

Joe Wasem

Nuclear Theory Group
Uhiversity of Washington
Applications of the ε-regime to Lattice QCD
or How I Learned to Stop Worrying and Love the Zero Modes

The ε-regime

- Nucleon lattice calculations occur at finite volume and unphysical quark masses. We need formulas to extrapolate to physical quark masses and infinite volume.
- To achieve this, we want to calculate observables in HBChPT (see Martin's lecture tomorrow) near the chiral limit and in small volumes. This is the ε regime.
- Power counting in this regime is similar to the pregime but with $m_{\pi} \sim \varepsilon^{2}$ in ε counting.
- In this regime pion zero momentum modes go as $1 / \mathrm{m}_{\pi}{ }^{2} \mathrm{~V}$ and dominate the path integral.
- Zero modes must be treated as $\mathcal{O}(1)$ contributions and calculated exactly.

$$
\beta=L
$$

These lines should not be interpreted as strict boundaries but rather as midpoints in the smooth transition between regimes.

Zero Modes

- In (2 flavor) ChPT pions exist within the SU(2) matrix (see lectures by C. Bernard):

$$
\begin{aligned}
& \Sigma=\operatorname{Exp}[2 i M / f] \\
& M=\left(\begin{array}{cc}
\pi_{0} / \sqrt{2} & \pi_{+} \\
\pi & -\pi_{0} / \sqrt{2}
\end{array}\right)
\end{aligned}
$$

- To separate the zero modes a change of variables is made (following Gasser \& Leutwyler):

$$
\Sigma(x) \rightarrow U \hat{\Sigma}(x) U
$$

- Here the constant matrix U encapsulates the zero mode pions while $\hat{\boldsymbol{\Sigma}}$ contains order \& fields.

Nucleons and

- Typically in HBChPT, pions and nucleons interact via (among other terms):

$$
\begin{aligned}
& L_{\mathrm{int}}=2 g_{A} \bar{N} S^{\mu} A_{\mu} N \\
& A_{\mu}=\frac{i}{2}\left(\xi \partial_{\mu} \xi^{+}-\xi^{+} \partial_{\mu} \xi\right) \\
& \xi \equiv \sqrt{\Sigma}
\end{aligned}
$$

- So we must determine how ξ changes under the zero mode change of variables.
- There are two (equivalent) ways of doing this.

ξ Change of Vartables

Mimic a Chiral Transformation

- The original change of variables mimics a chiral transformation:

$$
\begin{aligned}
& \Sigma \rightarrow L \hat{\Sigma} R^{+} \\
& L=R^{+}=U \\
& \Rightarrow \xi \rightarrow V \hat{\xi} U \text { or } U \hat{\xi} V^{+} \\
& V=\sqrt{U \hat{\Sigma} U} U U^{+} \hat{\xi}^{+} \\
& V^{+}=\hat{\xi}^{+} U^{+} \sqrt{U \hat{\Sigma} U}
\end{aligned}
$$

Direct Substitution

- One can put the change of variables directly into the square root:

$$
\xi \rightarrow \sqrt{U \hat{\Sigma} U}
$$

Square Root of a

- With either method the square root of a matrix must be computed.
- No analytic method exists for doing this with an arbitrary SU(2) matrix.
- Can be done order by order in ε :

1. Assume $\sqrt{U \hat{\Sigma} U}=U+\frac{i z}{f} A-\frac{\varepsilon^{2}}{2 f^{2}} B+\ldots$ for unknown A, B.
2. Then $\boldsymbol{U} \hat{\Sigma} U=U^{2}\left|{ }_{f}^{i z}(U A, A U)^{\frac{\varepsilon^{2}}{2}}\left(U B, B U, 2 A^{2}\right)\right| \ldots$
3. Parameterize U in hyperspherical coordinates (SU(2) manifold is unit hypersphere).
4. Expand $\hat{\boldsymbol{\Sigma}}$ in ε and solve order by order in ε for unknown matrices.

- The resulting matrix can be used to get zero modes for a given Feynman diagram in HBChPT.

Example: The Axial

- We can use this method now to calculate the axial charge between two nucleons:

- Under the change of variables one has:

$$
\bar{N} S^{\mu} A_{\mu} N \rightarrow \bar{N} S^{\mu} V \hat{A}_{\mu} V^{+} N
$$

- At lowest order in $\varepsilon, \mathrm{V}=1$ and so $\pi \mathrm{NN}$ vertices carry no zero mode information.
- However, zero mode information will be carried by the current insertion and the tadpole diagram.
- After integrating out the zero modes each of these graphs will be multiplied by a function containing the zero mode information.

- $\mathrm{Q}(\mathrm{s})$ is the zero mode function for the first 3 diagrams previously, $\mathrm{T}(\mathrm{s})$ is the function for the tadpole diagram.

$$
s=\frac{1}{2} m_{\pi}^{2} \mathrm{f}^{2} \beta L^{3}
$$

- One caveat to this procedure: the group integration can only be accomplished on a diagram-by-diagram basis, and a local, zero mode free, Lagrangian cannot be formed.
- With these zero mode functions one can then proceed on to calculate the finite volume observable in the normal way.

Summary

- Lower quark mass lattice calculations are coming! The ε-regime era for nucleons is nigh! Be prepared!
- Other observables can be calculated with this method (any you can think of), to any order in ε desired.
- More details and shameless self-promotion: Smigielski \& Wasem, arXiv:0706.3731

HBChPT Lagrangian

$$
\begin{aligned}
L= & \bar{N} i v \cdot D N-\bar{T}^{\mu} i v \cdot D T_{\mu}+\Delta \bar{T}^{\mu} T_{\mu}+\frac{f^{2}}{8} \operatorname{Tr}\left(\partial^{\mu} \Sigma^{+} \partial_{\mu} \Sigma\right) \\
& +\lambda \bar{m} \frac{f^{2}}{4} \operatorname{Tr}\left(\Sigma+\Sigma^{+}\right)+2 g_{A} \bar{N} S^{\mu} A_{\mu} N \\
& +g_{\Delta N}\left(\bar{T}^{a b c, \mu} A_{\alpha, \mu}^{d} N_{b} \varepsilon_{c l}+\text { h.c. }\right)+2 g_{\Delta \Delta} \bar{T}^{\mu} S^{\nu} A_{\nu} T_{\mu} \\
A_{\mu} & =\frac{i}{2}\left(\xi \xi_{\mu} \xi^{+}-\xi^{+} \partial_{\mu} \xi\right)
\end{aligned}
$$

g_{A} Calc.

(look at

Nonlocal Lagrangian

- Which Vertex/Line do the zero modes belong to?

- Zero mode integration does not return a simple correction to a vertex or propagator.
- So no local

Lagrangian after integration.

