Introduction to Lattice Supersymmetry

Simon Catterall

Syracuse University

Motivation

- Motivation: SUSY theories - cancellations between fermions/bosons - soft U.V behavior. Higgs light $m_{H}^{2} \sim \log (\Lambda)$
- More tractable analytically - toy models for understanding confinement and chiral symmetry breaking
- Key component of string theory - remove tachyon of bosonic string.
- Generalizations of AdSCFT - $(p+1)$ SYM and type II strings with Dp-branes.
- Usually assume symmetry holds at high energy - must break nonperturbatively at low energies - lattice.

Problems

- Extension of Poincare symmetry: $\{Q, \bar{Q}\}=\gamma . P$. Broken by lattice.
- Equivalently: Leibniz rule does not hold for difference operators
- Fermion doubling - $n_{B} \neq n_{F}$. Wilson terms break SUSY.
- Consequence: Naively discretized classical action breaks SUSY. Effective action picks up (many) SUSY violating operators. Generically some of relevant. Couplings must be fine tuned as $a \rightarrow 0$.

Solutions

- Just do it.
- Certain simple cases eg. $\mathcal{N}=1$ SYM in 4D single counterterm with Wilson fermions.
- For $D<4$ finite number of divergences occuring at small numbers of loops.
- For special class of theories can find novel discretizations which preserve one or more SUSY's exactly. Two approaches:
- Orbifold methods. SYM case.
- Twisted formulations. Equivalent ...?

Overview

- Motivation/Problems.
- Witten's SUSYQM. Naive discretization. Fine tuning. Modification to maintain exact SUSY.
- Nicolai maps. Topological/twisted field theory interpretation.
- Generalizations. SYMQM, sigma models.
- Lifting to 2D. Wess Zumino models. Twisting in 2D. Kähler-Dirac fermions. $\mathcal{N}=2 \mathrm{SYM}$.
- Lifting to 4D. $\mathcal{N}=4 \mathrm{SYM}$.
- Orbifold constructions

Witten's SUSYQM

$$
S=\int d t \frac{1}{2}\left(\frac{d \phi}{d t}\right)^{2}+\frac{1}{2} P^{\prime}(\phi)^{2}+\frac{1}{2} \psi_{i} \frac{d \psi_{i}}{d t}+i \psi_{1} \psi_{2} P^{\prime \prime}(\phi)
$$

Invariant under 2 SUSYs:

$$
\begin{aligned}
\delta_{A} \phi & =\psi_{1} \epsilon_{A} \quad \delta_{B} \phi=\psi_{2} \epsilon_{B} \\
\delta_{A} \psi_{1} & =\frac{d \phi}{d t} \epsilon_{A} \quad \delta_{B} \psi_{1}=-i P^{\prime} \epsilon_{B} \\
\delta_{A} \psi_{2} & =i P^{\prime} \epsilon_{A} \quad \delta_{B} \psi_{2}=\frac{d \phi}{d t} \epsilon_{B}
\end{aligned}
$$

Homework Problem 1: verify these invariances

Continuum variation

Find:

$$
\delta_{A} S=\int d t i \epsilon\left(P^{\prime} \frac{d \psi_{2}}{d t}+\frac{d \phi}{d t} P^{\prime \prime} \psi_{2}\right)
$$

Need to integrate by parts and use Leibniz to get zero. Problem for lattice.
Notice that $\delta_{A}^{2}=\delta_{B}^{2}=\frac{d}{d t}$ acting on any field.
Example of SUSY algebra since $H=\frac{d}{d t}$.

Naive discretization

Place fields on sites of (periodic) 1D lattice. Replace $\int d t \rightarrow \sum_{t} a$ and replace $\frac{d}{d t}$ by (doubler free) backward difference.

$$
a \Delta_{\mu}^{-} f_{x}=f(x)-f(x-\mu)
$$

Now find:

$$
\delta_{A} S_{L}=\sum_{t} i \epsilon\left(P^{\prime} \Delta^{-} \psi_{2}+\Delta^{-} \phi P^{\prime \prime} \psi_{2}\right)
$$

where rescaled x by $a^{\frac{1}{2}}$. Naively invariant as $a \rightarrow 0$. But expect radiative corrections

Boson/fermion masses - naive

Figure 1: $P^{\prime}=m \phi+g \phi^{3}, m=10.0, g=100.0$

Radiative corrections

Points to note:

- Any Feynman graph which is convergent in U.V can be discretized naively (Reisz theorem).
- Restrict attention to superficially divergent continuum graphs.
- In previous example only one of these. One loop fermion contribution to boson mass.

Radiative corrections II

Continuum:

$$
\Sigma_{\mathrm{cont}}=6 g \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d p}{2 \pi} \frac{-i p+m}{p^{2}+m^{2}}
$$

Actually convergent ($p \rightarrow-p$ symmetry)

$$
\Sigma_{\mathrm{cont}}=6 g\left(\frac{1}{\pi} \tan ^{-1} \frac{\pi}{2 m a}\right) \sim 6 g\left(\frac{1}{2}+\mathcal{O}(m a)\right)
$$

Lattice result is

$$
\Sigma_{\mathrm{latt}}=\frac{6 g}{L} \sum_{k=0}^{L-1} \frac{-2 i \sin \left(\frac{\pi k}{L}\right) e^{i\left(\frac{\pi k}{L}\right)}+m a}{\sin ^{2}\left(\frac{\pi k}{L}\right)+(m a)^{2}} \rightarrow 6 g!
$$

Radiative corrections III

- If take $a \rightarrow 0$ after doing sum get twice the result!
- Homework Problem 2. Convince yourself of this!
- $D^{-}=D^{s}+\frac{1}{2} m_{W}$. Would be doublers have mass $O(1 / a)$ and make an additional contribution to integral (don't decouple from small loops)
- Restore SUSY need to add counterterm

$$
S_{L} \rightarrow S_{L}+\sum_{t} 3 g \phi^{2}
$$

SUSY broken but regained now as $a \rightarrow 0$.

Intuitive argument

Consider using lattice derivative:

$$
D^{s}+\frac{r}{2} m_{W}
$$

Doubler mass $M=m+2 r / a$. Consider limit where $r \ll 1$. Then $m a \ll M a \ll 1$. Lattice integral is approx:

$$
\begin{aligned}
\Sigma & =\int_{\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d p}{2 \pi} \frac{m}{p^{2}+m^{2}}+\int_{\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d p}{2 \pi} \frac{M}{p^{2}+M^{2}} \\
& =\frac{1}{\pi}\left(\tan ^{-1} \frac{\pi}{2 m a}+\tan ^{-1} \frac{\pi}{2 M a}\right)
\end{aligned}
$$

Masses - counterterm corrected

Figure 2: $P^{\prime}=m \phi+g \phi^{3}, m=10.0, g=100.0$

Exact SUSY

Can do better. Find combination of SUSY's that can be preserved on lattice.
Notice that:

$$
\delta_{A} S_{L}=-i \delta_{B} \sum_{x} P^{\prime} \Delta^{-} \phi \quad \delta_{B} S_{L}=i \delta_{A} \sum_{x} P^{\prime} \Delta^{-} \phi
$$

Thus

$$
\left(\delta_{A}+i \delta_{B}\right) S_{L}=-\left(\delta_{A}+i \delta_{B}\right) O \quad \text { where } O=\sum_{t} P^{\prime} \Delta^{-} \phi
$$

So can find $\delta S_{\text {exact }}$ of form

$$
S_{L}^{\text {exact }}=\sum_{t} \frac{1}{2}\left(\Delta^{-} \phi\right)^{2}+\frac{1}{2}{P^{\prime 2}}^{2}+P^{\prime} \Delta^{-} \phi+\bar{\psi}\left(\Delta^{-}+P^{\prime \prime}\right) \psi
$$

Exact SUSY II

Where

$$
\begin{aligned}
\psi & =\frac{1}{\sqrt{2}}\left(\psi_{1}+i \psi_{2}\right) \\
\bar{\psi} & =\frac{1}{\sqrt{2}}\left(\psi_{1}-i \psi_{2}\right)
\end{aligned}
$$

and the new supersymmetry acts:

$$
\begin{array}{ccc}
\delta \phi & = & \psi \epsilon \\
\delta \psi & = & 0 \\
\delta \bar{\psi} & = & \left(\Delta^{-} \phi+P^{\prime}(\phi)\right) \epsilon
\end{array}
$$

Notice: $\delta^{2}=0$ now. No translations.

$$
S_{L}^{b}=\sum_{x}\left(\Delta^{-} \phi+P^{\prime}(\phi)\right)^{2}
$$

Masses - exact SUSY

Figure 3: Boson and fermion masses vs lattice spacing for supersymmetric action

Nicolai map

Partition function:

$$
Z=\int D \phi D \psi D \bar{\psi} e^{-S}=\int D \phi \operatorname{det}\left(\Delta^{-}+P^{\prime \prime}\right) e^{-S_{B}}
$$

Change variables to $\mathcal{N}=\Delta^{-} \phi+P^{\prime}(\phi)$ Jacobian is $\operatorname{det}\left(\frac{\partial N_{i}}{\partial \phi_{j}}\right)$.
Cancels fermionic determinant!

$$
Z=\int \prod_{i} d \mathcal{N}_{i} e^{-\mathcal{N}_{i}^{2}}
$$

Details of $P(\phi)$ disappeared! Z is a topological invariant. Simple argument: $\left\langle S_{B}\right\rangle=\frac{1}{2} N_{\text {d.o.f }}$

Ward identities

Classical invariance of action replaced by relationships between correlation functions of form

$$
<\delta O>=0
$$

Choosing $O=\bar{\psi}_{x} \phi_{y}$ we find

$$
<\bar{\psi}_{x} \psi_{y}>+<\left(\Delta^{-} \phi+P^{\prime}\right)_{x} \phi_{y}>=0
$$

Expect other SUSY $\bar{\delta}=\frac{1}{\sqrt{2}}\left(\delta_{A}-i \delta_{B}\right)$ broken.
Restored in continuum limit without fine tuning.

Ward identities II

Figure 4: $m=10.0, g=800.0$, from Kaestner et al.

Topological field theory

Actually $\delta^{2}=0$ for the field $\bar{\psi}$ only by using EOM. Can render symmetry nilpotent off-shell by introducing auxiliary field

$$
\begin{aligned}
Q \phi & =\psi \\
Q \psi & =0 \\
Q \bar{\psi} & =B \\
Q B & =0
\end{aligned}
$$

Note: absorbed ϵ into variation δ and renamed it Q. Also

$$
S_{L}^{b}=\sum_{x}-B\left(\Delta^{-} \phi+P^{\prime}\right)-\frac{1}{2} B^{2}
$$

TQFT II

Remarkably:

$$
S_{L}=Q \sum_{x} \bar{\psi}\left(-\Delta^{-} \phi-P^{\prime}-\frac{1}{2} B\right)
$$

The action is Q-exact. Like BRST?
Consider bosonic model with $S(\phi)=0$. Invariant under $\phi \rightarrow \phi+\epsilon$-topological symmetry.
Quantize: pick gauge function $\mathcal{N}=0$ and introduce Fadeev-Popov factor

$$
Z=\int D \phi \operatorname{det}\left(\frac{\partial \mathcal{N}}{\partial \phi}\right) e^{-\frac{1}{2 \alpha} \mathcal{N}^{2}(\phi)}
$$

Interpret $\psi, \bar{\psi}$ as ghost fields ($\alpha=1$) recover our mode!!

Moral of the story

- Fine tuning problems can be handled in $D<4$ by perturbative lattice cals.
- Even $D=4 \mathcal{N}=1$ using chirally improved actions.
- In some cases can do better - find combinations of the supersymmetries in (some) SUSY models which are nilpotent.
- (Twisted) reformulations are closely connected to construction of TQFT. Actions are Q-exact. Easy to translate to lattice.
- Simulation can be done with (R)HMC algs. and good agreement with theory

