and 0.08 f m,

Quantum Numbers: P = ± and q = 0
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24
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(
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E1 = σl + 4π
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)
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IV. Results: Non-zero winding momentum.
Group: S U(3), a � 0.08 f m, Quantum Numbers: P = +,−, q = 1, 2 and w = 1

l
√
σ

√ E
2
/σ
−(

2π
q/
√ σ

l)
2

4.543.532.52

9

8
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5

4

q = 1, NR = 1, NL = 0

q = 2, NR = 2, NL = 0

q = 1, NR = 2, NL = 1

q = 2, NR = 3, NL = 1

q = 1, NR = 3, NL = 2

NG Prediction: E2 − (2πq/l)2 = (σlw)2 + 8πσ
(

NR+NL
2 − D−2

24

)
.

Constraint: NR − NL = qw
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IV. Results: Fits.

Cp

p

0

-50

-100

-150

-200

8765432

�

S U(3)
β = 21.00

S U(6)
β = 90.00

S U(3)
β = 41.00

Ansatz: E2
fit = E2

NG − σ Cp

(l
√
σ)p ,

String tension: Calculated using the ground state, fixing p = 3

First excited states exclude p = 1 (Boundary term)!

Also second excited states exclude p = 1 .

e−
1
2 χ

2
= f (p,Cp)
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V. Summary
We constructed a large basis of operators characterized by the quantum

numbers of parity P, and winding momentum 2πq/l,

We calculated the energies of closed flux tubes in D=2+1 described by P = ±
for:

→ S U(3) with β = 21.0 (a � 0.08fm) and q = 0,±1,±2,

→ S U(3) with β = 40.0 (a � 0.04fm) and q = 0,

→ S U(6) with β = 90.0 (a � 0.08fm) and q = 0,

We fit our data for the ground state using E2
fit = E2

NG − σCp/
(
l
√
σ
)p

and p = 3,

and extract σ.

Using σ we compare our results to Nambu-Goto:

→ Nambu-Goto is VERY good

We fit our data for the 1st and 2nd excited states with E2
fit, and extract p

→ 1st and 2nd excited states exclude p = 1 (boundary term Lüscher&Weisz. 04)
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VI. Appendix 1: Large-Nc

• Yet some of the essential properties of QCD including confinement, are poorly

understood.

• It is useful to find a ’Neighbouring’ field theory that one can analyze more

simply.

• ’Neighbouring Theory’ −→ S U(Nc −→ ∞).

• Expansion parameter −→ 1
Nc

.

• Planar diagrams contribute in the Large-N limit

• Non-Planar diagrams vanish.
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VI. Appendix 1: ’t Hooft’s coupling

• ’t Hooft’s coupling: λ = g2Nc

• ’t Hooft’s double line diagrammatic representation:

j

j

j

k

i

k
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VI. Appendix 1: Planar Diagram

k

  j  j
ii

i

  j

k

∼ g2 × Nc(1 closed loop) =
λ

Nc
× Nc = λ
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VI. Appendix 1: Non-Planar Diagram

j

i
j

i

i
j

∼ g6 × Nc(1 closed loop) =
λ3

N3
c

× Nc =
λ3

N2
c

Nc→∞−→ 0
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VI. Appendix 2: Contribution of Operators
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VI. Appendix 3: Why E2
n?

Ground state:

S U(3) and β = 14.7172 S U(5) and β = 80.00
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Fit 1: E0(l, σ) = σl − π
6l ×C(1)

eff (l)

Fit 2: E2
0(l, σ) = (σl)2 − πσ3 ×C(2)

eff (l).
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VII. Blocking-Smearing

• One needs operators that extend over physical length scales and are smooth on

such scales.

• Iterative ’fuzzing’ algorithm:
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VII. Blocking-Smearing

• One needs operators that extend over physical length scales and are smooth on

such scales.

• Iterative ’fuzzing’ algorithm:

smear
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VII. Blocking-Smearing

• One needs operators that extend over physical length scales and are smooth on

such scales.

• Iterative ’fuzzing’ algorithm:

smear block

28



VII. Blocking-Smearing

• One needs operators that extend over physical length scales and are smooth on

such scales.

• Iterative ’fuzzing’ algorithm:

smear block

Iterate
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