Finite volume schemes based on the Schrödinger functional (lecture III)

Stefan Sint

Trinity College Dublin

Seattle, August 17, 2007

Stefan Sint

Finite volume schemes based on the Schrödinger functional (lecture III)

1 / 27

- 4 同 6 4 日 6 4 日 6

- Definition & properties of the Schrödinger functional
- Definition of the running SF coupling
- Renormalisation conditons for composite operators
- Construction of the step-scaling functions
- Some results

- 4 同 6 4 日 6 4 日 6

The Schrödinger functional (formal continuum)

The Schödinger functional appears naturally in the Schrödinger representation of QFT (Symanzik '81), as the time evolution kernel when integrating the functional Schrödinger equation: Wave functional in Dirac's notation (A, A': field configurations at (Euclidean) times 0, T):

$$\begin{split} \psi[A] &\equiv \langle A | \psi \rangle \\ \psi'[A'] &= \int D[A] \langle A' | e^{-T \mathbb{H}} | A \rangle \langle A | \psi \rangle \end{split}$$

The Schrödinger functional is a functional of the initial and final field configuration:

$$\mathcal{Z}[A,A'] = \langle A' | \mathrm{e}^{-T\mathbb{H}} | A \rangle = \int D[\phi] \mathrm{e}^{-S}.$$

The Euclidean field ϕ satisfies Dirichlet boundary conditions

$$\phi(x)|_{x_0=0} = A(\mathbf{x})$$
 $\phi(x)|_{x_0=T} = A'(\mathbf{x})$

Stefan Sint

Finite volume schemes based on the Schrödinger functional (lecture III)

The Schrödinger functional is an example of a field theory defined on a manifold with boundary \Rightarrow problems/questions:

- Translation invariance is broken \Rightarrow momentum is not conserved.
- Conventional proofs of perturbative renormalisability rely on power counting theorems in momentum space: not applicable here!
- Heuristic arguments by Symanzik:

A renormalisable QFT remains renormalisable when considered on a manifold with boundary. Besides the usual parameter and field renormalisations one just needs to add a complete set of local boundary counterterms to the action, i.e. polynomials in the fields and its derivatives of dimension 3 or less, integrated over the boundary.

In the case of scalar ϕ_4^4 -theory and boundary at $x_0 = 0$ one finds:

$$\int_{x_0=0} \mathrm{d}^3 \mathbf{x} \, \phi^2, \qquad \int_{x_0=0} \mathrm{d}^3 \mathbf{x} \, \phi \partial_0 \phi$$

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

The Schrödinger functional in QCD (formal continuum)

The definition for gauge theories and QCD is analogous: The Schrödinger functional is the functional integral on a hyper cylinder,

$$\mathcal{Z} = \int_{\text{fields}} e^{-\mathcal{S}}$$

with periodic boundary conditions in spatial directions and Dirichlet conditions in time.

Correlation functions are then defined as usual

$$\langle O \rangle = \left\{ Z^{-1} \int_{\text{fields}} O e^{-S} \right\}_{\rho = \rho' = 0; \, \bar{\rho} = \bar{\rho}' = 0}$$

O may contain quark boundary fields

 \Rightarrow the boundary values of the quark fields are used as external sources

Stefan Sint

Properties of the QCD Schrödinger functional

- The SF is renormalisable: besides the renormalisation of the coupling and quark masses, the boundary quark fields require a multiplicative renormalisation.
- absence of fermionic zero modes: numerical simulations at zero quark masses are possible!
- For some choices of C_k and C'_k it can be shown that the induced background gauge field is an absolute minimum of the action ⇒ perturbation theory is straightforward and seems practical at least to 2-loop order.
- As C_k and C'_k are held fixed only spatially constant gauge transformations are possible at the boundaries!:

$$C_k(\mathbf{x}) \rightarrow \Lambda(\mathbf{x})C_k(\mathbf{x})\Lambda^{-1}(\mathbf{x}) + \Lambda(\mathbf{x})\partial_k\Lambda^{-1}(\mathbf{x})$$

i.e. the allowed $\Lambda(\mathbf{x}) \in \mathrm{SU}(N)$ must be x-independent and commute with C_k .

• Therefore, bilinear boundary quark sources such as

$$\mathcal{O}^{a} = \int \mathrm{d}^{3} \mathbf{y} \mathrm{d}^{3} \mathbf{z} \ \overline{\zeta}(\mathbf{y}) \gamma_{5} \frac{\tau^{a}}{2} \zeta(\mathbf{z}), \qquad \mathcal{O}^{\prime a} = \int \mathrm{d}^{3} \mathbf{y} \mathrm{d}^{3} \mathbf{z} \ \overline{\zeta}^{\prime}(\mathbf{y}) \gamma_{5} \frac{\tau^{a}}{2} \zeta^{\prime}(\mathbf{z})$$

are gauge invariant!

• Typical gauge invariant correlation functions are then

space

⇒ convenient in perturbation theory: in contrast to a periodic or infinite volume where gauge invariant fermionic correlation functions lead to one-loop diagrams at lowest order, e.g.

$$g_{\mathrm{PP}}(x_0) = -a^3 \sum_{\mathbf{x}} \sum_{a=1}^3 \langle P^a(x) P^a(0) \rangle$$

 dimensional analysis ⇒ at short distances one finds the asymptotic behaviour (up to logarithms):

$$g_{\mathrm{PP}}(x_0) \sim rac{1}{(x_0)^3}, \qquad f_{\mathrm{P}}(x_0) \sim \mathrm{const}$$

- expect
 - small cutoff effects for $f_{\rm P}(x_0)$ due to mild x_0 -dependence
 - good signal in numerical simulations.

More on the renormalisability of the SF

- no gauge invariant dimension ≤ 3 counterterm exists, the pure gauge SF is finite after renormalisation of the coupling constant
- continuum quark action with SF boundary conditions at tree-level:

$$S_{\rm f} = \int \mathrm{d}^4 x \, \overline{\psi} \left(\frac{1}{2} \overleftrightarrow{p} + m \right) \psi - \frac{1}{2} \int_{x_0 = 0} \mathrm{d}^3 \mathbf{x} \, \overline{\psi} \psi - \frac{1}{2} \int_{x_0 = T} \mathrm{d}^3 \mathbf{x} \, \overline{\psi} \psi$$

Exercise:

Show that the boundary terms are necessary if one requires the existence of smooth solutions to the equations of motion with SF boundary conditions

• The counterterms are linear in the boundary fields

$$\begin{split} \overline{\psi}(x)\psi(x)|_{x_0=0} &= \bar{\rho}(\mathbf{x})P_-\psi(0,\mathbf{x}) + \overline{\psi}(0,\mathbf{x})P_+\rho(\mathbf{x}),\\ \overline{\psi}(x)\psi(x)|_{x_0=\mathcal{T}} &= \bar{\rho}'(\mathbf{x})P_+\psi(\mathcal{T},\mathbf{x}) + \overline{\psi}(\mathcal{T},\mathbf{x})P_-\rho'(\mathbf{x}), \end{split}$$

More on the renormalisability of the SF

- The only dimension 3 counterterm with correct symmetries is $\overline{\psi}\psi$
- Time reversal symmetry requires the same coefficient at $x_0 = 0, T$
- This counterterm can thus be absorbed in a multiplicative rescaling of $\rho, \rho', \bar{\rho}, \bar{\rho}'$ by the same renormalization constant:

$$\rho_{\rm R} = Z_{\rho}\rho, \qquad \bar{\rho}_{\rm R} = Z_{\rho}\bar{\rho}, \qquad \rho_{\rm R}' = Z_{\rho}\rho', \qquad \bar{\rho}_{\rm R}' = Z_{\rho}\bar{\rho}'$$

Consequently, setting $Z_{\zeta} = Z_{\rho}^{-1}$:

$$\zeta_{\mathrm{R}} = Z_{\zeta}\zeta, \qquad \zeta_{\mathrm{R}}' = Z_{\zeta}\zeta', \qquad \overline{\zeta}_{\mathrm{R}} = Z_{\zeta}\overline{\zeta}, \qquad \overline{\zeta}_{\mathrm{R}}' = Z_{\zeta}\overline{\zeta}',$$

• Hence sources like \mathcal{O}^a are multiplicatively renormalised by Z_{ζ}^2

Definition of the SF coupling [Lüscher et al. '92]

• Choose abelian and spatially constant boundary gauge fields:

$$C_{k} = \frac{i}{L} \begin{pmatrix} \phi_{1} & 0 & 0 \\ 0 & \phi_{2} & 0 \\ 0 & 0 & \phi_{3} \end{pmatrix}, \qquad C'_{k} = \frac{i}{L} \begin{pmatrix} \phi'_{1} & 0 & 0 \\ 0 & \phi'_{2} & 0 \\ 0 & 0 & \phi'_{3} \end{pmatrix}, \qquad k = 1, 2, 3,$$

• with angles taken to be linear functions of a parameter η :

$$\begin{split} \phi_1 &= \eta - \frac{\pi}{3}, & \phi_1' &= -\phi_1 - \frac{4\pi}{3}, \\ \phi_2 &= -\frac{1}{2}\eta, & \phi_2' &= -\phi_3 + \frac{2\pi}{3}, \\ \phi_3 &= -\frac{1}{2}\eta + \frac{\pi}{3}, & \phi_3' &= -\phi_2 + \frac{2\pi}{3}. \end{split}$$

• The gauge action has an absolute minimum for:

$$B_0 = 0,$$
 $B_k = [x_0C'_k + (L - x_0)C_k]/L,$ $k = 1, 2, 3.$

i.e. other gauge fields with the same action must be gauge equivalent to B_{μ}

Definition of the SF coupling

- Define the effective action of the induced background field $\Gamma[B] = -\ln \mathcal{Z}[C, C']$
- In perturbation theory the effective action has the expansion

$$\Gamma[B] ~~\sim~~ g_0^{-2} \Gamma_0[B] + \Gamma_1[B] + O(g_0^2)$$

• Definition of the SF coupling:

$$\bar{g}^{2}(L) = \left. \frac{\partial_{\eta} \Gamma_{0}[B]|_{\eta=0}}{\partial_{\eta} \Gamma[B]|_{\eta=0}} \right|_{m_{\mathrm{q,i}}=0} \qquad \Rightarrow \quad \bar{g}^{2}(L) = g_{0}^{2} + \mathrm{O}(g_{0}^{4})$$

• b.c.'s induce a constant colour electric field:

$$G_{0k} = \partial_0 B_k = \frac{C_k - C'_k}{L}$$

⇒ The coupling is defined as "response coefficient" to a variation of a constant colour electric field.

Stefan Sint

Renormalisation of operators in the SF scheme (1)

Example: renormalisation of $P^a = \overline{\psi}\gamma_5 \frac{\tau^a}{2}\psi$:

- In this case we set $C_k = C'_k = 0$, i.e. trivial background field B = 0
- Define correlation functions

$$f_{\mathrm{P}}(x_0) = \langle \mathcal{O}^a P^a(x) \rangle, \qquad f_1 = L^{-6} \langle \mathcal{O}^a \mathcal{O}'^a \rangle$$

• Renormalised correlation functions:

$$f_{\mathrm{P,R}}(x_0) = Z_{\zeta}^2 Z_P f_{\mathrm{P}}(x_0), \qquad f_{1,R} = Z_{\zeta}^4 f_1,$$

set T = L, m = 0, $x_0 = L/2$, and impose

$$Z_{\rm P}(g_0,L/a)rac{f_{
m P}(L/2)}{\sqrt{f_1}} = \left.rac{f_{
m P}(L/2)}{\sqrt{f_1}}
ight|_{g_0=0}$$

- similarity with MOM schemes: the renormalised amplitude at $\mu = L^{-1}$ equals its tree-level expression
- The ratio is formed to cancel any Z_{ζ} .
- definition of running quark mass: $\overline{m}(L) = Z_{\rm P}^{-1}(L)m$.

• The aim is to construct the Step Scaling Functions $\sigma(u)$ and $\sigma_{\rm P}(u)$:

$$\begin{aligned} \sigma(u) &= \bar{g}^{2}(2L)|_{u=\bar{g}^{2}(L)}, \\ \sigma_{P}(u) &= \lim_{a \to 0} \left. \frac{Z_{P}(g_{0}, 2L/a)}{Z_{P}(g_{0}, L/a)} \right|_{u=\bar{g}^{2}(L)} \end{aligned}$$

• These are related to the usual RG functions:

$$\int_{\sqrt{\sigma(u)}}^{\sqrt{u}} \frac{\mathrm{d}g}{\beta(g)} = \ln 2 \qquad \sigma_{\mathrm{P}}(u) = \exp \int_{\sqrt{\sigma(u)}}^{\sqrt{u}} \frac{\tau(g)}{\beta(g)} \mathrm{d}g$$

One thus considers a change of scale by a finite factor s = 2; RG functions tell us what happens for infinitesimal scale changes.

Lattice approximants $\Sigma(u, a/L)$ for $\sigma(u)$

- choose g_0 and L/a = 4, measure $\bar{g}^2(L) = u$ (this sets the value of u)
- double the lattice and measure

 $\Sigma(u,1/4)=\bar{g}^2(2L)$

- now choose L/a = 6 and tune g'₀ such that g²(L) = u is satisfied
- double the lattice and measure

$$\Sigma(u,1/6)=\bar{g}^2(2L)$$

and so on ...

		÷.,	1	

 $\Sigma(2,u,1/6)$

- 4 目 ト - 4 日 ト - 4 日 ト

17 / 27

 $\Sigma(2,u,1/4)$

Continuum extrapolation of the SSF [ALPHA '05]

Stefan Sint

Finite volume schemes based on the Schrödinger functional (lecture III)

18 / 27

э

★ 3 > < 3 >

The SSF in the continuum limit

[ALPHA coll., Della Morte et al '05]

Stefan Sint

Finite volume schemes based on the Schrödinger functional (lecture III)

19 / 27

Finite volume schemes based on the Schrödinger functional (lecture III)

20 / 27

Determination of the A-parameter

The formula

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} \exp\left\{-\frac{1}{2b_0 \bar{g}^2}\right\} \\ \times \exp\left\{-\int_0^{\bar{g}} dx \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x}\right]\right\}$$

holds for any value of $\mu.$ We may use it at ${\it L}_{\rm min}$ to obtain

 $\Lambda L_{\min} = f(\bar{g}(L_{\min}))$

• The function f(g) can be evaluated at $g = \overline{g}(L_{\min})$ since this is deep in the perturbative region. The integral in the exponent

$$\int_0^{\bar{g}} \mathrm{d}x \left[\frac{b_2 b_0 - b_1^2}{b_0^3} x + \mathcal{O}(x^3) \right] = \frac{b_2 b_0 - b_1^2}{2b_0^3} \bar{g}^2 + \mathcal{O}(\bar{g}^4)$$

may thus be evaluated using the β -function at 3-loop order.

- Since $L_{\max} = 2^n L_{\min}$ one knows $L_{\max} \Lambda$
- still need $F_{\pi}L_{\max}$

• • = • • = • = =

Matching to a low energy scale

Ideally one would like to compute e.g. $F_{\pi}\Lambda$, and take $F_{\pi} = 132 \mathrm{MeV}$ from experiment

• What is required? The scale L_{\max} is implicitly defined:

$$ar{g}^2(L_{
m max})=4.61 \qquad \Rightarrow \qquad (L_{
m max}/a)(g_0)$$

For example, setting $L_{\max}/a = 6, 8, 10, ...$ one then finds corresponding values of the bare coupling

 One must then be able to compute aF_π in a large volume simulation at the very same values of the bare coupling:

$$F_{\pi}\Lambda = \lim_{g_0
ightarrow 0} (L_{\max}/a)(g_0)(aF_{\pi})(g_0)$$

- \bullet One thus needs a range of g_0 where both can be computed, aF_π and $\bar{g}\,L_{\rm max}$
- This has not yet been accomplished with a hadronic scale, but only using the scale r_0 ; expect this to change in the near future

Stefan Sint

Results

• The scale r_0 [R. Sommer '93] is obtained from the force F(r) between static quark and antiquark separated by a distance r:

 $r_0^2 F(r_0) = 1.65$

The r.h.s. was chosen so that phenomenological estimates from potential models yield $r_0 = 0.5 \text{ fm}$.

- Note: recent simulations (QCDSF coll., ETM coll.) indicate $r_0 \approx 0.47 \, {\rm fm}$ when matching to hadronic quantities
- Published results for Λ using $r_0 = 0.5 \, \text{fm}$ [ALPHA '05]

$$\begin{array}{lll} \Lambda^{(2)}_{\overline{\mathrm{MS}}} r_0 &=& 0.62(4)(4), & \Lambda_{\overline{\mathrm{MS}}} = 245(16)(16)\,\mathrm{MeV} \\ \Lambda^{(0)}_{\overline{\mathrm{MS}}} r_0 &=& 0.602(48), & \Lambda_{\overline{\mathrm{MS}}} = 238(19)\,\mathrm{MeV} \end{array}$$

The running quark mass

• Coupled evolution of the running mass and the coupling:

 $\overline{m}(2L) = \sigma_m(u)\overline{m}(L), \qquad \sigma_m(u) = 1/\sigma_{\rm P}$ $\overline{g}^2(2L) = \sigma(u)$

• Once the running coupling is known in a range [u₀, u_n],

$$u_0 = \bar{g}^2(L_{\min}), \quad u_k = \bar{g}^2(2^k L_{\min}), k = 1, 2, \dots, n$$

determine $\sigma_m(u)$ for the same range of couplings: evolution of quark mass and coupling recursively

$$\overline{m}(2^k L_{\min})/\overline{m}(2^{k-1}L_{\min}) = \sigma_m(u_k), \qquad k = 1, 2, \dots, n$$

- one obtains $\overline{m}(2L_{\max})/\overline{m}(L_{\min})$
- Extract $\overline{m}(L_{\min})/M$ using PT as for Λ -parameter

Stefan Sint

▲■▶▲■▶ ■ ∽��?

Running mass in the SF scheme [ALPHA '05]

Finite volume schemes based on the Schrödinger functional (lecture III)

25 / 27

()

Relation to bare quark masses

 In practice with Wilson type quarks, one avoids the additive renormalisation of the bare quark mass parameter by replacing it by a *measured* bare mass m_{PCAC} from the (bare) PCAC relation:

$$m_{\mathrm{PCAC}} \stackrel{\mathrm{def}}{=} rac{\langle \partial_{\mu} A^{a}_{\mu}(x) O
angle}{2 \langle P^{a}(x) O
angle}$$

• The running quark mass is then related to $m_{
m PCAC}$

$$\overline{m}(L) = \underbrace{Z_{\rm P}^{-1}(g_0, L/a) Z_{\rm A}(g_0)}_{\text{known factors}} \underbrace{m_{\rm PCAC}(g_0)}_{\text{measured}},$$

Combine results,

$$M = Z_M(g_0)m_{\rm PCAC}(g_0)$$

and take the continuum limit $g_0 \rightarrow 0$.

Stefan Sint

Finite volume schemes based on the Schrödinger functional (lecture III)

26 / 27

Concluding remarks

- The recursive finite volume technology has completely eliminated the problem with large scale differences. The RG running is determined in the continuum limit and universal (i.e. regularisation independent)
- To obtain physical results one needs to perform a matching calculation at a low energy scale: it is crucial to have a range in bare couplings where both, the renormalisation conditions and the hadronic input can be computed
- Whether perturbation theory for the running operator is working well or not down to low scales is not so important; you would not know this beforehand! What error estimate would you have given?!
- Many operator renormalisation problems have been treated already; the technique can be generalised to operators containing static quarks (cf. R. Sommer's Nara lectures) and works fine with dynamical quarks!