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A couple of exercises

1 Check that Λ and M are indeed solutions of the Callan-Symanzik
equation

2 Minimal subtraction of logarithms:
in perturbation theory we may introduce a renormalised coupling
glat(µ) such that

glat(µ = 1/a) = g0

The couplings can be related in perturbation theory

g2
lat(µ) = g2

0 + c1(aµ)g4
0 + O(g6

0 )

The l.h.s. is renormalised and has a continuum limit. Compute
c1(aµ) and derive the behaviour of g0(a) for a → 0, which follows
from assuming that glat(µ) is independent of a.
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World average for αs(mZ )

[PDG 2005 ]
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N.B. Lattice result claims the smallest error!
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Staggering results from the HPQCD coll.
(“High Precision QCD”):

[HPQCD coll., Q. Mason et al. ’05 ] Determination of QCD parameters in
the MS scheme with very small errors:

αs(mZ ) = 0.1170(12)

m̂MS(2 GeV) = 3.2(0)(2)(2)(0) MeV errors:

mMS
s (2 GeV) = 87(0)(4)(4)(0) MeV (stat.)(syst.) (pert.)(e.m. isospin)

Nf = 2 + 1 rooted staggered quarks (MILC configurations), staggered
chiral perturbation theory (cf. Claude Bernard’s lecture)

perturbation theory at 2-loop order (impressive!)

various versions of bare perturbation theory, some internal consistency
checks
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Variants of the bare coupling

bare coupling: defined at the cutoff scale, vanishes in continuum limit
Example:

expand the plaquette expectation value P in powers of α0

P = 1− p1α0 − p2α
2
0 + . . .

define modified bare couplings:

αP
def
= (1− P)/p1, α̃P = − ln(P)/p1,

where P is measured in the numerical simulation.

Motivation: the perturbative series may behave differently for
different bare couplings;

In principle any short distance quantity on the lattice can be chosen:
m × n Wilson loops with m, n = 1, 2, 3, or expectation of the link
variable in a fixed gauge
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Perturbation theory in the bare coupling

A shortcut method: use bare perturbation theory to relate to the
renormalised coupling and quark masses (e.g. MS); Allowing for a
constant d = O(1) one sets

αMS(d/a) = α0(a) + c1α
2
0(a) + c2α

3
0(a) + . . . , α0 =

g2
0

4π

mMS(d/a) = m(a)
(
1 + Z

(1)
m α0(a) + Z

(2)
m α2

0(a) + . . .
}

Main difficulties:

The identification µ = da−1 means that cutoff effects and
renormalisation effects cannot be disentangled; any change in the
scale is at the same time a change in the cutoff.

One needs to assume that the cutoff scale d/a is in the perturbative
region

One furthermore assumes that cutoff effects are negligible

⇒ how reliable are the error estimates?
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QCD & composite operators (1)

Apart from the fundamental parameters of QCD one is interested in
hadronic matrix elements of composite operators:
Example: K 0 − K̄ 0 mixing amplitude in the Standard Model:

d u,c,t s

s
-

d
-

u,c,t

W W
O

d s

s
-

d
-

A local interaction arises by integrating out W -bosons and t, b, c quarks,
corresponding to a composite 4-quark operator
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QCD & composite operators (2)

The mixing amplitude reduces to the hadronic matrix element:

〈K̄ 0|O∆S=2|K 0〉 =
8

3
m2

KF 2
KBK

O∆S=2 =
∑
µ

[s̄γµ(1− γ5)d ][s̄γµ(1− γ5)d ]

O∆S=2 requires a multiplicative renormalization; it is initially defined
in continuum scheme used for the Operator Product Expansion (OPE)

Other composite operators arise by applying the OPE with respect to
some hard scale, such as the photon momentum in Deep Inelastic
Scattering (DIS)

We thus need to discuss renormalisation of composite operators (cf.
quark mass renormalisation for a first example)
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RGI operators (1)

Consider renormalized n-point function of multiplicatively
renormalizable operators Oi :

GR(x1, · · · , xn;mR, gR) =
n∏

i=1

ZOi
(g0, aµ)G (x1, · · · , xn;m0, g0)

Callan-Symanzik equation:{
µ
∂

∂µ
+ β(ḡ)

∂

∂ḡ
+ τ(ḡ)m

∂

∂m
+

n∑
i=1

γOi
(ḡ)

}
GR = 0

where

γOi
(ḡ(µ)) =

∂ lnZO(g0, aµ)

∂ ln(aµ)

∣∣∣∣
ḡ(µ)

Asymptotic behaviour for small couplings:

γO(g) ∼ −g2γ
(0)
O − g4γ

(1)
O + . . .
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RGI operators (2)

RGI operators can be defined as solutions to the CS equation:(
β(ḡ)

∂

∂ḡ
+ γO

)
ORGI = 0

where

ORGI = OR(µ)

(
ḡ2(µ)

4π

)−γ(0)
O /2b0

exp

{
−

∫ ḡ

0
dx

[
γO(x)

β(x)
−
γ

(0)
O

b0x

]}

Its name derives from the fact that ORGI is renormalisation scheme
independent (analogous to Mi , verify it!)!

Beware: the overall normalisation for ORGI here follows the standard
convention used for BK , which differs from the one used for M.
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Perturbative vs. non-perturbative renormalisation

Distinguish 3 cases:

1 finite renormalisations: e.g. axial current normalisation for Wilson
quarks ZA(g0) (cf. lecture 4)

⇒ perturbation theory to high orders in g2
0 might be an option

[Di Renzo et al. ’2006 ]

2 multiplicative scale dependent renormalisations, e,g, O∆S=2:

⇒ strong case for non-perturbative renormalisation (see below)

3 Power divergences: mixing with operators with lower dimensions,
additive quark mass renormalisation with Wilson quarks:

⇒ total failure of perturbation theory (s. below)
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Quenched BK with staggered quarks [JLQCD, ’98 ]

2 different discretised operators, perturbative 1-loop renormalisation

−0.2 0.0 0.2 0.4 0.6 0.8
mρa

0.5

0.6

0.7

0.8

0.9

BK(NDR, 2GeV) vs. mρa
q

*
=1/a, 3−loop coupling, 5 points

non−invariant
invariant

⇒ Continuum extrapolation difficult due to O(α2) terms.
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Power divergences and perturbation theory

What problems arise if we just use perturbation theory?
In the case of power divergent subtraction PT is clearly insufficient:

additive mass subtraction with Wilson quarks

mR = Zm(m0 −mcr), mcr =
1

a
f (g2

0 )

Suppose one uses a perturbative expansion of f up to g2n
0 :

∆f (g2
0 ) = O(g2n

0 ), g2n
0 ∼ 1

(ln aΛ)n

Remainder (after perturbative subtraction at finite order),

1

a
∆f (g2

0 ) ∼ {a(ln aΛ)n}−1 →∞

is still divergent!
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Momentum Subtraction Schemes (MOM)

Recall procedure in continuum perturbation theory:

example: renormalisation of the pseudoscalar density
Pa(x) = ψ(x)γ5

1
2τ

aψ(x):

Correlation functions in momentum space with external quark states:〈
ψ̃(p)ψ̃(q)

〉
= (2π)4δ(p + q)S(p) quark propagator〈

ψ̃(p)P̃a(q)ψ̃(p′)
〉

= (2π)4δ(p + q + p′)S(p)Γa
P(p, q)S(p + q) ,

At tree-level:

Γa
P(p, q)|tree = γ5

1
2τ

a,

⇒ 1
4

3∑
b=1

tr
{
γ5τ

bΓa
P(p, q)|tree

}
= 1
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Renormalised fields:

ψR = Zψψ, ψR = Zψψ, Pa
R = ZPPa

⇒ renormalised vertex function:

Γa
P,R(p, q) = ZPZ−2

ψ Γa
P(p, q)

typical MOM renormalisation condition (quark masses set to zero):

Γa
P,R(p, 0)|µ2=p2 = γ5

1
2τ

a ⇒ ZPZ−2
ψ

equivalently using “projector”:

1
4

3∑
b=1

tr
{
γ5τ

b Γa
P,R(p, 0)|µ2=p2

}
= 1

Determine Zψ either from propagator or use MOM scheme for vertex
function of a conserved current

ΓV ,R(p, q) = Z−2
ψ ΓV (p, q)
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Summary: MOM schemes in the continuum

Renormalisation condions are imposed on vertex functions in the
gauge fixed theory with external quark, gluon or ghost lines

The vertex functions are taken in momentum space.

A particular momentum configuration is chosen, such that the vertex
function becomes a function of a single momentum p; quark masses
are set to zero

MOM condition: a renormalised vertex function at subtraction scale
µ2 = p2 equals its tree-level expression

Can also be used to define a renormalised gauge coupling: take vertex
function of either the 3-gluon vertex, the quark-gluon vertex or the
ghost-gluon vertex.

Renormalisation constants depend on the chosen gauge! Need wave
function renormalisation for quark, gluon and ghost fields.
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RI/MOM Schemes (RI = Regularisation Independent;
MOM = Momentum Subtraction)

[Martinelli et al ’95 ]: mimick the procedure in perturbation theory:

choose Landau gauge
∂µAµ = 0

can be implemented on the lattice by a minimisation procedure

RI/MOM schemes are very popular: many major collaborations use it
because

it is straightforward to implement on the lattice; many improvements
over the years regarding algorithmic questions
it can be used on the very same gauge configurations which are
produced for hadronic physics

Regularisation Independence (RI) means: correlation functions of a
renormalised operator do not depend on the regularisation used (up to
cutoff effects).
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RI/MOM schemes, discussion

Suppose we have calculated a renormalised hadronic matrix element
of the multiplicatively renormalisable operator O

MO(µ) = lim
a→0

〈h|OR(µ)|h′〉

Provided µ is in the perturbative regime, one may evaluate the MOM
scheme in continuum perturbation theory and evolve to a different
scale:

MO(µ′) = U(µ′, µ)MO(µ),

U(µ′, µ) = exp

{∫ ḡ(µ′)

ḡ(µ)

γO(g)

β(g)
dg

}

N.B. Continuum perturbation theory is available to 3-loops in some
cases!
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RI/MOM schemes, what could go wrong?

The scale µ could be too low; need to hope for a “window”

ΛQCD � µ� a−1

In practice scales are often too low: non-perturbative effects (e.g.
pion poles, condensates) are then eliminated by fitting to expected
functional form (from OPE in fixed gauge);

⇒ errors are difficult to quantify!

Gribov copies: the (Landau) gauge condition does not have a unique
solution on the full gauge orbit

Perturbative calculations are made using
infinite volume
vanishing quark masses

⇒ inconvenient for numerical simulations especially in full QCD.

Wilson quarks: a priori cutoff effects are O(a) even in on-shell O(a)
improved theory.
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A prominent non-perturbative effect: the pion pole

[Martinelli et al. ’95 ]

Consider the 3-point correlation function for Pa:∫
d4x

∫
d4y e−ipx〈ψ(0)γ5

1
2τ

bψ(x)ψ(0)Pa(y)〉

For large p2 it is dominated by short distance contributions either at
x ≈ 0 or x ≈ y . The contribution for x ≈ 0 is proportional to the
pion propagator ∫

d4y〈Pb(0)Pa(y)〉 ∝ 1

m2
π

Dimensional counting: suppression by 1/p2 relative to the
perturbative term at x ≈ y :

ZMOM,non−pert
P ∼ A

µ2mq
+ . . .

⇒ the chiral limit is ill-defined!
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RI/MOM scheme, example 1

[QCDSF-UKQCD collaboration, Göckeler et al. ’06 ]

0 1 2 3 4 5 6
(aµp)

2

2.0

2.2

2.4

2.6

2.8

Z
m

R
G

I

β=5.20
β=5.25
β=5.29
β=5.40

Z−1
P for the RGI operator after subtraction of the pion pole through a

fit. While there is no plateau at fixed β, the situation seems to
improve towards higher β, as µ gets larger in physical units.
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RI/MOM scheme, example 2

[ETMC collaboration, talk by P. Dimopoulos at Lattice ’07 ]
twisted mass QCD with Nf = 2, subtraction of pion pole à la [Giusti,
Vladikas ’00 ]

While ZS shows the expected plateau, ZP shows some slope even after
subtraction of the pion pole (cutoff effects?)
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RI/MOM scheme, example 3

[R. Babich et al. 06 ] four-quark operator for BK with overlap quarks
(quenched QCD at β = 6.0):

0 2 4 6 8 10 12 14 16 18

p
2
 [GeV

 2
]

2.7

2.8

2.9

3

3.1
R

11R
G

I (m
q , 

p 
, g

0 )

R
11

RGI
 (am

q
=0.10)

R
11

RGI
 (am

q
=0.03) 

β=6.0

non-perturbative effects are eliminated through fit function from OPE
including logarithmic terms
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RI/MOM scheme, example 4

[Huey-Wen Lin ’06 ] study of quark gluon vertex:

0 0.5 1 1.5 2

(pa)
2

0

1

2

3

4

5

6

7

Comparison of Landau gauge fixed results obtained from 2 gauge
equivalent configurations

Influence of Gribov copies can be sizable!
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RI/MOM schemes; tentative conclusions

There are examples where the method seems to work fine

Non-perturbative effects like the pion pole are either subtracted or
taken into account by fits to the expected p2-behaviour; error
estimates seem difficult!

A warning from the quark-gluon vertex: the effect of Gribov copies
while often found to be small should be monitored!

finite volume and quark mass effects seem to be small

Since the method can be applied at little cost on the existing
configurations it should always be tried!

However it seems difficult to get reliable errors down to the desired
level (say 1-2 percent for Z -factors)
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Possible improvements of RI/MOM schemes

use gauge invariant states ⇒ no trouble with Gribov copies, but more
demanding in perturbation theory; expect larger cutoff effects

use non-exceptional momentum configurations (P. Boyle, Lattice
2007): could reduce the problem with Goldstone poles; Perturbation
theory needs to be re-done!

reach higher scales: Promote to finite volume scheme: fix µL

need gauge fixing on the torus (complicated)

twisted gauge field boundary conditions; link between Nc and Nf

in any case perturbation theory needs to be re-done from scratch and
may be complicated

dimensional argument: gauge invariant fermionic correlation functions
typically suffer from larger cutoff effects
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Main idea of finite volume schemes

[Lüscher et al. 91-94, Jansen et al ’95 ] Main idea:

define a finite volume renormalisation scheme, where

µ = L−1

⇒ possibility to construct the RG evolution recursively, by going in
steps

L → 2L → 4L → · · · → 2nL

in practice e.g. n = 8, can bridge 2 orders of magnitude in scale

The problem of large scale differences is solved by NOT having all
scales on a single lattice.
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Sketch of the recursive procedure:

suppose we have a non-perturbative definition of the running coupling
ḡ(L)

σ(u) = ḡ2(2L)|u=ḡ2(L)

At fixed u = ḡ2(L) the function σ(u) can be obtained from a
sequence of pairs of lattices with sizes L/a and 2L/a:

σ(u) = lim
a→0

Σ(u, a/L)

repeat the procedure for a range of u-values in
[
ḡ2(Lmin), ḡ

2(Lmax)
]
.

u0 = ḡ2(Lmin), uk = σ(uk−1)
[
= ḡ2

(
2kLmin

)]
, k = 1, 2, . . .

⇒ after 7-8 steps scale differences of O(100) are bridged!

need to compute FπLmax and ḡ2(Lmin) = g2 + k1g
4 + . . .
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