## Fundamental constants and electroweak phenomenology from the lattice

Lecture V: CKM phenomenology: at loop level

## CKM Physics



Our goal:

- To understand this plot
- How lattice QCD may contribute to improve it.
- Tree level decays (mixing angles) discussed yesterday. Today, the loop amplitudes.


## V. CKM phenomenology: at loop level

।. Kaon mixing
Indirect and direct CP violations
Lattice calculation of $\mathrm{B}_{\mathrm{K}}$
$\varepsilon^{\prime} / \varepsilon$, the grand challenge for the lattice
2. B meson mixings

Lattice calculation, extraction of $\mathrm{Vtd}, \mathrm{V}$ ts
Phenomenology of B meson decays
Many interesting decay modes: a few examples
Further opportunities for lattice QCD
Other applications
Muon g -2, neutron electric dipole moment, ...

## V. CKM phenomenology at loop level 1. Kaon mixing

## Loop processes

- Loop is not just a small correction, could induce something unusual $=$ Flavor Changing Neutral Current (FCNC)

- No FCNC at tree level in SM
- Even at loop level, suppressed by the unitarity, e.g.

$$
V_{u s}^{*} V_{u d}+V_{c s}^{*} V_{c d}+V_{t s}^{*} V_{t d}=0
$$

thus vanishes when u,c,t are degenerate in mass.

Glashow-Iliopoulos-Maiani (GIM) mechanism (1970)

## FCNC processes

- FCNC is suppressed by GIM = a good place to look for New Physics
- If new physics doesn't have GIM, its effect could be relatively enhanced in FCNC.
- Processes like...
- Kaon mixing
- B meson mixing
- $B$ decays through penguin diagram
vontains loop diagram in general.



## Kaon mixing

CP violation was first observed in the neutral kaon mixing.

Taken from "Hyper Physics (Georgia State University) http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html

- Cronin-Fitch (1964)

$$
K_{K_{L} \rightarrow \pi}^{K_{s} \rightarrow \pi \pi} \text { (CP even) }
$$



- Induced by interference between dispersive (real) part and absorptive (imaginary) part of the amplitude.
- dispersive: $u, \mathrm{c}, \mathrm{t}$ (thus contains the CP phase)

। absorptive: u (strong amplitude is imaginary)


## Note: CP violation

- In SM, explained by the $3 \times 3$ KM matrix.

One complex phase remains.

$$
V_{C K M}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-(I 7) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-(\overline{7}) & -A \lambda^{2} & 1
\end{array}\right)
$$

- Must see interference among different amplitudes. Non-CP phase difference $\Delta \delta$ is also necessary.

$$
\begin{aligned}
& \left|A_{X \rightarrow Y}\right|^{2}=\left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}+2\left|A_{1} A_{2}\right| \cos (\Delta \theta+\Delta \delta), \\
& \left|A_{X \rightarrow Y}^{C P}\right|^{2}=\left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}+2\left|A_{1} A_{2}\right| \cos (-\Delta \theta+\Delta \delta), \\
& \left|A_{X \rightarrow Y}\right|^{2}-\left|A_{X \rightarrow Y}^{C P}\right|^{2}=-4\left|A_{1} A_{2}\right| \sin (\Delta \theta) \sin (\Delta \delta)
\end{aligned}
$$



## Mixing through...

- Neutral kaon mixing
- $\mathrm{K}^{0}$ and $\mathrm{K}^{0}$ bar can decay to the same final state $\pi \pi$, so can mix with each other, in principle.

- There are also virtual processes to induce the mixing.

b Can decay to $\pi \pi$ (CP even) or to $\pi \pi \pi$ (CP odd).
$K_{s} \cong \frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] \rightarrow \pi \pi \quad c \tau=2.7 \mathrm{~cm}$
$K_{L} \cong \frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] \rightarrow \pi \pi \pi \quad c \tau=15.5 \mathrm{~m}$


## CPV from mixing

- To be precise, the states are mixture of CP eigenstates.

$$
\begin{aligned}
& \left|K_{S}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left[\left|K_{C P+}^{0}\right\rangle+\bar{\varepsilon}\left|K_{C P-}^{0}\right\rangle\right], \\
& \left|K_{L}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left[\left|K_{C P-}^{0}\right\rangle+\bar{\varepsilon}\left|K_{C P+}^{0}\right\rangle\right] .
\end{aligned}
$$

"Im" picks up the CKM phase.

- Characterized by the small parameter $\varepsilon$

$$
\bar{\varepsilon}=\frac{i}{2} \frac{\operatorname{Im} M_{12}-i \operatorname{Im} \Gamma_{12} / 2}{\operatorname{Re} M_{12}-i \operatorname{Re} \Gamma_{12} / 2}=i \frac{\operatorname{Im} M_{12}-i \operatorname{Im} \Gamma_{12} / 2}{m_{K_{L}}-m_{K_{S}}-i\left(\Gamma_{K_{L}}-\Gamma_{K_{S}}\right)}
$$

$$
M_{12}-\frac{i}{2} \Gamma_{12}=\left\langle K^{0}\right| H_{W}\left|\bar{K}^{0}\right\rangle
$$

absorptive
width difference mass difference
dispersive

## Theoretical calculation?

## - Re

- Calculating the mass difference $\left(\operatorname{Re} M_{12}\right)$ and the width difference $\left(\operatorname{Re} \Gamma_{12}\right)$ is notoriously difficult, as they involve long distance effects (with $\pi, \eta, \pi \pi, \ldots$ as intermediate states). Must solve the " $\Delta \mathrm{I}=\mathrm{I} / 2$ rule".
- Im
- Dominated by short distance physics, as it must go through top quark in the intermediate state.

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$



## Weak effective Hamiltonian

- Short distance interaction can be represented by an effective operator.

$$
O_{L L}=\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d
$$

- The effective Hamiltonian to describe $\Delta S=2$ transition.

$$
H_{e f f}^{\Delta S=2}=\frac{G_{F}^{2} M_{W}^{2}}{16 \pi^{2}}\left[\left(V_{c s}^{*} V_{c d}\right)^{2} \eta_{1} S_{0}\left(x_{c}\right)+\left(V_{t s}^{*} V_{t d}\right)^{2} \eta_{2} S_{0}\left(x_{t}\right)+2\left(V_{c s}^{*} V_{c d} V_{t s}^{*} V_{t d}\right) \eta_{3} S_{0}\left(x_{c}, x_{t}\right)\right] O_{L L}
$$

- $S_{0}\left(x_{c}\right), S_{0}(x t), S_{0}\left(x_{c}, x_{t}\right)$ are Inami-Lim function to describe the box amplitude; a function of $x_{i}=m_{i}^{2} / M_{w}{ }^{2}$.
" "Im" picks up the imaginary part of the KM matrix elements.


## $B_{K}$

- Problem is reduced to the calculation of a matrix element $\left\langle\bar{K}^{0}\right| O_{\text {LI }}\left|K^{0}\right\rangle$
- Often parameterized as

$$
\left\langle\bar{K}^{0}\right| O_{L L}(\mu)\left|K^{0}\right\rangle=\frac{8}{3} B_{K}(\mu) f_{K}^{2} m_{K}^{2}
$$

- In the vacuum saturation

Scale $\mu$ dependence canceled by the Wilson coefficient of the operator. Scale independent definition:

$$
\left.\hat{B}_{K}=B_{K}(\mu)\left[\alpha_{s}^{(3)}(\mu)\right]^{-2 / 9}\left[1+\frac{\alpha_{s}^{(3)}(\mu)}{4 \pi} J_{3}\right]\right)
$$ approximation $\mathrm{B}_{\mathrm{K}}=\mathrm{I}$.

$$
B_{K}(\mu)=\frac{\left\langle\bar{K}^{0}\right| O_{L L}(\mu)\left|K^{0}\right\rangle}{\frac{8}{3}\left\langle\bar{K}^{0}\right| \bar{s} \gamma_{\mu} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} d\left|K^{0}\right\rangle} \rightarrow 1
$$

- Good to take a ratio: bulk of the systematic effects cancels.


## Lattice calculation of $\mathrm{B}_{\mathrm{K}}$

- A matrix element of the local operator $\mathrm{O}_{\mathrm{LL}}$.
- Easy to calculate on the lattice.

$$
B_{K}(\mu)=\frac{\left\langle\bar{K}^{0}\right| O_{L L}(\mu)\left|K^{0}\right\rangle}{\frac{8}{3}\left\langle\bar{K}^{0}\right| \bar{s} \gamma_{\mu} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} d\left|K^{0}\right\rangle}
$$

- Chiral symmetry is essential to ensure that numerator behaves as $\propto \mathrm{m}_{\mathrm{K}}{ }^{2}$, otherwise the ratio diverges.
- Use
- Overlap/domain-wall
- Staggered (pick the NG pion)
, Twisted-mass (special care needed)
, Wilson (not impossible...)


## Chiral extrapolation

- For the extraction of $B_{K}$, the impact of chiral log is marginal.
- Only kaon mass appears in the chiral log; interpolation only.
- Visible in the lattice data.

$$
B_{P}=B_{P}^{\chi}\left[1-\frac{6 m_{P}^{2}}{(4 \pi f)^{2}} \ln \frac{m_{P}^{2}}{\mu^{2}}+b m_{P}^{2}+O\left(m_{P}^{4}\right)\right]
$$

- Partially quenched $\left(m_{\text {sea }} \neq m_{\text {val }}\right)$ formula available (GoltermanLeung, 1998)

JLQCD (2007)
with dynamical overlap
Yamada's talk at Lattice 2007
(NLO ChPT + quadratic) fit


## Some recent results

- RBC with domain-wall
- Including 2+I flavors of dynamical quarks.
- Good control of (unnecessary) operator mixing.
$B_{K}(2 \mathrm{GeV})=0.522(I 0)(15)$
- JLQCD with overlap
, 2 flavors of dynamical quarks
- Perfect control of operator mixing

$$
B_{K}(2 \mathrm{GeV})=0.533(7)
$$

Yamada at lat07, error stat only



## $\varepsilon_{\mathrm{K}}$ on the unitarity triangle

- Can draw a constraint from $\varepsilon_{K}$
- Was the only measurement of CP violation
- Now, there are quite a few from B facories


12\% error was assumed (CKM2006), which covers all recent unquenched calculations.
Too big, already? Eventually, < $5 \%$ precision will be possible.

## Direct CP violation

Interference among decay amplitudes

- Between $\pi \pi(\mathrm{I}=0)$ and $\pi \pi \quad(\mathrm{I}=2)$

$$
\begin{gathered}
A\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)=\sqrt{\frac{2}{3}} A_{0} e^{i \delta_{0}}+\sqrt{\frac{1}{3}} A_{2} e^{i \delta_{2}} \\
A\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\sqrt{\frac{2}{3}} A_{0}^{*} e^{i \delta_{0}}-\sqrt{\frac{1}{3}} A_{2}^{*} e^{i \delta_{2}} \\
\varepsilon^{\prime}=\frac{i e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2}} \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]
\end{gathered}
$$

$$
\begin{aligned}
&\left|K_{L}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left[\left|K_{\text {CP- }}^{0}\right\rangle+\bar{\varepsilon}\left|K_{\text {CP+ }}^{0}\right\rangle\right] . \\
& \text { direct } \downarrow / \text { indirect }
\end{aligned}
$$

$$
\pi \pi
$$

$$
\begin{aligned}
& \eta_{+-}=\frac{A\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)} \cong \varepsilon+\varepsilon^{\prime} \\
& \eta_{00}=\frac{A\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{A\left(K_{s} \rightarrow \pi^{0} \pi^{0}\right)} \cong \varepsilon-2 \varepsilon^{\prime} \\
& \operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)= \begin{cases}0.00207(28) & (\mathrm{KTeV} 2003) \\
0.00147(22) & \text { (NA48 2002) }\end{cases}
\end{aligned}
$$

## Penguins

- To produce the "Im" parts ( $\mathrm{ImA}_{0}$, $\operatorname{lm} A_{2}$ ), loop processes are needed.
- QCD penguin: $\mathrm{Q}_{3}, \mathrm{Q}_{4}, \mathrm{Q}_{5}, \mathrm{Q}_{6}$
b Electro-weak penguin: $\mathrm{Q}_{7}, \mathrm{Q}_{8}, \mathrm{Q}_{9}, \mathrm{Q}_{10}$

$$
\begin{aligned}
& Q_{6}=\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\overline{\bar{q}}_{\beta} q_{\alpha}\right)_{V+A} \\
& Q_{8}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
\end{aligned}
$$

- Calculation of their matrix elements
 is the grand challenge
b Operator mixing \& power divergence
- Large cancellation
- Two pions in the final state


## Power divergence

- $\mathrm{Q}_{6}$ can mix with a lower dimensional operator


## RBC 2007

(Mawhinney at Lattice 2007)

$$
\begin{aligned}
Q_{6} & =\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A} \\
& \leftrightarrow \frac{1}{a^{2}}\left[\left(m_{s}+m_{d}\right) \bar{s} d-\left(m_{s}-m_{d}\right) \bar{s} \gamma_{5} d\right]
\end{aligned}
$$

- Requires a good chiral symmetry; other operators could also
 contaminate if chiral symmetry is not exact.
- In any case, huge cancellation occurs.



## Two pions in the final state

- Maiani-Testa no-go theorem (I990)
- On the Euclidean lattice, the extraction of ground state relies on the analytic structure of particle pole.

$$
C^{(2)}(t)=\int_{-\pi / a}^{+\pi / a} \frac{d q_{0}}{2 \pi} \frac{e^{i q_{0} t}}{m^{2}+q_{0}^{2}+\mathbf{q}^{2}} \sim e^{-E(\mathbf{q}) t}
$$

- Not simply applied for two-particle state. If fact, the lowest energy state is always the zero momentum state $q_{1}=q_{2}=0$, not the state of interest.
- By tuning the physical volume, an excited state can match the physical state.
- Relation between finite volume ME and physical amplitude derived (Lellouch-Luscher, 2000); practical application is still very hard.


## Use of ChPT

- Relate the $\langle\pi \pi| H_{W}|K\rangle$ matrix elements to those of $\langle\pi| Q|K\rangle$ and $\langle 0| Q|K\rangle$ using ChPT; no two-body final state appears.
- LO (Bernard, 1985)
- Extensive quenched studies by CP-PACS and RBC (200I)

- NLO (Laiho-Soni, Lin et al., 2002)
, Work in progress RBC-UKQCD.


## V. CKM phenomenology at loop level 2. B meson mixings

## Neutral B meson mixings

- $B_{d}$ and $B_{s}$
- Similar to the kaon mixing. But, different ...

- Dominated by the top loop (InamiLim function gives $\sim m_{t}{ }^{2} / m_{w}{ }^{2}$ )
- Thus, short distance; $\Delta M_{(d, s)}$ can be

$$
V_{\text {CKM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$ calculated.

$$
\begin{aligned}
& \left.\Delta M_{q}=\frac{G_{F}^{2}}{6 \pi^{2}} \eta_{B} m_{B_{q}} B_{B_{q}} f_{B_{q}}^{2}\right\rangle M_{W}^{2} S_{0}\left(x_{t}\right)\left|V_{t q}\right|^{2} \\
& \left\langle\bar{B}_{q}^{0}\right|(\bar{b} q)_{V-A}(\bar{b} q)_{V-A}\left|B_{q}^{0}\right\rangle=\frac{8}{3} B_{B_{q}}(\mu) f_{B_{q}}^{2} m_{B q}^{2}
\end{aligned}
$$

## B mixings (experiment)


$\Delta$ Ms (gives |Vts|)

~1\% (CDF Run II)

> Errors on |Vtd|, |Vts| are now dominated by the lattice calculation.

## Lattice calculation

- Similar to $f_{K}$ and $B_{K}$, except that $b$ quark is much heavier.

ALPHA at Lattice 2007 quenched, but NP

- Use a dedicated formulation for the heavy quark.
- HQET, NRQCD, Fermilab, etc (see Kronfeld's lecture)
- For $f_{B}$, I/M correction is substantial. Extrapolation from below requires continuum extrapolation first, in order to avoid large $\left(\mathrm{am}_{\mathrm{Q}}\right)^{2}$ error.
- Combining with the static limit (HQET) is helpful.


## Decay constant

- Summary for $f_{B s}$ from $N_{f}=0$ to $2+1$
- The value slightly went up from $N_{f}=0$ to 2.
- Error estimate depends on the group
- Scale setting, heavy quark action, operator matching, ...
- Renormalization is the key to achieve better than 5\%.
- Mostly perturbative in the past. NPR will be mandatory in the future (how? see Sint's lecture)



## Chiral extrapolation

- Need to get $f_{B d}$.
- Extrapolation with the chiral log effect

$$
\frac{f_{B_{s}} \sqrt{m_{B_{s}}}}{f_{B_{d}} \sqrt{m_{B_{d}}}}=1+\frac{1+3 \hat{g}^{2}}{4(4 \pi f)^{2}}\left(3 m_{\pi}^{2} \log \frac{m_{\pi}^{2}}{\Lambda}-2 m_{K}^{2} \log \frac{m_{K}^{2}}{\Lambda}-m_{\eta}^{2} \log \frac{m_{\eta}^{2}}{\Lambda}\right)+\cdots
$$

- Most recent test
- From HPQCD and MILC; both on the MILC 2+। lattice
- Uses S $\chi$ PT in both cases
- Matching at one-loop (matters only the overall normalization)

Plot from Della Morte at Lattice 2007


## Bag parameter

- Calculation is similar to $B_{K}$, except that b quark is much heavier.
- Result does not so much depend on heavy quark mass, number of flavors.
- Matching still perturbative
- New efforts are emerging
- Static + domain-wall (RBC/UKQCD)
- Static + tmQCD with NP renormalization (ETMC)

From Onogi at Lattice 2006
propagating heavy
Aprop.heavy + static limit
NRQCD

See also a poster by Evans at this school!
HPQCD (2006)

## $\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}} \mid$

- Chance to get a better precision for the ratio $\Delta M_{d} / \Delta M_{s}$

$$
\frac{\Delta M_{s}}{\Delta M_{d}}=\left.\left.\frac{M_{s}}{M_{d}} \frac{f_{B_{s}}^{2} B_{B_{s}}}{E_{B_{d}}^{2} B_{B_{d}}}\left|V_{t s}\right|^{2}\right|^{2}\right|^{2}
$$

- Bulk of errors (statistical + systematic) cancels. Only the chiral extrapolation is relevant.
- Need a further check of the consistency with the NLO ChPT.


HPQCD (2006)
2+I-flavor calculation
A fit with $\mathrm{S} \chi$ PT

- Note: an additional coupling $\mathrm{B}^{*} \mathrm{~B} \pi$ appears; may use $D * D \pi$ as an input


## $\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|$ on the unitarity triangle

- Can draw a circle with the center at $(1,0)$
- Two circles: one from $\Delta M_{d}$ alone, the other from the ratio $\Delta M_{s} / \Delta M_{d}$.

$\sim 15 \%$ error was assumed for $f_{B}$ (CKM2006), which covers all recent unquenched calculations.
$\sim 5 \%$ for the ratio, now constrains better.


## Leptonic decay (experiment)

- Info on the decay constant is now available from experiment.

$$
\begin{aligned}
B\left(B^{-} \rightarrow l^{-} \bar{v}\right) & =\frac{G_{F}^{2} m_{B} m_{l}^{2}}{8 \pi}\left(1-\frac{m_{l}^{2}}{m_{B}^{2}}\right) f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B} \\
& =\left\{\begin{array}{lr}
\left(1.79_{-0.49-0.51}^{+0.56+0.46}\right) \times 10^{-4} & \text { (Belle) } \\
\left(1.8_{-0.9-0.3}^{+1.0+0.3}\right) \times 10^{-4} & (\text { BaBar })
\end{array}\right.
\end{aligned}
$$



- Difficult experiment: too small BR for $e v$ and $\mu \nu$ due to lepton mass, more than one neutrino for $\tau v$.
- Error is still large, but the deduced value of $f_{B}(=230(50) \mathrm{MeV})$ is roughly consistent with the lattice calculation.

Super-B expectation

| Lum. | $\Delta \mathrm{B}(\mathrm{B} \rightarrow \tau v)_{\exp }$ |
| :---: | :---: |
| $414 \mathrm{fb}^{-1}$ | $36 \%$ |
| $5 \mathrm{ab}^{-1}$ | $10 \%$ |
| $50 \mathrm{ab}^{-1}$ | $3 \%$ |

# V. CKM phenomenology at loop level 3. Phenomenology of B meson decays 

## B physics is rich

- Not just the mixing mass difference and the semi-leptonic decays.
- Many FCNCs
- Many places to find CP violation
- CKM angles can be measured
- Some hint of new physics??
- Exp info is rapidly growing. Will continue to be so.
- LHC-b will start soon.
- Super-B factory ?
\# of pages of the $B$ meson section in PDG

| PDG | \# pages |
| :---: | :---: |
| PDG 1996 | 5I pages |
| PDG 1998 | 58 pages |
| PDG 2000 | 70 pages |
| PDG 2002 | 85 pages |
| PDG 2004 | 98 pages |
| PDG 2006 | I23 pages |
| with many reviews |  |

## FCNCs

- $\mathrm{b} \rightarrow \mathrm{s} \gamma$ and related
* $B \rightarrow K^{*} \gamma$ : the first observed penguin (CLEO I993)
- Carries info on $|\mathrm{Vts}|^{2}$

- $\mathrm{b} \rightarrow \mathrm{s}^{+}{ }^{+}$-, other effective operators involved
- $\mathrm{B} \rightarrow \rho \gamma ;|\mathrm{Vtd} / \mathrm{Vts}|$ can be extracted if the form factor ratio is known.
- Lattice calculation?
- Two-body decay
- Final states are energetic.

What can we do??

## Moving... NRQCD

- Boosted system may be simulated on the lattice, by constructing an effective theory in the boosted frame
- HQET with finite velocity; extension to $\mathrm{I} / \mathrm{M}=$ Moving NRQCD (SH-Matsufuru, Sloan, Davies-Dougall-Foley-Lepage)

$$
\mathcal{L}_{v}=\bar{h}_{v}(x) i u \cdot D h_{v}(x)
$$

- Maybe useful for $\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma$, for instance.
- Limitation will come from the Lorentz contraction (light quarks + gluons must propagate together)
- Challenge!
- Discretization effect enhanced
- Statistical noise
- Renormalization

See a poster by Mienel at this school!


## CP violation

- Angles are measured
> $\sin 2 \phi_{1}:$ through $B \rightarrow J / \psi K_{S}$
- the gold-plated mode (no contamination from hadron uncertainty)
> $\sin 2 \phi_{2}:$ through $B \rightarrow \pi \pi, \rho \pi$, etc.
" "penguin pollution" cured by the isospin
 analysis (Gronau-London, I990; separate different amplitudes using isospin relations)



## CP violation

- $\phi_{3}$ : through B $\rightarrow$ DK
- CP violating angle from tree decays
- Methods to eliminate unknown strong phase difference (Gronau-London-Wyler (1991),Atwood-Dunietz-Soni (1997), ...)

$A \propto V_{c b} V_{U S}^{*} \propto \lambda^{3}$

$A \propto V_{u b V_{c s}^{*}} \propto \lambda^{3} \sqrt{\rho^{2}+\eta^{2}} e^{i \delta B} e^{-i \gamma}$
- Lattice calculation?
- In many cases, useful if the ratio of amplitudes is theoretically calculated.


## Sign of new physics?

- Penguin dominated mode $b \rightarrow s q \bar{q}$

- Should give $\sin 2 \phi_{\text {, }}$
- Significantly lower than $b \rightarrow c \overline{C S}$ ?

| $\sin \left(2 \beta^{\mathrm{eff}}\right)$ | $\begin{gathered} \mathrm{HF} \text { A G } \\ \frac{\text { EPS } 2007}{\text { PRELIMINARY }} \end{gathered}$ |
| :---: | :---: |
| $\mathrm{b} \rightarrow \mathrm{cos}$ Wárld Average | $0.68 \pm 0.03$ |
| $\phi \mathrm{K}^{0} \quad$ Avėrage | $0.39 \pm 0.17$ |
| $\eta^{\prime} \mathrm{K}^{0} \quad$ Avęrage | $0.61 \pm 0.07$ |
| $\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{S}}$ Average | $0.58 \pm 0.20$ |
| $\pi^{0} \mathrm{~K}_{\mathrm{S}} \quad$ Average | $0.38 \pm 0.19$ |
| $\rho^{0} \mathrm{~K}_{\mathrm{S}} \quad$ Avȩrage | $0.20 \pm 0.57$ |
| $\omega \mathrm{K}_{\mathrm{s}} \quad$ Avėrage | $0.48 \pm 0.24$ |
| $\mathrm{f}_{0} \mathrm{~K}^{0}$ Avérage | $0.29 \pm 0.18$ |
| $\pi^{0} \pi^{0} \mathrm{~K}_{S}$ Average | $-0.52 \pm 0.41$ |
| $\mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}^{0}$ Avėrage | $0.73 \pm 0.10$ |

- How does the hadronic uncertainty affect the prediction?


## QCD based calculation

- Perturbation theory is most suitable for these energetic decay modes.
pQCD for exclusive processes (Brodsky-Lepage, I980)
- Application for B decays = QCD factorization (Beneke-Buchalla-Neubert-Sachrajda, 1999)
- An effective theory $=$ Soft Collinear Effective Theory (SCET) (Bauer-Flemming-Pirjol-Stewart, ... 2001~)
, Convolution of
- Hard part
* Light-cone distribution amp
> (+ form factors)

as in the pQCD calculation of DIS.


## Light-cone distribution amplitude

- Defined on the light-cone coordinate

$$
\left.\left\langle\pi^{+}(q)\right| \bar{u}_{\alpha}(z) \mathscr{P}(z,-z) d_{\beta}(-z)|0\rangle\right|_{z^{2}=0} \equiv \frac{i f \pi}{4}\left(\phi \gamma_{5}\right)_{\beta \alpha} \int_{0}^{1} d u e^{i(2 u-1) q \cdot z} \phi_{\pi}(u, \mu)
$$

- Expansion in z gives moments

$$
\begin{aligned}
& \left\langle\pi^{+}(q)\right| \bar{u}(0) \gamma_{5} \gamma_{\{\rho} \stackrel{\leftrightarrow}{D}_{\mu\}} d(0)|0\rangle=f_{\pi}\left(i q_{\mu}\right)\left(i q_{\rho}\right) \int_{0}^{1} d u(2 u-1) \phi_{\pi}(u, \mu) \\
& \left\langle\pi^{+}(q)\right| \bar{u} \gamma_{5} \gamma_{\{\rho} \stackrel{\leftrightarrow}{D}_{\mu} \stackrel{\rightharpoonup}{D}_{v\}} d|0\rangle=f_{\pi}\left(i q_{\rho}\right)\left(i q_{\mu}\right)\left(i q_{v}\right) \int_{0}^{1} d u(2 u-1)^{2} \phi_{\pi}(u, \mu)
\end{aligned}
$$

Lattice calculation is then straight-forward. Almost like a calculation of pion decay constant, with a bit more complicated operator. (For a recent work, see a talk by C. Sachrajda at Lattice 2007; and a poster by Donnellan here!)

## V. CKM phenomenology at loop level 4. Other applications

## Muon g-2

- Anomalous magnetic moment of muon
- Experiment is very precise.

$$
\mu=1.0011659208(6)\left(e \hbar / 2 m_{\mu}\right)
$$



- QED correction calculated to $\alpha^{4}$ (Kinoshita et al.)
- Electroweak contribution is small.
- Hadronic contribution is the major uncertainty


Diagrams taken from Melnikov's lecture at SLAC summer institute (2002)

## Vacuum polarization

- Usually related to the e+ecross section using the optical theorem.

$$
\begin{aligned}
& a_{\mu}^{\mathrm{vp}}=\frac{1}{4 \pi^{3}} \int_{4 m_{\pi}^{2}}^{\infty} \mathrm{d} s K(s) \sigma_{\mathrm{h}}(s) \\
& K(s) \sim \frac{m_{\mu}^{2}}{s} \text { for } s \gg m_{\mu}^{2}
\end{aligned}
$$




- Or, $\tau$ decay can also be used assuming isospin symmetry. Agreement is not satisfactory. (If we believe e+e-, the sign of NP is
 stronger.)


## Vacuum polarization on the lattice

- Lattice can provide a direct calculation in the Euclidean region.
- Data should contain all the equivalent physics as in the e+ecross section.
- But, the kinematics is very different at heavier quark masses ( $\rho \rightarrow \pi \pi$ threshold is not open, etc.)
- So, the comparison is non-trivial. Chiral extrapolation can be tricky. Interesting avenue: get the physics info in the Euclidean region and use the optical theorem.




## Light-by-light

- Much more challenging..., but

। deserves efforts, because there is no direct exp info available on

$\gamma^{*} \gamma^{*} \rightarrow \gamma^{*} \gamma^{*}$.


## Neutron electric dipole moment

- CP violation not related to flavor
- Strong CP problem
- New physics models may induce large NEDM.
- Need non-perturbative calculation to relate $\theta$
 (or imaginary quark mass) to $d_{n}$.
- Possible to calculate on the lattice
p.g. on a constant electric field
- Reweighting with $\exp (\mathrm{i} \theta \mathrm{Q})$



## And more, ...

## Final remarks

- Lattice QCD is not a stand-alone business!
- Interesting physics opportunities often come from outside of QCD... CKM determination and more.
- There are many other quantities that are waiting for viable non-perturbative tools.
- Lattice calculation needs help from symmetries and effective theories:
- Chiral symmetry, heavy quark symmetry
- $\chi$ PT, HQET, ...

They are essential to control systematic effects.

## Thanks to ...

- Organizers
to Karl Jansen, Kostas Orginos, Steve Sharpe
- Especially, to Steve for the exciting night at...

- And, of course, to the excellent audiences!

