INT Summer School on "Lattice QCD and its applications"

The Closed String Spectrum of *SU(N)* **gauge Theories in 2+1 Dimensions**

Andreas Athenodorou

St. John's College

Oxford University

with Barak Bringoltz and Mike Teper

I. Introduction.

General question:

 \rightarrow What effective string theory describes flux tubes in S U(N) gauge theories?

Two cases:

- \rightarrow Open string
- \rightarrow Closed string

During the last decade:

 \rightarrow 3D, 4D with Z₂, Z₄, U(1), SU(N \leq 6) (Caselle and collaborators, Gliozzi and collaborators,

Kuti and collaborators, Lüscher&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questions to be studied in D = 2 + 1 **dimensional** SU(N) **theories:**

- \rightarrow Calculation of excited states, and states with $p_{\parallel} \neq 0$ and $P = \pm$
- \rightarrow What is the degeneracy pattern of these states?
- \rightarrow What is the leading correction in E_n^2 ?

I. Introduction.

General question:

 \rightarrow What effective string theory describes flux tubes in S U(N) gauge theories?

Two cases:

- \rightarrow Open string
- \rightarrow Closed string \leftarrow in D = 2 + 1

During the last decade:

 \rightarrow 3D, 4D with Z₂, Z₄, U(1), SU(N \leq 6) (Caselle and collaborators, Gliozzi and collaborators,

Kuti and collaborators, Lüscher&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questions to be studied in D = 2 + 1 **dimensional** S U(N) **theories:**

- \rightarrow Calculation of excited states, and states with $p_{\parallel} \neq 0$ and $P = \pm$
- \rightarrow What is the degeneracy pattern of these states?
- \rightarrow What is the leading correction in E_n^2 ?

II. Theoretical expectations A.

The Spectrum of the Nambu-Goto (NG) String Model

- Action of Nambu-Goto free bosonic string leads to:
 - \rightarrow Spectrum given by:

$$E_{N_L,N_R,q,w}^2 = (\sigma l w)^2 + 8\pi \sigma \left(\frac{N_L + N_R}{2} - \frac{D - 2}{24}\right) + \left(\frac{2\pi q}{l}\right)^2 + p_{\perp}^2.$$

- \rightarrow Described by:
 - 1. The winding number w (w=1),
 - 2. The winding momentum $p_{\parallel} = 2\pi q/l$ with $q = 0, \pm 1, \pm 2$,
 - 3. The transverse momentum p_{\perp} ($p_{\perp} = 0$),
 - 4. N_L and N_R connected through the relation: $N_R N_L = qw$.

$$N_L = \sum_{k>0} \sum_{n_L(k)>0} n_L(k)k$$
 and $N_R = \sum_{k'>0} \sum_{n_R(k')>0} n_R(k')k'$

 \rightarrow String states are eigenvectors of *P* (In *D* = 2 + 1) with eigenvalues:

$$P = (-1)^{\sum_{i=1}^{m} n_L(k_i) + \sum_{j=1}^{m'} n_R(k'_j)}$$

II. Theoretical expectations B.

Effective string theory

• First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

$$E_n = \sigma l + \frac{4\pi}{l} \left(n - \frac{D-2}{24} \right) + O\left(1/l^2\right)$$

- Lüscher&Weisz effective string action (Lüscher&Weisz. 04):
 - \rightarrow Using open-closed string duality:
 - * For any *D* the $O(1/l^2(1/l))$ (Boundary term) is absent from $E_n(E_n^2)$
 - \rightarrow Spectrum in D = 2 + 1 (Drummond '04, Dass and Matlock '06 for any D.):

$$E_{n} = \sigma l + \frac{4\pi}{l} \left(n - \frac{1}{24} \right) - \frac{8\pi^{2}}{\sigma l^{3}} \left(n - \frac{1}{24} \right)^{2} + O\left(\frac{1}{l^{4}} \right)$$

 \rightarrow Equivalently:

$$E_n^2 = (\sigma l)^2 + 8\pi\sigma \left(n - \frac{1}{24}\right) + O(1/l^3),$$

II. Theoretical expectations B.

Effective string theory

• First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

$$E_n = \sigma l + \frac{4\pi}{l} \left(n - \frac{D-2}{24} \right) + O\left(1/l^2\right)$$

- Lüscher&Weisz effective string action (Lüscher&Weisz. 04):
 - \rightarrow Using open-closed string duality:
 - * For any *D* the $O(1/l^2(1/l))$ (Boundary term) is absent from $E_n(E_n^2)$
 - \rightarrow Spectrum in D = 2 + 1 (Drummond '04, Dass and Matlock '06 for any D.):

$$E_{n} = \sigma l + \frac{4\pi}{l} \left(n - \frac{1}{24} \right) - \frac{8\pi^{2}}{\sigma l^{3}} \left(n - \frac{1}{24} \right)^{2} + O\left(\frac{1}{l^{4}} \right)$$

 \rightarrow Equivalently:

$$E_n^2 = \mathbf{E}_{NG}^2 + O\left(1/l^3\right) \longrightarrow \text{Fit} : E_{\text{fit}}^2 = E_{NG}^2 - \sigma \frac{C_p}{\left(l\sqrt{\sigma}\right)^p} \qquad (p \ge 3)$$

III. Lattice Calculation

Our approach:

- Construct a large basis of operators (80 200) with transverse deformations.
- Calculate the correlation matrix $C_{ij,p,\pm}(t) = \langle \Phi_{i,p,\pm}^{\dagger}(t) \Phi_{j,p,\pm}(0) \rangle$).
- Use the variational technique to extract correlators of different states.
- Fit our results using single cosh fits, and look at large *t* mass plateaus.

Example:

III. Lattice Calculation

Monte-Carlo:

- We define our gauge theory on a 3D discretized periodic Euclidean space-time with $L \times L_{\perp} \times L_T$ sites.
- We choose to use the standard Wilson action:

$$S_{\rm W} = \beta \sum_{P} \left[1 - \frac{1}{N} {\rm ReTr} U_P \right]$$

with: $\beta = \frac{2N}{ag^2}$.

- Simulation:
 - We use a mixture of Kennedy-Pendelton heat bath and over-relaxation steps for updating SU(2) subgroups of SU(N).
 - We use Cabibbo-Marinary for updating S U(N).

III. Lattice Calculation: Large Basis of Operators

Using this large basis of operators:

- We extract masses of excited states.(up to 15 states)
- It increases the Overlaps (using single exponential fits):
 - Ground state $\sim 99 100\%$,
 - First excited state ~ 98 100% (~ 90 95 with just $\times 5bl$),
 - Second excited state ~ 95 99% (~ 85 90 with just $\times 5bl$),
- We can extract energies of non-zero winding momentum states.
- We can extract energies of P = states.
- It increases computational time moderately.(ex. $\times 6$ for L = 16a)

IV. Results: Spectrum of *SU*(*N*)

Groups: SU(3) and SU(6), $\underline{a} \simeq 0.04 fm$ and 0.08 fm,

Quantum Numbers: $P = \pm$ and q = 0

IV. Results: Non-zero winding momentum.

Group: SU(3), $\underline{a} \simeq 0.08 fm$, **Quantum Numbers:** P = +, -, q = 1, 2 and w = 1

<u>NG Prediction</u>: $E^2 - (2\pi q/l)^2 = (\sigma lw)^2 + 8\pi\sigma \left(\frac{N_R + N_L}{2} - \frac{D-2}{24}\right).$ <u>Constraint</u>: $N_R - N_L = qw$

IV. Results: Fits.

<u>Ansatz</u>: $E_{\text{fit}}^2 = E_{NG}^2 - \sigma \frac{C_p}{(l\sqrt{\sigma})^p}$,

String tension: Calculated using the ground state, fixing p = 3

First excited states exclude p = 1 (Boundary term)! Also second excited states exclude p = 1

V. Summary

- We constructed a large basis of operators characterized by the quantum numbers of **parity** *P*, and **winding momentum** $2\pi q/l$,
- We calculated the energies of closed flux tubes in D=2+1 described by $P = \pm$ for:
 - $\rightarrow SU(3)$ with $\beta = 21.0$ ($a \simeq 0.08$ fm) and $q = 0, \pm 1, \pm 2$,
 - $\rightarrow SU(3)$ with $\beta = 40.0$ ($a \simeq 0.04$ fm) and q = 0,
 - $\rightarrow SU(6)$ with $\beta = 90.0$ ($a \simeq 0.08$ fm) and q = 0,

Using σ we compare our results to Nambu-Goto:

\rightarrow Nambu-Goto is <u>VERY</u> good

We fit our data for the 1st and 2nd excited states with E_{fit}^2 , and extract p

 $\rightarrow 1^{st}$ and 2^{nd} excited states exclude p = 1 (boundary term Lüscher&Weisz. 04)

VI. Appendix 1: Large-*N_c*

- Yet some of the essential properties of QCD including confinement, are poorly understood.
- It is useful to find a 'Neighbouring' field theory that one can analyze more simply.
- 'Neighbouring Theory' $\longrightarrow S U(N_c \longrightarrow \infty)$.
- Expansion parameter $\longrightarrow \frac{1}{N_c}$.
- Planar diagrams contribute in the Large-N limit
- Non-Planar diagrams vanish.

VI. Appendix 1: 't Hooft's coupling

- 't Hooft's coupling: $\lambda = g^2 N_c$
- 't Hooft's double line diagrammatic representation:

- One needs operators that extend over physical length scales and are smooth on such scales.
- Iterative 'fuzzing' algorithm:

- One needs operators that extend over physical length scales and are smooth on such scales.
- Iterative 'fuzzing' algorithm:

- One needs operators that extend over physical length scales and are smooth on such scales.
- Iterative 'fuzzing' algorithm:

- One needs operators that extend over physical length scales and are smooth on such scales.
- Iterative 'fuzzing' algorithm:

VIII. References

• Large-N

G. 't Hooft, Nucl. Phys. B72 (1974) 461; B75 (1974) 461.

S. Coleman, 1979 Erice Lectures.

E. Witten, Nucl. Phys. B160 (1979) 57.

A. Manohar, 1997 Les Houches Lectures, hep-ph/9802419.

Y. Makeenko, hep-th/0001047

• Strings

J. Polchinski, Cambridge, UK: Univ. Pr. (1998) 402 p Lüst&Theisen, Springer-Verlag, (1989)

• Lattice QCD and Strings

A. M. Polyakov, Gauge Fields and Strings (Harwood, 1987),

- J. Polchinski, hep-th/9210045,
- J. Kuti, PoS LAT2005, 001 (2006) [PoS JHW2005, 009 (2006)],

• Effective string theory

M. Luscher, K. Symanzik and P.Weisz, Nucl. Phys. B 173, 365 (1980),M. Luscher and P. Weisz, JHEP 0407, 014 (2004) [arXiv:hep-th/0406205],

N. D. Hari Dass and P. Majumdar, JHEP 0610, 020 (2006) [arXiv:hep-lat/0608024],

P. Olesen, Phys. Lett. B 160, 144 (1985),

J. Arvis, Phys. Lett. 127B (1983) 106.