Fundamental constants and electroweak phenomenology from the lattice

Lecture V: CKM phenomenology: at loop level

Shoji Hashimoto (KEK) @ INT summer school 2007, Seattle, August 2007.

CKM Physics

• Our goal:

- To understand this plot
- How lattice QCD may contribute to improve it.
- Tree level decays (mixing angles) discussed yesterday. Today, the loop amplitudes.

V. CKM phenomenology: at loop level

I. Kaon mixing

- Indirect and direct CP violations
- Lattice calculation of B_K
- ϵ'/ϵ , the grand challenge for the lattice

2. B meson mixings

- Lattice calculation, extraction of Vtd, Vts
- 3. Phenomenology of B meson decays
 - Many interesting decay modes: a few examples
 - Further opportunities for lattice QCD
- 4. Other applications
 - Muon g-2, neutron electric dipole moment, ...

V. CKM phenomenology at loop level 1. Kaon mixing

S Hashimoto (KEK) Aug 21, 2007

Loop processes

- Loop is not just a small correction, could induce something unusual = Flavor Changing Neutral Current (FCNC)
 - No FCNC at tree level in SM
 - Even at loop level, suppressed by the unitarity, e.g.

$$V_{us}^* V_{ud} + V_{cs}^* V_{cd} + V_{ts}^* V_{td} = 0$$

thus vanishes when u,c,t are degenerate in mass.

Glashow-Iliopoulos-Maiani (GIM) mechanism (1970)

FCNC processes

- FCNC is suppressed by GIM = a good place to look for New Physics
 - If new physics doesn't have GIM, its effect could be relatively enhanced in FCNC.
- Processes like…
 - Kaon mixing
 - B meson mixing
 - B decays through penguin diagram
 - - contains loop diagram in general.

S Hashimoto (KEK) Aug 21, 2007

u,c,t

u.c.t

W+

CP violation was first observed in the Taken from "Hyper Physics (Georgia State University) neutral kaon mixing. http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html

Cronin-Fitch (1964)

Kaon mixing

 $K_s \rightarrow \pi\pi$ (CP even)

 $K_{\tau} \rightarrow \pi \pi \pi$ (CP odd)

of the amplitude. dispersive: u, c, t (thus contains the CP phase)

absorptive: u (strong amplitude is imaginary)

Induced by interference between dispersive

(real) part and absorptive (imaginary) part

Note: CP violation

In SM, explained by the 3x3 KM matrix.
 One complex phase remains.

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - \eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - \eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Must see interference among different amplitudes. Non-CP phase difference $\Delta \delta$ is $|A_1|exp(i\theta_1)ex$ also necessary.

$$\begin{aligned} |A_{X \to Y}|^{2} &= |A_{1}|^{2} + |A_{2}|^{2} + 2|A_{1}A_{2}|\cos(\Delta\theta + \Delta\delta), \\ |A_{X \to Y}^{CP}|^{2} &= |A_{1}|^{2} + |A_{2}|^{2} + 2|A_{1}A_{2}|\cos(-\Delta\theta + \Delta\delta), \\ |A_{X \to Y}|^{2} - |A_{X \to Y}^{CP}|^{2} &= -4|A_{1}A_{2}|\sin(\Delta\theta)\sin(\Delta\delta) \end{aligned}$$

Mixing through...

Neutral kaon mixing

- K⁰ and K⁰bar can decay to the same final state ππ, so can mix with each other, in principle.
- There are also virtual processes to induce the mixing.

• Can decay to
$$\pi\pi$$
 (CP even) or
to $\pi\pi\pi$ (CP odd).
 $K_s \cong \frac{1}{\sqrt{2}} \Big[|K^0\rangle - |\bar{K}^0\rangle \Big] \rightarrow \pi\pi$ $c\tau = 2.7 \,\mathrm{cm}$
 $K_L \cong \frac{1}{\sqrt{2}} \Big[|K^0\rangle + |\bar{K}^0\rangle \Big] \rightarrow \pi\pi\pi$ $c\tau = 15.5 \,\mathrm{m}$

CPV from mixing

 To be precise, the states are mixture of CP eigenstates.

$$\left| K_{S} \right\rangle = \frac{1}{\sqrt{1 + \left| \overline{\varepsilon} \right|^{2}}} \left[\left| K_{CP+}^{0} \right\rangle + \overline{\varepsilon} \left| K_{CP-}^{0} \right\rangle \right],$$
$$\left| K_{L} \right\rangle = \frac{1}{\sqrt{1 + \left| \overline{\varepsilon} \right|^{2}}} \left[\left| K_{CP-}^{0} \right\rangle + \overline{\varepsilon} \left| K_{CP+}^{0} \right\rangle \right].$$

"Im" picks up the CKM phase.

 \blacktriangleright Characterized by the small parameter ϵ

dispersive

Theoretical calculation?

Re

 Calculating the mass difference (ReM₁₂) and the width difference (ReΓ₁₂) is notoriously difficult, as they involve long distance effects (with π, η, ππ, ... as intermediate states).
 Must solve the "ΔI=1/2 rule".

lm I

Dominated by short distance physics, as it must go through top quark in the intermediate state.

u.c.t

↓u,c,t

Weak effective Hamiltonian

Short distance interaction can be represented by an effective operator.

 $O_{LL} = \overline{s} \gamma_{\mu} (1 - \gamma_5) d \, \overline{s} \gamma_{\mu} (1 - \gamma_5) d$

• The effective Hamiltonian to describe $\Delta S=2$ transition.

$$H_{eff}^{\Delta S=2} = \frac{G_F^2 M_W^2}{16\pi^2} \left[\left(V_{cs}^* V_{cd} \right)^2 \eta_1 S_0(x_c) + \left(V_{ts}^* V_{td} \right)^2 \eta_2 S_0(x_t) + 2 \left(V_{cs}^* V_{cd} V_{ts}^* V_{td} \right) \eta_3 S_0(x_c, x_t) \right] O_{LL}$$

- $S_0(x_c)$, $S_0(xt)$, $S_0(x_c,x_t)$ are Inami-Lim function to describe the box amplitude; a function of $x_i = m_i^2/M_W^2$.
- "Im" picks up the imaginary part of the KM matrix elements.

B_{K}

- Problem is reduced to the calculation of a matrix element $\langle \bar{K}^0 | O_{LL} | K^0 \rangle$
 - Often parameterized as $\langle \overline{K}^0 | O_{LL}(\mu) | K^0 \rangle = \frac{8}{3} B_K(\mu) f_K^2 m_K^2$
 - In the vacuum saturation approximation $B_{K}=1$.

$$B_{K}(\mu) = \frac{\left\langle \overline{K}^{0} \left| O_{LL}(\mu) \right| K^{0} \right\rangle}{\frac{8}{3} \left\langle \overline{K}^{0} \left| \overline{s} \gamma_{\mu} \gamma_{5} d \right| 0 \right\rangle \left\langle 0 \left| \overline{s} \gamma_{\mu} \gamma_{5} d \right| K^{0} \right\rangle} \to 1$$

Good to take a ratio: bulk of the systematic effects cancels.

Scale µ dependence canceled by the Wilson coefficient of the operator. Scale independent definition:

$$\hat{B}_{K} = B_{K}(\mu) \left[\alpha_{s}^{(3)}(\mu) \right]^{-2/9} \left[1 + \frac{\alpha_{s}^{(3)}(\mu)}{4\pi} J_{3} \right]$$

Lattice calculation of B_K

- A matrix element of the local operator O_{LL}.
 - Easy to calculate on the lattice.

 $B_{K}(\mu) = \frac{\left\langle \overline{K}^{0} \right| O_{LL}(\mu) \left| K^{0} \right\rangle}{\frac{8}{3} \left\langle \overline{K}^{0} \left| \overline{s} \gamma_{\mu} \gamma_{5} d \right| 0 \right\rangle \left\langle 0 \left| \overline{s} \gamma_{\mu} \gamma_{5} d \right| K^{0} \right\rangle}$

• Chiral symmetry is essential to ensure that numerator behaves as $\propto m_K^2$, otherwise the ratio diverges.

Use

- Overlap/domain-wall
- Staggered (pick the NG pion)
- Twisted-mass (special care needed)
- Wilson (not impossible...)

perturbatively, especially when the operator mixes with others, like O_{LR}... Use of the RI/MOM scheme is a popular choice.

Chiral extrapolation

- For the extraction of B_K, the impact of chiral log is marginal.
 - Only kaon mass appears in the chiral log; interpolation only.
 - Visible in the lattice data.

$$B_{P} = B_{P}^{\chi} \left[1 - \frac{6m_{P}^{2}}{(4\pi f)^{2}} \ln \frac{m_{P}^{2}}{\mu^{2}} + bm_{P}^{2} + O(m_{P}^{4}) \right]$$

 Partially quenched (m_{sea}≠m_{val}) formula available (Golterman-Leung, 1998)

Some recent results

RBC with domain-wall

- Including 2+1 flavors of dynamical quarks.
- Good control of (unnecessary) operator mixing.

 $B_{K}(2 \text{ GeV}) = 0.522(10)(15)$

- JLQCD with overlap
 - 2 flavors of dynamical quarks
 - Perfect control of operator mixing

 $B_{K}(2 \text{ GeV}) = 0.533(7)$

Yamada at lat07, error stat only

$\boldsymbol{\epsilon}_{K}$ on the unitarity triangle

- Can draw a constraint from ϵ_{K}
 - Was the only measurement of CP violation
 - Now, there are quite a few from B facories

Direct CP violation

 Interference among decay amplitudes

• Between $\pi\pi(I=0)$ and $\pi\pi(I=2)$

$$A(K^{0} \rightarrow \pi^{+}\pi^{-}) = \sqrt{\frac{2}{3}}A_{0}e^{i\delta_{0}} + \sqrt{\frac{1}{3}}A_{2}e^{i\delta_{2}}$$
$$A(\overline{K}^{0} \rightarrow \pi^{+}\pi^{-}) = -\sqrt{\frac{2}{3}}A_{0}^{*}e^{i\delta_{0}} - \sqrt{\frac{1}{3}}A_{2}^{*}e^{i\delta_{2}}$$
$$ie^{i(\delta_{2}-\delta_{0})} \operatorname{Re} A_{2} \operatorname{Im} A_{2} \operatorname{Im} A_{3}$$

$$\varepsilon' = \frac{ie^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right]$$

$$|K_{L}\rangle = \frac{1}{\sqrt{1+|\overline{\varepsilon}|^{2}}} \Big[|K_{CP-}^{0}\rangle + \overline{\varepsilon} |K_{CP+}^{0}\rangle \Big].$$

direct indirect

$$\eta_{+-} = \frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} \cong \varepsilon + \varepsilon'$$
$$\eta_{00} = \frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} \cong \varepsilon - 2\varepsilon'$$
$$(0.00207(28) - (KTeV.200))$$

 $\operatorname{Re}(\varepsilon' \varepsilon) = \begin{cases} 0.00207(28) & (\text{KTeV } 2003) \\ 0.00147(22) & (\text{NA48 } 2002) \end{cases}$

ы, а

11. 6

Penguins

- To produce the "Im" parts (ImA₀, ImA₂), loop processes are needed.
 - QCD penguin: Q_3 , Q_4 , Q_5 , Q_6
 - Electro-weak penguin: Q_7, Q_8, Q_9, Q_{10} $Q_6 = (\overline{s}_{\alpha} d_{\beta}) \sum_{\alpha} (\overline{q}_{\beta} q_{\alpha})$

$$Q_{6} = \left(\overline{s}_{\alpha}d_{\beta}\right)_{V-A} \sum_{q=u,d,s} \left(\overline{q}_{\beta}q_{\alpha}\right)_{V+A}$$

$$Q_{8} = \frac{3}{2} \left(\overline{s}_{\alpha} d_{\beta} \right)_{V-A} \sum_{q=u,d,s} e_{q} \left(\overline{q}_{\beta} q_{\alpha} \right)_{V+A}$$

- Calculation of their matrix elements is the grand challenge
 - Operator mixing & power divergence
 - Large cancellation
 - Two pions in the final state

Power divergence

 Q₆ can mix with a lower dimensional operator

 $Q_6 = \left(\overline{s}_{\alpha}d_{\beta}\right)_{V-A}\sum_{q=u,d,s}\left(\overline{q}_{\beta}q_{\alpha}\right)_{V+A}$

$$\leftrightarrow \frac{1}{a^2} \left[(m_s + m_d) \overline{s} d - (m_s - m_d) \overline{s} \gamma_5 d \right]$$

- Requires a good chiral symmetry; other operators could also contaminate if chiral symmetry is not exact.
- In any case, huge cancellation occurs.

RBC 2007

Two pions in the final state

Maiani-Testa no-go theorem (1990)

• On the Euclidean lattice, the extraction of ground state relies on the analytic structure of particle pole.

$$C^{(2)}(t) = \int_{-\pi/a}^{+\pi/a} \frac{dq_0}{2\pi} \frac{e^{iq_0 t}}{m^2 + q_0^2 + \mathbf{q}^2} \sim e^{-E(\mathbf{q})t}$$

- Not simply applied for two-particle state. If fact, the lowest energy state is always the zero momentum state q₁=q₂=0, not the state of interest.
- By tuning the physical volume, an excited state can match the physical state.
- Relation between finite volume ME and physical amplitude derived (Lellouch-Luscher, 2000); practical application is still very hard.

Use of ChPT

- Relate the $\langle \pi \pi | H_W | K \rangle$ matrix elements to those of $\langle \pi | Q | K \rangle$ and $\langle 0 | Q | K \rangle$ using ChPT; no two-body final state appears.
 - LO (Bernard, 1985)
 - Extensive quenched studies by CP-PACS and RBC (2001)

PK	$-38.6 \pm 2.1 \pm 9.1$	Tree
RBC	-3.2 ± 2.2	Tree
	-4.0 ± 2.3	One-loop
CP-PACS	-7.7 ± 2.0	Tree
EXPT	$+20.7 \pm 2.8$	KTeV
	$+15.3\pm2.6$	NA48

from Ishizuka at Lattice 2002

- NLO (Laiho-Soni, Lin et al., 2002)
 - Work in progress RBC-UKQCD.

V. CKM phenomenology at loop level 2. B meson mixings

S Hashimoto (KEK) Aug 21, 2007

Neutral B meson mixings

- B_d and B_s
- Similar to the kaon mixing. But, different ...
 - Dominated by the top loop (Inami-Lim function gives $\sim m_t^2/m_W^2$)
 - Thus, short distance; $\Delta M_{(d,s)}$ can be calculated.

$$\Delta M_{q} = \frac{G_{F}^{2}}{6\pi^{2}} \eta_{B} m_{B_{q}} \left(B_{B_{q}} f_{B_{q}}^{2} \right) M_{W}^{2} S_{0}(x_{t}) \left| V_{tq} \right|^{2}$$

$$\left\langle \overline{B}_{q}^{0} \left| (\overline{b}q)_{V-A} (\overline{b}q)_{V-A} \right| B_{q}^{0} \right\rangle = \frac{8}{3} B_{B_{q}}(\mu) f_{B_{q}}^{2} m_{B_{q}}^{2}$$

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

B mixings (experiment)

 ΔMd (gives |Vtd|) $0.446 \pm 0.026 \pm 0.019 \text{ ps}^{-1}$ ALEPH (3 analyses) DELPHI $0.519 \pm 0.018 \pm 0.011 \text{ ps}^{-1}$ (5 analyses) $0.444 \pm 0.028 \pm 0.028 \text{ ps}^{-1}$ L3 (3 analyses) $0.479 \pm 0.018 \pm 0.015 \text{ ps}^{-1}$ OPAL (5 analyses) $0.495 \pm 0.033 \pm 0.027 \text{ ps}^{-1}$ CDF1 (4 analyses) $0.506 \pm 0.020 \pm 0.016 \text{ ps}^{-1}$ D0(1 analysis) $0.506 \pm 0.006 \pm 0.004 \text{ ps}^{-1}$ BABAR (4 analyses) $0.509 \pm 0.004 \pm 0.005 \text{ ps}^{-1}$ BELLE (3 analyses) $0.507 \pm 0.005 \text{ ps}^{-1}$ Average of above after adjustments $0.495 \pm 0.032 \text{ ps}^{-1}$ CLEO+ARGUS $(\chi_{d} \text{ measurements})$ $0.507 \pm 0.005 \text{ ps}^{-1}$ World average • for PDG 2007 ~1% 0.45 0.55 0.50.4HFAG average $\Delta m_d (ps^{-1})$ without ad justments

ΔMs (gives |Vts|)

~I% (CDF Run II)

Errors on |Vtd|, |Vts| are now dominated by the lattice calculation.

S Hashimoto (KEK) Aug 21, 2007

Lattice calculation

- Similar to f_K and B_K , except that b quark is much heavier.
 - Use a dedicated formulation for the heavy quark.
 - HQET, NRQCD, Fermilab, etc (see Kronfeld's lecture)
 - For f_B, I/M correction is substantial. Extrapolation from below requires continuum extrapolation first, in order to avoid large (am_Q)² error.
 - Combining with the static limit (HQET) is helpful.

ALPHA at Lattice 2007 quenched, but NP

Decay constant

- Summary for f_{Bs} from $N_f=0$ to 2+1
 - The value slightly went up from $N_f=0$ to 2.
 - Error estimate depends on the group
 - Scale setting, heavy quark action, operator matching, ...
 - Renormalization is the key to achieve better than 5%.
 - Mostly perturbative in the past. NPR will be mandatory in the future (how? see Sint's lecture)

Chiral extrapolation

• Need to get f_{Bd} .

 Extrapolation with the chiral log effect

$$\frac{f_{B_s}\sqrt{m_{B_s}}}{f_{B_d}\sqrt{m_{B_d}}} = 1 + \frac{1+3\hat{g}^2}{4(4\pi f)^2} \left(3m_\pi^2\log\frac{m_\pi^2}{\Lambda} - 2m_K^2\log\frac{m_K^2}{\Lambda} - m_\eta^2\log\frac{m_\eta^2}{\Lambda}\right) + \cdots$$

Most recent test

- From HPQCD and MILC;
 both on the MILC 2+1
 lattice
- Uses SχPT in both cases
- Matching at one-loop (matters only the overall normalization)

Plot from Della Morte at Lattice 2007

Bag parameter

- Calculation is similar to B_K , except that b quark is much heavier.
 - Result does not so much depend on heavy quark mass, number of flavors.
 - Matching still perturbative
 - New efforts are emerging
 - Static + domain-wall (RBC/UKQCD)
 - Static + tmQCD with NP renormalization (ETMC)

See also a poster by Evans at this school!

- $|V_{td}/V_{ts}|$
- Chance to get a better precision for the ratio $\Delta M_d / \Delta M_s$

 $\frac{\Delta M_{s}}{\Delta M_{d}} = \frac{M_{s}}{M_{d}} \frac{f_{B_{s}}^{2} B_{B_{s}}}{f_{B_{d}}^{2} B_{B_{d}}} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}}$

- Bulk of errors (statistical + systematic) cancels. Only the chiral extrapolation is relevant.
- Need a further check of the consistency with the NLO ChPT.
 - Note: an additional coupling B*Bπ appears; may use D*Dπ as an input

HPQCD (2006) 2+I-flavor calculation A fit with SχPT

$|V_{td}/V_{ts}|$ on the unitarity triangle

Can draw a circle with the center at (1,0)

• Two circles: one from ΔM_d alone, the other from the ratio $\Delta M_s / \Delta M_d$.

Leptonic decay (experiment)

Info on the decay constant is now available from experiment.

$$B(B^{-} \rightarrow l^{-}\overline{\nu}) = \frac{G_{F}^{2}m_{B}m_{l}^{2}}{8\pi} \left(1 - \frac{m_{l}^{2}}{m_{B}^{2}}\right) f_{B}^{2} |V_{ub}|^{2} \tau_{B}$$
$$= \begin{cases} (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4} & \text{(Belle)}\\ (1.8^{+1.0+0.3}_{-0.9-0.3}) \times 10^{-4} & \text{(BaBar)} \end{cases}$$

- Difficult experiment: too small BR for ev and $\mu\nu$ due to lepton mass, more than one neutrino for $\tau\nu$.
- Error is still large, but the deduced value of f_B (=230(50) MeV) is roughly consistent with the lattice calculation.

Super-B expectation

Lum.	$\Delta B(B \rightarrow \tau v)_{exp}$	
414 fb -1	36%	
5 ab-1	10%	
50 ab-1	3%	

V. CKM phenomenology at loop level 3. Phenomenology of B meson decays

B physics is rich

- Not just the mixing mass difference and the semi-leptonic decays.
 - Many FCNCs
 - Many places to find CP violation
 - CKM angles can be measured
 - Some hint of new physics??
- Exp info is rapidly growing. Will continue to be so.
 - LHC-b will start soon.
 - Super-B factory ?

of pages of the B meson section in PDG

PDG	# pages		
PDG 1996	51 pages		
PDG 1998	58 pages		
PDG 2000	70 pages		
PDG 2002	85 pages		
PDG 2004	98 pages		
PDG 2006	123 pages		
with many reviews			

FCNCs

- b \rightarrow s γ and related
 - $B \rightarrow K^* \gamma$: the first observed penguin (CLEO 1993)
 - Carries info on |Vts|²
 - b→sl⁺l⁻, other effective operators involved
 - $B \rightarrow \rho \gamma$; |Vtd/Vts| can be extracted if the form factor ratio is known.
- Lattice calculation?
 - Two-body decay
 - Final states are energetic.

What can we do??

Sciolla at CKM2006

Moving... NRQCD

- Boosted system may be simulated on the lattice, by constructing an effective theory in the boosted frame
 - HQET with finite velocity; extension to I/M = Moving NRQCD (SH-Matsufuru, Sloan, Davies-Dougall-Foley-Lepage)

 $\mathcal{L}_v = \bar{h}_v(x)iu \cdot Dh_v(x)$

- Maybe useful for $B \rightarrow K^* \gamma$, for instance.
- Limitation will come from the Lorentz contraction (light quarks + gluons must propagate together)
- Challenge!
 - Discretization effect enhanced
 - Statistical noise
 - Renormalization

See a poster by Mienel at this school!

CP violation

Angles are measured

- ► $sin2\phi_{I}$: through $B \rightarrow J/\psi K_{S}$
 - the gold-plated mode (no contamination from hadron uncertainty)
- ▶ sin2 ϕ_2 : through B $\rightarrow \pi\pi$, $\rho\pi$, etc.
 - "penguin pollution" cured by the isospin analysis (Gronau-London, 1990; separate different amplitudes using isospin relations)

CP violation

- ϕ_3 : through B \rightarrow DK
 - CP violating angle from tree decays
 - Methods to eliminate unknown strong phase difference (Gronau-London-Wyler (1991), Atwood-Dunietz-Soni (1997), ...)

Lattice calculation?

In many cases, useful if the ratio of amplitudes is theoretically calculated.

Sign of new physics?

• Penguin dominated mode $b \rightarrow sq\overline{q}$

- Should give $sin2\phi_1$
- Significantly lower than $b \rightarrow c\overline{c}s$?

	$\sin(2\beta^{eff})$:	≡ sin(2¢	eff 1) HFAG EPS 2007 PRELIMINARY
b→ccs	World Average		0.68 ± 0.03
φK⁰	Average	⊢ ★→1	0.39 ± 0.17
η′ K⁰	Average	Ŀ★	0.61 ± 0.07
K _s K _s K	_s Average	⊢ ★	→ 0.58 ± 0.20
$\pi^0 \ K_S$	Average	⊢ ★ →	0.38 ± 0.19
$\rho^{0} K_{S}$	Average	*	→ 0.20 ± 0.57
ωK _S	Average	⊢ <u>★</u>	• 0.48 ± 0.24
$f_0 K^0$	Average	<u> </u>	0.29 ± 0.18
$\pi^0 \pi^0 K_S$	Aver age ★		-0.52 ± 0.41
K ⁺ K [−] K ⁰	Average		★ 0.73 ± 0.10

How does the hadronic uncertainty affect the prediction?

QCD based calculation

- Perturbation theory is most suitable for these energetic decay modes.
 - pQCD for exclusive processes (Brodsky-Lepage, 1980)
 - Application for B decays = QCD factorization (Beneke-Buchalla-Neubert-Sachrajda, 1999)
 - An effective theory = Soft Collinear Effective Theory (SCET) (Bauer-Flemming-Pirjol-Stewart, ... 2001~)
 - Convolution of
 - Hard part
 - Light-cone distribution amp
 - (+ form factors)

as in the pQCD calculation of DIS.

Light-cone distribution amplitude

Defined on the light-cone coordinate

$$\langle \pi^+(q) | \overline{u}_{\alpha}(z) \mathscr{P}(z,-z) d_{\beta}(-z) | 0 \rangle \Big|_{z^2=0} \equiv \frac{if_{\pi}}{4} (\mathscr{q}\gamma_5)_{\beta\alpha} \int_0^1 du \, e^{i(2u-1)q \cdot z} \phi_{\pi}(u,\mu)$$

Expansion in z gives moments

$$\langle \pi^+(q) | \overline{u}(0) \gamma_5 \gamma_{\{\rho} \overleftrightarrow{D}_{\mu\}} d(0) | 0 \rangle = f_\pi (iq_\mu) (iq_\rho) \int_0^1 du (2u-1) \phi_\pi(u,\mu)$$

$$\langle \pi^+(q) | \overline{u} \gamma_5 \gamma_{\{\rho} \overleftrightarrow{D}_{\mu} \overleftrightarrow{D}_{\nu\}} d | 0 \rangle = f_\pi (iq_\rho) (iq_\mu) (iq_\nu) \int_0^1 du (2u-1)^2 \phi_\pi(u,\mu)$$

Lattice calculation is then straight-forward. Almost like a calculation of pion decay constant, with a bit more complicated operator. (For a recent work, see a talk by C. Sachrajda at Lattice 2007; and a poster by Donnellan here!)

V. CKM phenomenology at loop level 4. Other applications

S Hashimoto (KEK) Aug 21, 2007

Muon g-2

- Anomalous magnetic moment of muon
 - Experiment is very precise. $\mu = 1.0011659208(6) (e\hbar/2m_{\mu})$
 - QED correction calculated to α^4 (Kinoshita et al.)
 - Electroweak contribution is small.
 - Hadronic contribution is the major uncertainty

Light-by-light scattering Vacuum polarization Light-by-light scattering Light-by-light scattering Diagrams taken from Melnikov's lecture at SLAC summer institute (2002)

Vacuum polarization

 Usually related to the e+ecross section using the optical theorem.

$$\begin{split} a^{\rm vp}_{\mu} &= \frac{1}{4\pi^3} \int\limits_{4m_{\pi}^2}^{\infty} {\rm d}s \ K(s) \ \sigma_{\rm h}(s) \\ K(s) &\sim \frac{m_{\mu}^2}{s} \ {\rm for} \ s \gg m_{\mu}^2. \end{split}$$

 Or, τ decay can also be used assuming isospin symmetry. Agreement is not satisfactory. (If we believe e+e-, the sign of NP is stronger.)

Vacuum polarization on the lattice

- Lattice can provide a direct calculation in the Euclidean region.
 - Data should contain all the equivalent physics as in the e+ecross section.
 - But, the kinematics is very different at heavier quark masses ($\rho \rightarrow \pi \pi$ threshold is not open, etc.)
 - So, the comparison is non-trivial.
 Chiral extrapolation can be tricky.

Interesting avenue: get the physics info in the Euclidean region and use the optical theorem. Aubin-Blum (2006)

Light-by-light

Much more challenging..., but

• deserves efforts, because there is no direct exp info available on $\gamma^*\gamma^* \rightarrow \gamma^*\gamma^*$.

Neutron electric dipole moment

- CP violation not related to flavor
 - Strong CP problem
 - New physics models may induce large NEDM.
 - Need non-perturbative calculation to relate θ (or imaginary quark mass) to d_n.
 - Possible to calculate on the lattice
 - e.g. on a constant electric field
 - Reweighting with $exp(i \theta Q)$

And more, ...

S Hashimoto (KEK) Aug 21, 2007

48

Final remarks

Lattice QCD is not a stand-alone business!

- Interesting physics opportunities often come from outside of QCD... CKM determination and more.
- There are many other quantities that are waiting for viable non-perturbative tools.
- Lattice calculation needs help from symmetries and effective theories:
 - Chiral symmetry, heavy quark symmetry
 - ▶ χPT, HQET, ...

They are essential to control systematic effects.

Thanks to ...

Organizers

- to Karl Jansen, Kostas Orginos, Steve Sharpe
- Especially, to Steve for the exciting night at...

And, of course, to the excellent audiences!

