

Joe Wasem Nuclear Theory Group University of Washington Applications of the ε-regime to Lattice QCD or How I Learned to Stop Worrying and Love the Zero Modes

The ε-regime

- Nucleon lattice calculations occur at finite volume and unphysical quark masses. We need formulas to extrapolate to physical quark masses and infinite volume.
- To achieve this, we want to calculate observables in HBChPT (see Martin's lecture tomorrow) near the chiral limit and in small volumes. This is the εregime.
- Power counting in this regime is similar to the p-regime but with $m_{\pi} \sim \epsilon^2$ in ϵ counting.
- In this regime pion zero momentum modes go as $1/m_{\pi}^{2}V$ and dominate the path integral.
- Zero modes must be treated as $\mathcal{O}(1)$ contributions and calculated exactly.

 $\beta = L$

These lines should not be interpreted as strict boundaries but rather as midpoints in the smooth transition between regimes.

Zero Modes

 In (2 flavor) ChPT pions exist within the SU(2) matrix (see lectures by C. Bernard):

$$\Sigma = Exp[2iM / f]$$
$$M = \begin{pmatrix} \pi_0 / \sqrt{2} & \pi_+ \\ \pi & -\pi_0 / \sqrt{2} \end{pmatrix}$$

 To separate the zero modes a change of variables is made (following Gasser & Leutwyler):

$$\Sigma(x) \rightarrow U \hat{\Sigma}(x) U$$

• Here the constant matrix U encapsulates the zero mode pions while $\hat{\Sigma}$ contains order ϵ fields.

Nucleons and Zero Modes

- Typically in HBChPT, pions and nucleons interact via (among other terms): $L_{\text{int}} = 2g_A \overline{N} S^{\mu} A_{\mu} N$ $A_{\mu} = \frac{i}{2} \left(\xi \partial_{\mu} \xi^+ - \xi^+ \partial_{\mu} \xi \right)$ $\xi \equiv \sqrt{\Sigma}$
- So we must determine how ξ changes under the zero mode change of variables.
- There are two (equivalent) ways of doing this.

ξ Change of Variables

Mimic a Chiral Transformation

• The original change of variables mimics a chiral transformation:

$$\Sigma \rightarrow L\hat{\Sigma}R^{+}$$

$$L = R^{+} = U$$

$$\Rightarrow \xi \rightarrow V\hat{\xi}U \text{ or } U\hat{\xi}V^{-}$$

$$V = \sqrt{U\hat{\Sigma}UU^{+}}\hat{\xi}^{+}$$

$$V^{+} = \hat{\xi}^{+}U^{+}\sqrt{U\hat{\Sigma}U}$$

Direct Substitution

 One can put the change of variables directly into the square root:

$$\xi \rightarrow \sqrt{U \hat{\Sigma} U}$$

Square Root of a Matrix

- With either method the square root of a matrix must be computed.
- No analytic method exists for doing this with an arbitrary SU(2) matrix.
- Can be done order by order in ε:
 - 1. Assume $\sqrt{U\hat{\Sigma}U} = U + \frac{i\epsilon}{f}A \frac{\epsilon^2}{2f^2}B + \dots$ for unknown A, B. 2. Then $U\hat{\Sigma}U = U^2 + \frac{i\epsilon}{f}(UA + AU) \frac{\epsilon^2}{2f^2}(UB + BU + 2A^2) + \dots$

 - 3. Parameterize U in hyperspherical coordinates (SU(2) manifold is unit hypersphere).
 - 4. Expand $\hat{\Sigma}$ in ε and solve order by order in ε for unknown matrices.
- The resulting matrix can be used to get zero ulletmodes for a given Feynman diagram in HBChPT.

Example: The Axial Charge

 We can use this method now to calculate the axial charge between two nucleons:

Under the change of variables one has:

$$\overline{N}S^{\mu}A_{\mu}N \to \overline{N}S^{\mu}V\hat{A}_{\mu}V^{+}N$$

- At lowest order in ε , V=1 and so π NN vertices carry no zero mode information.
- However, zero mode information will be carried by the current insertion and the tadpole diagram.
- After integrating out the zero modes each of these graphs will be multiplied by a function containing the zero mode information.

• Q(s) is the zero mode function for the first 3 diagrams previously, T(s) is the function for the tadpole diagram.

$$s = \frac{1}{2} m_{\pi}^2 f^2 \beta L$$

- One caveat to this procedure: the group integration can only be accomplished on a diagram-by-diagram basis, and a local, zero mode free, Lagrangian cannot be formed.
- With these zero mode functions one can then proceed on to calculate the finite volume observable in the normal way.

Summary

- Lower quark mass lattice calculations are coming! The ε-regime era for nucleons is nigh! Be prepared!
- Other observables can be calculated with this method (any you can think of), to any order in ϵ desired.
- More details and shameless self-promotion: Smigielski & Wasem, arXiv:0706.3731

HBChPT Lagrangian

$$\begin{split} L &= \overline{N}iv \cdot DN - \overline{T}^{\mu}iv \cdot DT_{\mu} + \Delta \overline{T}^{\mu}T_{\mu} + \frac{f^{2}}{8}\operatorname{Tr}\left(\partial^{\mu}\Sigma^{+}\partial_{\mu}\Sigma\right) \\ &+ \lambda \overline{m} \frac{f^{2}}{4}\operatorname{Tr}\left(\Sigma + \Sigma^{+}\right) + 2g_{A}\overline{N}S^{\mu}A_{\mu}N \\ &+ g_{\Delta N}\left(\overline{T}^{abc,\mu}A_{a,\mu}^{d}N_{b}\varepsilon_{cd} + \text{h.c.}\right) + 2g_{\Delta \Delta}\overline{T}^{\mu}S^{\nu}A_{\nu}T_{\mu} \\ A_{\mu} &= \frac{i}{2}\left(\xi\partial_{\mu}\xi^{+} - \xi^{+}\partial_{\mu}\xi\right) \end{split}$$

g_A Calc. (look at the masses!)

Nonlocal Lagrangian

- Which Vertex/Line do the zero modes belong to?
- Zero mode integration does not return a simple correction to a vertex or propagator.

 So no local Lagrangian after integration.