O(a) improvement & Schrödinger functional schemes (lecture V)

Stefan Sint

Trinity College Dublin

INT Summer School "Lattice QCD and its applications"

Seattle, August 21, 2007

Stefan Sint

O(a) improvement & Schrödinger functional schemes (lecture V)

1 / 31

- O(a) improvement of tmQCD
- Cutoff effects in SF schemes
- Chirally rotated SF boundary conditions
- A perturbative check of automatic O(a) improvement
- Conclusions

O(a) improvement and twisted mass QCD

Recent interest in tmQCD mostly triggered by the observation of automatic O(a) improvement at maximal twist $\alpha = \pi/2$ [Frezzotti & Rossi '03].

The argument only relies on Symanziks effective continuum theory:

- assume that we have tuned $m_{PCAC} = 0$ i.e. the renormalized standard mass vanishes (up to O(a) effects)
- Symanziks effective continuum action is then given by

$$S_{\mathrm{eff}} = S_0 + aS_1 + O(a^2), \qquad S_0 = \int \mathrm{d}^4 x \ \overline{\psi}(x) \left(\not D + i \mu_{\mathrm{q}} \gamma_5 \tau^3
ight) \psi(x)$$

where S_0 is supposed to be regularised e.g. with Ginsparg-Wilson quarks on a much finer lattice, and S_1 is given by (afer using equations of motion)

$$S_{1} = \int \mathrm{d}^{4}x \left\{ c \, \overline{\psi} \sigma_{\mu\nu} F_{\mu\nu} \psi + b_{\mu} \, \mu^{2} \overline{\psi} \psi
ight\}$$

• Cutoff dependence of lattice correlation function:

$$\langle O \rangle = \langle O \rangle^{\text{cont}} - a \langle S_1 O \rangle^{\text{cont}} + a \langle \delta O \rangle^{\text{cont}} + O(a^2).$$

Here δO are the O(a) counterterms to the composite fields in O. Example:

$$O = V^1_{\mu}(x) P^2(y) \qquad \Rightarrow \quad \delta O = \left\{ c_{\rm v} \, i \partial_{\nu} \, T^1_{\mu\nu}(x) + b_{\rm v} \, \mu A^2_{\mu}(x) \right\} P^2(y)$$

• Introduce a $\gamma_5 \tau^1$ -transformation:

$$\psi \to i\gamma_5 \tau^1 \psi, \qquad \overline{\psi} \to \overline{\psi} \, i\gamma_5 \tau^1$$

• • = • • = •

• Under this $\gamma_5 \tau^1$ -transformation one has

$$egin{array}{rcl} S_0 &
ightarrow & S_0 & S_1
ightarrow -S_1 \ O &
ightarrow & \pm O & \Rightarrow & \delta O
ightarrow \mp \delta O \end{array}$$

• Hence for $\gamma_5 \tau^1$ -even *O* one finds

• while for $\gamma_5 \tau^1$ -odd *O* one gets

$$\begin{array}{lll} \langle O \rangle^{\rm cont} &=& -\langle O \rangle^{\rm cont} = 0 \\ \langle OS_1 \rangle^{\rm cont} &=& \langle OS_1 \rangle^{\rm cont} \\ \langle \delta O \rangle^{\rm cont} &=& \langle \delta O \rangle^{\rm cont} = 0 \\ \Rightarrow & \langle O \rangle &=& -a \langle OS_1 \rangle^{\rm cont} + a \langle \delta O \rangle^{\rm cont} + O(a^2) \end{array}$$

 $\Rightarrow \gamma_5 \tau^1 \text{-even observables are automatically O(a) improved, while} \gamma_5 \tau^1 \text{-odd observables vanish up to O(a) terms.}$

Stefan Sint

Some Observations & Remarks:

• The $\gamma_5 \tau^1$ -symmetry corresponds to the physical flavour symmetry:

$$\psi' \to -i\tau^2 \, \psi', \qquad \overline{\psi}' \to \overline{\psi}' \, i\tau^2.$$

A similar argument based on parity has been given by Shindler • A^a_{μ} and P^a have opposite $\gamma_5 \tau^1$ -parity!

$$\Rightarrow \qquad \langle \partial_{\mu} A^{1}_{\mu}(x) O_{\text{even}} \rangle = 2 \underbrace{m_{\text{PCAC}}}_{O(a)} \underbrace{\langle P^{1}(x) O_{\text{even}} \rangle}_{O(a)} = O(a^{2})$$

i.e. the critical mass is only defined up to O(a)

- in the O(a) improved theory one can determine m_{cr} up to an O(a^2) ambiguity but this requires a mixed source, and it depends on c_A .
- The O(a) ambiguity in $m_{\rm cr}$ does not spoil O(a) improvement: a shift in $m_c r$ by $a\Lambda^2$ corresponds to an insertion of the $\gamma_5 \tau^1$ -odd operator $\overline{\psi}\psi \Rightarrow O(a^2)$ effect in $\gamma_5 \tau^1$ -even correlators
- finite space time volume: there is no phase transition, no spontaneous symmetry breaking and analyticity in the quark mass parameters
- \Rightarrow massless Wilson quarks in a finite volume are automatically O(a) improved!

infinite volume:

- The twisted mass μ_q drives spontaneous chiral symmetry breaking. If it becomes too small, this may not be true any more and the system realigns the vacuum state \Rightarrow use χ PT to analyse the dynamics (cf. e.g. S. Sharpe's Nara lectures '06).
- At small μ cutoff effects may formally still be $O(a^2)$ but can be large ("bending phenomenon"), depending on the chosen definition of m_{cr} : (Aoki & Bär, Sharpe & Wu, Sharpe, Frezzotti et al.)
- Use χPT and a "good" definition of m_{cr} (from pion physics) to control chiral extrapolations (Aoki & Bär, Sharpe & Wu, Sharpe) O(a) improvement of the action may also help

- 4 週 ト - 4 三 ト - 4 三 ト -

Test of O(a) improvement [Shindler, Lattice 2005]

Continuum extrapolation of F_{π} in quenched tmQCD:

Stefan Sint

O(a) improvement & Schrödinger functional schemes (lecture V)

8 / 31

Possible strategy for non-perturbative renormalisation

<u>Premise</u>: need non-perturbative renormalisation to obtain reliable error estimates; RI-MOM schemes & continuum perturbation theory from scales $\mu = O(1)GeV$ is difficult to control and may fail completely in some cases Strategy:

 use SF scheme to determine the scale evolution non-perturbatively in the continuum limit; use "cheap" regularisation (Wilson or staggered quarks) for this part

2 At a low energy scale: renormalise in the SF scheme, either

- directly, by implementing the SF for the given regularisation; (requires extra simulations on relatively small lattices, e.g $L=0.8\,{\rm fm},\,L/a=10$)
- indirectly via some other physical quantity computable with periodic b.c.'s (see e.g. Hernandez et al. 2000 $Z_{\rm P}^{\rm SF}$ for overlap quarks); problems: insufficient precision, potentially sacrifice an observable for the matching procedure

Implementation of the SF for Ginsparg-Wilson quarks [Lüscher, Taniguchi '04, Lüscher '06, S. '06]

O(a) cutoff effects in the SF need to be adressed!

Stefan Sint

Sources for O(a) effects in the SF

- Renormalisability: boundary counterterms are local polynomials in the fields and their derivatives of dimension ≤ 3 .
- At O(a) the same reasoning applies with terms of dimension 4;
- Possible boundary counterterms in the pure gauge theory:

$$\mathrm{tr}\,\{F_{0k}F_{0k}\},\qquad \mathrm{tr}\,\{F_{kl}F_{kl}\},$$

- In QCD one expects fermionic terms $\overline{\psi}\gamma_0 D_0\psi$ or $\overline{\psi}\gamma_k D_k\psi$ with any regularisation,
- Which counterterms contribute depends on gauge field b.c.'s and on the observable; example: tr $\{F_{kl}F_{kl}\} = 0$ in SF coupling calculation
- Equations of motions may be used to reduce the counterterm basis
- Typically 2-3 boundary O(a) counterterms need to be monitored/controlled
- In practice: evaluate coefficients in perturbation theory and vary them in the simulation to assess their effect numerically

Apparent contradiction:

- Previous discussion: $\gamma_5 \tau^1$ -even observables computed with Wilson quarks in a finite volume (with some type of periodic boundary conditions) are automatically O(a) improved at zero quark mass \Rightarrow improvement coefficients like c_{sw} are irrelevant!
- **2** The Schrödinger functional in finite volume at zero mass was used to determine c_{sw} , c_A and other O(a) improvement coefficients.

Distinguish 3 sources for O(a) effects in the SF:

- O(a) boundary effects (expected in any case!); can be cancelled by inclusion of boundary O(a) counterterms
- (a) from the bulk action; are cancelled by including the SW/clover term
- from the composite operators; can be cancelled by including O(a) counterterms determined from chiral Ward identities; difficult for 4-quark operators!

ヘロト 人間 とくほ とくほ とう

Example: relative cutoff effects in the one-loop coefficient of the SSF for $\overline{B_K}$ (Palombi, Pena, S. '05)

<u>Question:</u> Why do the bulk O(*a*) counterterms not vanish in the chiral limit?

12 / 31

SSF for B_K operator (quenched) [ALPHA '05]

Stefan Sint

O(a) improvement & Schrödinger functional schemes (lecture V)

13 / 31

э.

Scale evolution of B_{κ} (SF scheme) [ALPHA '05]

,

,

• <u>Problem</u>: the $\gamma_5 \tau^1$ field transformation switches the projectors of the quark b.c.'s:

$$P_{\pm}\gamma_5\tau^1 = \gamma_5\tau^1 P_{\mp}$$

The boundary conditions, like mass terms, break chiral symmetry and define a direction in chiral flavour space.

 \Rightarrow the $\gamma_5\tau^1$ transformation yields inequivalent correlation functions even in the chiral limit,

$$\langle O \rangle_{(m,\mu_q,P_{\pm})} \rightarrow \langle O' \rangle_{(-m,\mu_q,P_{\mp})}$$

• <u>Possible solution</u>: change quark boundary projectors, such that they commute with $\gamma_5 \tau^1$, e.g.

$$\mathcal{P}_{\pm} = \frac{1}{2}(1 \pm \gamma_0 \tau^3), \qquad Q_{\pm} = \frac{1}{2}(1 \pm i \gamma_0 \gamma_5 \tau^3),$$

• Practical problem: not obvious how to implement such boundary conditions on the lattice; solution so far only for Q_{\pm} .

Stefan Sint

15 / 31

SF boundary conditions and chiral rotations

Consider isospin doublets χ' and $\overline{\chi}'$ satisfying homogeneous SF boundary conditions ($P_{\pm} = \frac{1}{2}(1 \pm \gamma_0)$, $P_{+}\chi'(x)|_{x_0=0} = 0$, $P_{-}\chi'(x)|_{x_0=T} = 0$, $\overline{\chi}'(x)P_{-}|_{x_0=0} = 0$, $\overline{\chi}'(x)P_{+}|_{x_0=T} = 0$.

perform a chiral field rotation,

$$\chi' = \exp(i\alpha\gamma_5\tau^3/2)\chi, \qquad \overline{\chi}' = \overline{\chi}\exp(i\alpha\gamma_5\tau^3/2)\chi$$

the rotated fields satisfy chirally rotated boundary conditions

$$\begin{aligned} P_+(\alpha)\chi(x)|_{x_0=0} &= 0, \qquad P_-(\alpha)\chi(x)|_{x_0=T} &= 0, \\ \overline{\chi}(x)\gamma_0 P_-(\alpha)|_{x_0=0} &= 0, \qquad \overline{\chi}(x)\gamma_0 P_+(\alpha)|_{x_0=T} &= 0, \end{aligned}$$

with the projectors

$$P_{\pm}(\alpha) = \frac{1}{2} \left[1 \pm \gamma_0 \exp(i\alpha \gamma_5 \tau^3) \right].$$

Special cases of $\alpha = 0, \pi/2$:

$$P_{\pm}(0) = P_{\pm}, \qquad P_{\pm}(\pi/2) \equiv Q_{\pm} = \frac{1}{2}(1 \pm i\gamma_0\gamma_5\tau_+^3), \ \text{and} \ \gamma_{\pm} = \gamma_{\pm}\gamma_{\pm}$$

The chiral rotation thus introduces a mapping between correlation functions:

$$\langle O[\chi,\bar{\chi}]\rangle_{(m,\mu_{q},P_{\pm})} = \langle \tilde{O}[\chi,\bar{\chi}]\rangle_{(\tilde{m},\tilde{\mu}_{q},P_{\pm}(\alpha))}$$

with

$$\begin{split} \tilde{O}[\chi,\bar{\chi}] &= O\left[\exp(i\alpha\gamma_5\tau^3/2)\chi,\bar{\chi}\exp(i\alpha\gamma_5\tau^3/2)\right] \\ \tilde{m} &= m\cos\alpha - \mu_{\rm q}\sin\alpha \\ \tilde{\mu}_{\rm q} &= m\sin\alpha + \mu_{\rm q}\cos\alpha \end{split}$$

boundary quark fields are included by replacing

$$ar{\zeta}(\mathbf{x}) \leftrightarrow ar{\chi}(\mathbf{0},\mathbf{x}) P_+ \qquad \zeta(\mathbf{x}) \leftrightarrow P_-\chi(\mathbf{0},\mathbf{x})$$

Stefan Sint

くほと くほと くほと

Chirally rotated SF boundary conditions would be interesting:

- bulk O(a) improvement could be automatic; remaining O(a) effects arise from a couple of boundary operators and can be monitored/eliminated; consequences:
 - O(a) improved step-scaling functions
 - Less sensitivity to the precision of the zero mass limit (determination of $m_{\rm cr}$ could be less precise)
- Decoupling of heavy quarks using the standard mass term (rather than standard SF with twisted mass term)
- devise checks of universality:
 - between massless SF correlation functions (e.g. SF coupling)
 - etween tmQCD and standard QCD using SF correlation functions;

ヘロト 人間ト 人口ト 人口ト

Standard SF b.c.'s natural for Wilson quarks due to projector structure of the Wilson-Dirac operator

$$D_W = \frac{1}{2} \left\{ \left(\nabla_\mu + \nabla^*_\mu \right) \gamma_\mu - a \nabla^*_\mu \nabla_\mu \right\} = \frac{1}{2} (1 - \gamma_\mu) \nabla_\mu - \frac{1}{2} (1 + \gamma_\mu) \nabla^*_\mu$$

but Dirichlet boundary conditions are not always easy to implement:

- what happens with Wilson quarks and Wilson parameter $r \neq 1$?
- how does one implement SF boundary conditions for other lattice regularisations (Ginsparg-Wilson, domain-wall fermions)? (→ Taniguchi '04)
- here: how do we implement the chirally rotated b.c.'s?
- in a few cases orbifold techniques can be applied (\rightarrow Taniguchi '04, S. '05)

イロト 不得 トイヨト イヨト

Orbifold technique

Orbifold techniques have previously been used to implemement the standard SF conditions for Ginsparg-Wilson quarks (Taniguchi '04). Here:

start with standard lattice action for a single quark flavour

$$S_f[\psi,\bar{\psi},U] = a^4 \sum_x \bar{\psi}(x) \left(D_W + m_0\right) \psi(x)$$

where

$$\psi(\mathbf{x}_0 + 2T, \mathbf{x}) = -\psi(\mathbf{x}), \qquad \overline{\psi}(\mathbf{x}_0 + 2T, \mathbf{x}) = -\overline{\psi}(\mathbf{x})$$

• introduce a reflection $(R^2 = id)$

$$R:\psi(x)
ightarrow i\gamma_0\gamma_5\psi(-x_0,\mathbf{x}), \qquad ar{\psi}(x)
ightarrow ar{\psi}(-x_0,\mathbf{x})i\gamma_0\gamma_5$$

 the gauge field is extended to [-T, T] and then periodically continued (cp. Taniguchi '04):

$$U_k(-x_0, \mathbf{x}) = U_k(x_0, \mathbf{x}), \qquad U_0(-x_0 - a, \mathbf{x})^{\dagger} = U_0(x)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Orbifold (2)

• Decompose fields into even and odd with respect to R,

$$R\psi_{\pm} = \pm\psi_{\pm}, \qquad R\bar{\psi}_{\pm} = \pm\bar{\psi}_{\pm}$$

• even/odd fields satisfy the boundary conditions at $x_0 = 0$ $(1 \mp i\gamma_0\gamma_5)\psi_{\pm}(0, \mathbf{x}) = 0$ $\bar{\psi}_{\pm}(0, \mathbf{x})(1 \mp i\gamma_0\gamma_5) = 0$

• and with complementary projectors at $x_0 = T$, due to antiperiodicity: $(1 \pm i\gamma_0\gamma_5)\psi_{\pm}(T, \mathbf{x}) = 0$ $\bar{\psi}_{\pm}(T, \mathbf{x})(1 \pm i\gamma_0\gamma_5) = 0$

• consistency condition for *R*:

 $S_{f}[\psi, \bar{\psi}, U] = S_{f}[\psi_{+} + \psi_{-}, \bar{\psi}_{+} + \bar{\psi}_{-}, U] = S_{f}[\psi_{+}, \bar{\psi}_{+}, U] + S_{f}[\psi_{-}, \bar{\psi}_{-}, U]$

is indeed verified; (i.e. R commutes with D_W !)

 \Rightarrow the functional integral factorises!

Stefan Sint

(ロ)、(同)、(E)、(E)、(E)、(O)へ(C)

Orbifold (3)

• interpret even and odd fields as quark flavours

$$\chi = \sqrt{2} \begin{pmatrix} \psi_- \\ \psi_+ \end{pmatrix}, \qquad ar{\chi} = \sqrt{2} \begin{pmatrix} ar{\psi}_- & ar{\psi}_+ \end{pmatrix}$$

• functional integral:

$$\int_{-\mathcal{T} \leq x_0 < \mathcal{T}} \mathrm{d}\psi(x) \mathrm{d}\bar{\psi}(x) \mathrm{e}^{-S_f[\psi,\bar{\psi},U]} \propto \int \prod_{0 \leq x_0 \leq \mathcal{T}} \mathrm{d}\chi(x) \mathrm{d}\bar{\chi}(x) \mathrm{e}^{-\frac{1}{2}S_f[\chi,\bar{\chi},U]}$$

• equivalent to theory in the interval [0, T] with boundary conditions

$$\begin{aligned} Q_+\chi(x)|_{x_0=0} &= 0, & Q_-\chi(x)|_{x_0=T} &= 0, \\ \bar{\chi}(x)Q_+|_{x_0=0} &= 0, & \bar{\chi}(x)Q_-|_{x_0=T} &= 0 \end{aligned}$$

with

$$Q_{\pm} = P_{\pm}(\pi/2) = P_{\mp}(-\pi/2) = \frac{1}{2} \left(1 \pm i \gamma_0 \gamma_5 \tau^3\right)$$

Stefan Sint

通 ト イヨ ト イヨト

Orbifold (4)

The dynamical field variables are

$$Q_{-\chi}(0,\mathbf{x}), \qquad \chi(x)|_{0 < x_0 < T}, \qquad Q_{+\chi}(T,\mathbf{x})$$

and

$$ar{\chi}(0,\mathbf{x})Q_{-}, \qquad ar{\chi}(x)|_{0 < x_0 < T}, \qquad ar{\chi}(T,\mathbf{x})Q_{+}$$

The Wilson-Dirac operator in the interval is obtained by re-writing

$$S_f[\chi,\bar{\chi},U] = a^4 \sum_{-T < x_0 \le T} \bar{\chi}(x) \left(D_W + m_0\right) \chi(x) = 2a^4 \sum_{0 \le x_0 \le T} \bar{\chi}(x) \mathcal{D}\chi(x).$$

Properties of \mathcal{D} :

- up to modifications near the time boundaries it is just $D_W + m_0$
- hermiticity:

$$\gamma_5 \tau^1 \mathcal{D} \gamma_5 \tau^1 = \mathcal{D}^\dagger$$

however: not by simple "syntactic extension" of $D_W + m_0$, need to take into account b.c.'s for $\bar{\chi}$.

Stefan Sint

23 / 31

Orbifold (5)

Alternative set-up (possibly simpler due to explicit reduction to the time interval):

• Start with 2(T + a) anti-periodic fields ψ , $ar{\psi}$

$$\psi(\mathbf{x}_0+2(T+\mathbf{a}),\mathbf{x})=-\psi(\mathbf{x}),\qquad ar{\psi}(\mathbf{x}_0+2(T+\mathbf{a}),\mathbf{x})=-ar{\psi}(\mathbf{x}),$$

• introduce a reflection $(R^2 = id)$

$$R:\psi(x)\to i\gamma_0\gamma_5\psi(-a-x_0,\mathbf{x}),\qquad \bar{\psi}(x)\to \bar{\psi}(-a-x_0,\mathbf{x})i\gamma_0\gamma_5$$

• the gauge field is extended to [-T - a, T + a] and then periodically continued

$$U_k(-a - x_0, \mathbf{x}) = U_k(x_0, \mathbf{x}), \qquad U_0(-2a - x_0, \mathbf{x})^{\dagger} = U_0(x)$$

this implies that the boundary layer is doubled!

Stefan Sint

O(a) improvement & Schrödinger functional schemes (lecture V)

Orbifold (6): explicit reduction to the interval [0,T]

- decompose in even/odd fields and define doublets $\chi, \bar{\chi}$ as before
- D_W becomes block diagonal and

$$\det_{-T \leq x_0 \leq T+a} \left[D_W(N_{\rm f}=1) \right] = \det_{0 \leq x_0 \leq T} \left[2D_W(N_{\rm f}=2) \right]$$

• Defining again ${\mathcal D}$ it is now obtained directly by "syntactic extension" and $\gamma_5\tau^1$ hermitian

$$a\mathcal{D}\chi(x) = -U(x,0)P_{-}\chi(x+a\hat{\mathbf{0}}) + (K\psi)(x) - U(x-a\hat{\mathbf{0}})^{\dagger}P_{+}\chi(x-a\hat{\mathbf{0}}),$$

where we have set $\chi(x) = 0$ for $x_0 < 0$ and $x_0 > T$, and

$$\mathcal{K} = 1 + \frac{1}{2} \sum_{k=1}^{3} \left\{ \mathbf{a} (\nabla_k + \nabla_k^*) \gamma_k - \mathbf{a}^2 \nabla_k^* \nabla_k \right\} + \delta_{\mathbf{x}_0, 0} i \gamma_5 \tau^3 P_- + \delta_{\mathbf{x}_0, \tau} i \gamma_5 \tau^3 P_+$$

Symmetries and Counterterms

 Symmetries (C, P × τ¹ etc.) ⇒ possible dimension 3 counterterms at the boundaries:

$$K_1 = \overline{\chi} i \gamma_5 \tau^3 \chi, \qquad K_2 = \overline{\chi} \chi, \qquad K_3 = \overline{\chi} i \gamma_0 \gamma_5 \tau^3 \chi$$

- K_1 : multiplicative renormalization of ζ, ζ' and $\overline{\zeta}, \overline{\zeta'}$.
- $K_+ = \frac{1}{2}(K_2 + K_3) = \overline{\chi}Q_+\chi$ only refers to Dirichlet components (at $x_0 = 0$)

 \Rightarrow irrelevant for correlation functions used in practice

- $K_{-} = \frac{1}{2}(K_2 K_3) = \overline{\chi}Q_{-}\chi$ only contains non-Dirichlet components (at $x_0 = 0$); if chirally rotated back to the standard SF K_{-} is proportional to $\overline{\chi}' i \gamma_5 \tau^3 P_{-} \chi'$ i.e. it violates parity and flavour symmetries!
- conclude: *K*₋ is a *finite* counterterm which can be fixed by requiring parity restauration!

Mapping of SF correlation functions

In the continuum we have:

$$\langle \mathcal{O}[\chi,\bar{\chi}]\rangle_{(m,\mu_{q},P_{\pm})} = \langle \tilde{\mathcal{O}}[\chi,\bar{\chi}]\rangle_{(\tilde{m},\tilde{\mu}_{q},P_{\pm}(\alpha))}$$

with

$$\begin{split} \tilde{\mathcal{D}}[\chi,\bar{\chi}] &= O\left[\exp(i\alpha\gamma_5\tau^3/2)\chi,\bar{\chi}\exp(i\alpha\gamma_5\tau^3/2)\right] \\ \tilde{m} &= m\cos\alpha - \mu_{\rm q}\sin\alpha \\ \tilde{\mu}_{\rm q} &= m\sin\alpha + \mu_{\rm q}\cos\alpha \end{split}$$

boundary quark fields are included by replacing

$$ar{\zeta}({f x}) \leftrightarrow ar{\chi}(0,{f x}) P_+ \qquad \zeta({f x}) \leftrightarrow P_-\chi(0,{f x})$$

parity/flavour symmetry restoration e.g. by imposing

$$f_{\rm V}^{11}(x_0) = 0, \qquad f_{\rm P}^{12}(x_0) = 0$$

simple example for mapping: SF coupling

$$\bar{g}^{-2}(L) = \langle O[U] \rangle_{(0,0,P_{\pm})} = \langle O[U] \rangle_{(0,0,Q_{\pm})}$$

A tree-level check

At tree-level the quark propagator is an observable: define $\gamma_5 \tau^1$ -even observables from tree level propagator, e.g.

$$I_1 = a^3 \sum_{\mathbf{x}} \langle \overline{\chi}(x) \gamma_0 Q_+ \chi(y) \rangle_{(0,0,Q_+)}$$

In the continuum limit this should be equal to

$$I_1' = a^3 \sum_{\mathbf{x}} \left\langle \overline{\chi}'(x) P_+ \chi'(y) \right\rangle_{(0,0,P_+)}$$

Setting $x_0 = T/4$, $y_0 = T/2$, $\theta = 0.5$, T = L, and with a color electric background field, we expect:

- I_1 reaches the continuum limit $\propto (a/L)^2$
- l_1' reaches the same continuum limit $\propto (c_{
 m sw}^{(0)}-1)(a/L)$

- (同) - (日) - (H

A tree-level check

O(a) improvement & Schrödinger functional schemes (lecture V)

29 / 31

2

A B A A B A

In perturbation the SF coupling can be related to the $\overline{\rm MS}\text{-}coupling$

$$ar{g}^2(L) = g_{\overline{ ext{MS}}}^2(\mu) + k_1(\mu L)g_{\overline{ ext{MS}}}^4 + O(g^6)$$

here: consider fermionic contribution \propto $\textit{N}_{\rm f}$ [Sommer, S. '95]

$$k_1 = k_{1,0} + N_{\rm f} k_{1,1}, \qquad k_{1,1} = -0.039863(2)/(4\pi)$$

in practice one computes for a sequence of lattices $f(L/a) \sim r_0 + (a/L)[r_1 + s_1 \ln(a/L)] + O(a^2)$

- the correct continuum limit $r_0 = k_{1,1}$ is reproduced
- r_1 is to be cancelled by boundary O(a) counterterm $\propto c_t \operatorname{tr} \{F_{0k}F_{0k}\}$
- observation: s_1 vanishes independently of $c_{
 m sw}$; (in standard SF $s_1 \propto (c_{
 m sw}^{(0)}-1))$

向下 イヨト イヨト ニヨ

Conclusions and Outlook

- Successful implementation of chirally rotated SF boundary conditions for Wilson quarks; compatibility with automatic O(a) improvement has been checked in perturbative examples
- A finite dimension 3 counterterm needs to be fixed by parity
- <u>Achievement:</u>

 $\mathsf{O}(\mathsf{a})$ improvement in the bulk of massless standard or partially improved Wilson quarks

 \Rightarrow Z-factors can be O(a) improved by tuning a couple of boundary O(a) counterterms;

- Expect improved control over continuum extrapolation of SSF's with Wilson-type quarks (will benefit anybody using the continuum RG evolution to connect to RGI quantities)
- The chirally rotated SF Wilson-Dirac operator can be used in the Neuberger relation ⇒ the overlap operator inherits the b.c.'s ⇒ easy implementation of the SF for overlap and Domain wall quarks (so far: even number of flavours)