Fundamental constants and electroweak phenomenology from the lattice
 Lecture IV: CKM phenomenology: at tree level

IV. CKM phenomenology: at tree level

I. Quark flavor physics

Weak interaction; from W-exchange to four-fermion interactions
Quark mixings: the CKM matrix, unitarity triangle
2. V_{us}, the Cabibbo angle

Flavor SU(3) breaking: one-loop ChPT and higher order corrections; Lattice calculation
3. V_{cb}

Inclusive and exclusive semi-leptonic decays
Heavy quark symmetry; lattice calculation
4. V_{ub}

Continuum extraction from inclusive decays
Lattice calculation for exclusive processes

IV. CKM Phenomenology: at tree level 1. Quark flavor physics

CKM Physics

Our goal:

- To understand this plot
- How lattice QCD may contribute to improve it.

Weak interaction

- Quarks may change their flavor through weak interaction.
- Active only for left-handed quarks and right-handed anti-quarks.

$$
\bar{q}^{f^{\prime}} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{f} W^{\mu}
$$

- Short distance $\left(\sim I / M_{W}\right)$ interaction.

$$
\frac{g^{2}}{q^{2}-M_{W}^{2}} \sim G_{F}
$$

$$
G_{F}=\frac{1}{4 \sqrt{2}} \frac{g^{2}}{M_{W}^{2}}=1.17 \times 10^{-5} \mathrm{GeV}^{-2}
$$

- Acts on (weak) isospin doublets.

$$
\binom{u}{d^{\prime}},\binom{c}{s^{\prime}},\binom{t}{b^{\prime}},\binom{v_{e}}{e},\binom{v_{\mu}}{\mu},\binom{v_{\tau}}{\tau}
$$

Changing flavors

- Quark flavor may change:
- Weak isospin is not identical with the real isospin.

$$
\binom{u}{d^{\prime}},\binom{c}{s^{\prime}},\binom{t}{b^{\prime}} \neq\binom{ u}{d},\binom{c}{s},\binom{t}{b}
$$

- Related by a 3×3 unitary matrix.

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=V_{\text {CKM }}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right), \quad V_{\text {CKM }}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- Called Cabibbo-Kobayashi-Maskawa matrix.
- Cabibbo (60s), Kobayashi-Maskawa (1973)

CKM matrix

- Degrees of freedom
- NxN complex matrix has $2 \mathrm{~N}^{2}$ real parameters.
- Unitarity constraints N (diagonal) + $\mathrm{N}(\mathrm{N}-\mathrm{I})$ (off-diagonal); thus N^{2} parameters remain.
, Quark phases are arbitrary 2N except for I (overall phase does not change $\mathrm{V}_{\mathrm{CKM}}$); thus $(\mathrm{N}-\mathrm{I})^{2}$ remain.
- $\mathrm{N}(\mathrm{N}-\mathrm{I}) / 2$ are mixing angles.
- ($\mathrm{N}-\mathrm{I}$)($\mathrm{N}-2$)/2 are CP violating phases.

$$
\begin{aligned}
& \mathrm{N}=3 \Rightarrow \\
& 3 \text { mixing angles } \\
& +1 \mathrm{CP} \text { phase }
\end{aligned}
$$

Mixing angles

- Strength of the weak interaction is different among processes

$$
\begin{aligned}
\mu^{-} \rightarrow v_{\mu}+e^{-}+\bar{v}_{e} & \Rightarrow G_{u v}^{2}=G_{F}^{2} \\
n \rightarrow p+e^{+}+v_{e} & \Rightarrow G_{u d}^{2}=0.95 \times G_{F}^{2} \\
K^{-} \rightarrow \pi^{0}+e^{-}+\bar{v}_{e} & \Rightarrow G_{u s}^{2}=0.05 \times G_{F}^{2}
\end{aligned}
$$

- $V_{u s}=\sin \theta_{c}$: the Cabibbo angle

$$
\begin{aligned}
u & =u \\
d^{\prime} & =d \cos \theta_{c}+s \sin \theta_{c}
\end{aligned}
$$

$\Rightarrow \sin \theta_{c} \sim 0.22$

- Other angles
- $2 \leftrightarrow 3$: Vcb
- I $\leftrightarrow 3$: Vub
- Much smaller in magnitude

CKM unitarity

- Unitary implies...
- Normalization

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- Orthogonality

$$
\begin{array}{ll}
V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0 & (b \rightarrow d) \\
V_{u s}^{*} V_{u d}+V_{c s}^{*} V_{c d}+V_{t s}^{*} V_{t d}=0 & (s \rightarrow d)
\end{array}
$$

Unitarity triangles

CKM hierarchy

- We don't know why, but the CKM matrix has a hierarchical structure.

$$
V_{\text {СКM }}=\left(\begin{array}{ccc}
0.97 & 0.23 & 0.004 \\
0.23 & 0.96 & 0.04 \\
0.007 & 0.04 & >0.8
\end{array}\right)
$$

, Wolfenstein parametrization: with $\lambda=0.225$,

$$
V_{\text {СКM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right) \begin{aligned}
& \text { written explicitly } \\
& \text { by four parameters: } \\
& \lambda, A, \rho, \eta
\end{aligned}
$$

Unitarity triangle

- Most interesting unitarity condition.

$$
V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
$$

- Normalized by a better known side $\mathrm{V}_{\mathrm{cb}}{ }^{*} \mathrm{~V}_{\mathrm{cd}}$.

- Apex is (ρ, η).
- Defines three angles.

$$
\phi_{1}(=\beta)=\arg \left(-\frac{V_{c c} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right), \quad \phi_{2}(=\alpha)=\arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right), \quad \phi_{3}(=\gamma)=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) .
$$

Unitarity triangle

Tree-level processes

CKM element	generations	quark level process	exclusive processes
V_{us}	$2 \rightarrow \mathrm{l}$	$\mathrm{s} \rightarrow \mathrm{ulv}$	$\mathrm{K} \rightarrow \pi \mathrm{lv}$, $\Lambda \rightarrow \mathrm{plv}$
V_{cb}	$3 \rightarrow 2$	$\mathrm{~b} \rightarrow \mathrm{clv}$	$\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{lv}$, $\Lambda_{\mathrm{b}} \rightarrow \Lambda_{\mathrm{c}} \mathrm{lv}$
V_{ub}	$3 \rightarrow \mathrm{l}$	$\mathrm{b} \rightarrow \mathrm{ulv}$	$\mathrm{B} \rightarrow \pi \mathrm{lv}, \rho l v$, $\omega l v$

IV. CKM Phenomenology: at tree level 2. $\mathrm{V}_{\text {us }}$, the Cabibbo angle

Cabibbo angle

- The best known mixing angle.
- Primary information from $\mathrm{K} \rightarrow \pi \mathrm{l} v$ decay, that contains a quark level process $s \rightarrow u l v$. (Hyperon decay could also be used.)
- Decay rate

$$
\Gamma_{K 13}=\frac{G_{F}^{2}}{192 \pi^{3}} S_{E W}\left(1+\delta_{K}\right)\left|V_{u S}\right|^{2} f_{+}^{2}(0) I_{K}
$$

- S_{EW} : short distance EW radiative correction.

- δ_{K} : long distance EM radiative correction (sub \%)
- $f_{+}(0)$:form factor $=$ QCD soft physics
- I_{K} : phase space integral = contains the info of the form factor shape.

Form factor

- Matrix element

$$
\left\langle\pi\left(p_{\pi}\right)\right| \bar{s} \gamma_{\mu} u\left|K\left(p_{K}\right)\right\rangle=f_{+}(t)\left(p_{K}+p_{\pi}\right)_{\mu}+f_{-}(t)\left(p_{K}-p_{\pi}\right)_{\mu}
$$

- Very similar to the pion form factor, but now contains $f_{\text {. }}$ because (initial \leftrightarrow final) exchange symmetry is lost.
- Instead of $f_{\text {_ }}$, one can also use the scalar form factor

$$
f_{0}(t)=f_{+}(t)+\frac{t}{m_{K}^{2}-m_{\pi}^{2}} f_{-}(t)
$$

which is the piece to survive the projection

$$
\left(p_{K}-p_{\pi}\right)^{\mu}\left\langle\pi\left(p_{\pi}\right)\right| \bar{s} \gamma_{\mu} u\left|K\left(p_{K}\right)\right\rangle=\left(m_{K}^{2}-m_{\pi}^{2}\right) f_{0}(t)
$$

Analytical constraints

- Before embarking on the hard (and costly) calculations on the lattice, analytically known facts should be used as much as possible.
- $f_{+}(\mathrm{t})$ reduces to the pion form factor $\mathrm{G}_{\pi}(\mathrm{t})$ in the limit of degenerate π and K .
- In this limit, $f_{+}(0)=1$.
- Away from this limit, there is a correction starting from second order $\left(\mathrm{no} \mathrm{O}\left(\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{u}}\right)=\right.$ Ademollo-Gatto theorem, 1964).
- Simple explanation: f_{+}is a symmetric piece under the exchange $\pi \leftrightarrow K$. So, $m_{s}-m_{u}$ cannot appear.
- Leutwyler-Roos (1984)

$$
f_{+}(0)=1+f_{2}+f_{4}=I-0.023-0.0|6(8)=0.96|(8)
$$

ChPT quark model

ChPT

- For small $q^{2}=t$ region, ChPT provides a reliable framework to calculate the form factor.
- At one-loop, non-analytic dependence on quark mass is predicted (chiral log). Gasser-Leutwyler (1985)
$f_{+}(0)=1+\frac{3}{2} H_{K \pi}(0)+\frac{3}{2} H_{K \eta}(0)$,
$H_{P Q}(0)=-\frac{1}{128 \pi^{2} f^{2}}\left(m_{P}^{2}+m_{Q}^{2}\right) h_{0}\left(\frac{m_{P}^{2}}{m_{Q}^{2}}\right)$,
$h_{0}(x)=1+\frac{2 x}{1-x^{2}} \ln x$

gives $f_{2}=-0.023$, now two-loop is known (Bijinens et al.)

What lattice can do

- Main target is f_{4} : only a few \% contribution, but that is the accuracy one wants to achieve.
- f_{2} should also be calculated. Good consistency check with ChPT.
- Many other predictions/crosschecks possible. Mainly the form factor shape,

$$
f_{ \pm}\left(q^{2}\right)=f_{ \pm}(0)\left[1+\lambda_{ \pm}\left(q^{2} / m_{\pi}^{2}\right)\right]
$$

f_{+}slope vs curvature (Gatti at Kaon 07)

- The slope parameter $\lambda_{ \pm}$can be compared with the experimental data.

Lattice calculation

- Very similar to the pion form factor calculation.
- But need to separate f_{+}from f_{0}. $\left\langle\pi\left(p_{\pi}\right)\right| \bar{s}_{\mu} u\left|K\left(p_{K}\right)\right\rangle=f_{+}(t)\left(p_{K}+p_{\pi}\right)_{\mu}+f_{-}(t)\left(p_{K}-p_{\pi}\right)_{\mu}$

- Possible by looking at different μ directions and solving linear equations, but...
- When both π and K are at rest, only f_{0} can be obtained.
- Statistical error is larger with finite momentum insertion.

Statistical noise

- Larger the momentum, larger the noise.

- Possible to understand as follows (Lepage, 1990)

$$
\begin{aligned}
& N^{2}(t) \sim\left\langle\left(\operatorname{Tr}\left[\Gamma S_{q}(x, 0) \Gamma^{\prime} S_{q}(0, x)\right]\right)^{2}\right\rangle-\left\langle\operatorname{Tr}\left[\Gamma S_{q}(x, 0) \Gamma^{\prime} S_{q}(0, x)\right]\right\rangle^{2} \\
&=\exp \left[-E_{\pi \pi}(\mathbf{p} \pm \mathbf{p}) t\right]-\exp \left[-2 E_{\pi}(\mathbf{p})\right] \\
& N(t) / S(t) \sim \exp \left[\left(E_{\pi}(\mathbf{p})-E_{\pi \pi}(\mathbf{0}) / 2\right) t\right] \\
& \sim \exp \left[\left(E_{\pi}(\mathbf{p})-E_{\pi}(\mathbf{0})\right) t\right], \quad E_{\pi}(\mathbf{p})=\sqrt{m_{\pi}^{2}+\mathbf{p}^{2}}
\end{aligned}
$$

A clever method

- Precision is the key for this quantity. Consider ratios in which the bulk of stat fluctuation cancel.

$$
\left.\right|^{\text {st }} \text { ratio }
$$

$$
\frac{C^{\pi V_{4} K}(t) C^{K V_{4} \pi}(t)}{C^{\pi V_{4} \pi}(t) C^{K V_{4} K}(t)} \rightarrow \frac{\langle\pi(0)| V_{4}|K(0)\rangle\langle K(0)| V_{4}|\pi(0)\rangle}{\langle\pi(0)| V_{4}|\pi(0)\rangle\langle K(0)| V_{4}|K(0)\rangle}=\frac{\left(m_{K}+m_{\pi}\right)^{2}}{4 m_{K} m_{\pi}} f_{0}\left(q_{\max }^{2}\right)
$$

JLQCD, 2005

- Precisely calculated. Renormalization factors cancel.
- Can be obtained only at $q_{\max }^{2}=\left(m_{K}-m_{\pi}\right)^{2}$
- Need to extrapolate back to $q^{2}=0$.

Clever ratios

- Extrapolate back to $q^{2}=0$
- $2^{\text {nd }}$ ratio with finite momentum.

$$
\frac{\frac{\langle\pi(p)| V_{4}|K(0)\rangle}{\langle\pi(0)| V_{4}|K(0)\rangle}}{\frac{\langle\pi(p)| P|0\rangle}{\langle\pi(0)| P|0\rangle}}=\frac{m_{K}+E_{\pi}}{m_{K}+m_{\pi}} \frac{f_{+}\left(q^{2}\right)\left[1+\xi\left(q^{2}\right) \frac{m_{K}-E_{\pi}}{m_{K}+E_{\pi}}\right]}{f_{+}\left(q_{\max }^{2}\left[1+\xi\left(q_{\max }^{2}\right) \frac{m_{K}-m_{\pi}}{m_{K}+m_{\pi}}\right]\right.} \quad \xi\left(q^{2}\right)=\frac{f_{-}\left(q^{2}\right)}{f_{+}\left(q^{2}\right)}
$$

- Subtract f_{-}to get f_{+}
- $3^{\text {rd }}$ ratio with different μ

$$
\frac{\frac{\langle\pi(p)| V_{k}|K(0)\rangle}{\langle\pi(p)| V_{4}|K(0)\rangle}}{\frac{\langle\pi(p)| V_{k}|\pi(0)\rangle}{\langle\pi(p)| V_{4}|\pi(0)\rangle}}=\frac{1-\xi\left(q^{2}\right)}{\frac{m_{K}+E_{K}}{m_{\pi}+E_{\pi}}+\xi\left(q^{2}\right) \frac{m_{K}-E_{K}}{m_{\pi}+E_{\pi}}}
$$

$f_{+}(0)$

- Combine the 3 ratios.
- q^{2} conversion is dominant.
- Analysis with one-loop χ PT plus an analytic term $\left(m_{K}{ }^{2}-m_{\pi}{ }^{2}\right)^{2}$.
$f^{+}(0)=1+\frac{3}{2} H_{K \pi}(0)+\frac{3}{2} H_{K \eta}(0)$,
$H_{P Q}(0)=-\frac{1}{128 \pi^{2} F^{2}}\left(m_{P}^{2}+m_{Q}^{2}\right) h_{0}\left(\frac{m_{P}^{2}}{m_{Q}^{2}}\right)$,
$h_{0}(x)=1+\frac{2 x}{1-x^{2}} \ln x$.
JLQCD (2005): $f_{+}(0)=0.954(9)$
- Note: there are several newer calculations...

Other recent results

- Recent results compiled by Juettner at Lattice 2007.
- Now, several groups are interested in this quantity.
- Results including $2+1$-flavors of dynamical quarks.
- Light enough sea quarks.
- Results compatible with the original estimate by Leutwyler-Roos (1984).

Points to be checked

- Presenting just a final number is not good enough. Form factor shapes (charge radii) contain lots of info.
, Chiral extrapolation: consistency with χ PT.
, Analyticity: consistency with the known K^{*} pole.
- Consistency with the experimental measurements for both f_{+} and ξ.

Ex). Charge radius

$$
\begin{aligned}
& f_{K \pi}^{+}(t)=f_{K \pi}^{+}(0)\left[1+\frac{1}{6}\left\langle r^{2}\right\rangle_{V}^{K \pi} t+\cdots\right], \\
& f_{K \pi}^{0}(t)=f_{K \pi}^{0}(0)\left[1+\frac{1}{6}\left\langle r^{2}\right\rangle_{S}^{K \pi} t+\cdots\right] .
\end{aligned}
$$

Not satisfactory, so far.

IV. CKM Phenomenology: at tree level
 $$
\text { 3. } \mathrm{V}_{\mathrm{cb}}
$$

Heavy-to-heavy

- Second well-known parameter:A
- Inclusive:

$$
V_{\text {CKM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- do not specify the final state (except that it contains a charm).
- Heavy decays can be well controlled by perturbation theory.

- Exclusive:
> treats a definite final state (e.g. D, or D^{*}).
- Heavy quark symmetry constrains the form factors.

Inclusive decay

- Perturbation theory
- Valid when energy scale is large. In this case, provided by the mass difference $m_{b}-m_{c} \sim 3 \mathrm{GeV}$.
- Valid when smeared over final state. Thus, consider inclusive. In this case, the sum is over $D, D^{*}, D \pi, D^{*} \pi$, etc.
- Decay rate
- At the quark level,

$$
\Gamma_{s l}(b \rightarrow c)=\frac{G_{F}^{2} m_{b}^{5}(\mu)}{192 \pi^{3}}\left|V_{c b}\right|^{2}\left(1+A_{e w}\right) A^{\text {pert }}\left(m_{c}^{2} / m_{b}^{2}, \mu\right)
$$

- Contains m_{b}^{5} : precise knowledge of m_{b} is crucial, or to be fitted with exp data.

Heavy quark expansion

- Initial state is a B meson, not $a b$ quark.
- Correction can be calculated by the

Operator Product Expansion (OPE); in this case, called the Heavy Quark Expansion.

$$
\begin{aligned}
\Gamma_{s l}(b & \rightarrow c)=\frac{G_{F}^{2} m_{b}^{5}(\mu)}{192 \pi^{3}}\left|V_{c b}\right|^{2}\left(1+A_{e w}\right) A^{\text {pert }}(r, \mu) \\
& \times\left[z_{0}(r)+z_{2}(r)\left(\frac{\mu_{\pi}^{2}}{m_{b}^{2}}, \frac{\mu_{G}^{2}}{m_{b}^{2}}\right)+z_{3}(r)\left(\frac{\rho_{D}^{3}}{m_{b}^{3}}, \frac{\rho_{L S}^{3}}{m_{b}^{3}}\right)+\ldots\right]
\end{aligned}
$$

- B meson matrix elements represent the bound state effects.

$$
\begin{aligned}
& \mu_{\pi}^{2}=\langle B| \bar{b}\left(i D_{\perp}\right)^{2} b|B\rangle, \\
& \mu_{G}^{2}=\langle B| \bar{b}\left(i D_{\perp}^{\mu}\right)\left(i D_{\perp}^{\nu}\right) \sigma_{\mu v} b|B\rangle,
\end{aligned}
$$

- Can be fitted with exp data.

V_{cb} inclusive

- Several moments
- Theoretical calculation also possible for differential decay rate. To avoid duality errors, one must use moments, instead.
- Several moments $\left\langle M_{x}{ }^{n}\right\rangle$ and $\left\langle E_{1}{ }^{n}\right\rangle$ compared with exp data.
- May also combine with the photon energy spectrum in $B \rightarrow X_{s} \gamma$, which is governed by the same matrix elements.

M_{X} distribution (Belle, 2006)

V_{cb} inclusive

- $\left|V_{c b}\right|$ obtained to I-2\%.
- $\left|V_{c b}\right|=0.0417$ (7) (PDG 2006)
- Other parameters, such as $m_{b}, m_{c}, \mu_{\pi}^{2}$, etc., can be obtained at the same time.
Very strong method!
- Duality issue?
b $B \rightarrow X_{c} l v$ is dominated by D and $D^{*}(80 \%)$.

BaBar 2006

Exclusive decays

- Use the exclusive decays $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mid v$ to determine $\left|V_{c b}\right|$.
- Analogous to the $\left|V_{u s}\right|$ determination through $\mathrm{K} \rightarrow \pi \mathrm{I} v$.

- Need a precise calculation of the form factors $=$ non-perturbative physics.
- Very different systematic effect from the inclusive decays, thus a good cross-check.
- Heavy quark symmetry plays an important role, like the chiral symmetry (or flavor $\mathrm{SU}(3)$) in $\mathrm{K} \rightarrow \pi \mathrm{IV}$.

Heavy quark symmetry

- Heavy quarks look similar...

- In the heavy-light meson (or heavy-lightlight baryon), the heavy quark hardly moves, looks as if a static color source.
- Therefore, no difference between b and c in the heavy quark limit $\left(\mathrm{m}_{\mathrm{Q}} \rightarrow \infty\right)$.
- Also, there is no difference between spin-up and spin-down heavy quarks, because the spin-(chromo-)magnetic interaction is at $\mathrm{O}\left(\mathrm{I} / \mathrm{m}_{\mathrm{Q}}\right)$.

$$
H_{s m}=\psi^{\dagger} \frac{\sigma \cdot \mathbf{B}}{2 m_{Q}} \psi
$$

Heavy quark symmetry

- Symmetry relations among form factors
- Interchange of $b \leftrightarrow c$
- Interchange of $\uparrow \leftrightarrow \downarrow$
ex) Isgur-Wise function
- $\mathrm{B} \rightarrow \mathrm{D}$ and $\mathrm{B} \rightarrow \mathrm{D}^{*}$ are governed by the same form factor $\xi(\mathrm{w})$, called the Isgur-Wise function.
$\left\langle D\left(v^{\prime}\right)\right| \bar{C}_{v^{\prime}} \gamma_{\mu} b_{v}|\bar{B}(v)\rangle=\xi(w)\left(v_{\mu}+v_{\mu}^{\prime}\right)$,
$B \rightarrow D^{*}, B a B a r, 2004$

B
$\left\langle D^{*}\left(v^{\prime}, \varepsilon\right)\right| \bar{C}_{v^{\prime}} \gamma_{\mu} \gamma_{5} b_{v}|\bar{B}(v)\rangle=-i \xi(w)\left[(1+w) \varepsilon_{\mu}^{*}-\left(\varepsilon^{*} \cdot v\right) v_{\mu}^{\prime}\right]$

- A function of $w=v . v$, see below.

Scale separation

- Write the momentum of heavy quark as

$$
p=m_{Q} v+k
$$

> v : four-velocity of the heavy quark.

- k : residual momentum
- Heavy quark mass limit:
- propagator

$$
i \frac{p+m_{Q}}{p^{2}-m_{Q}^{2}+i \varepsilon}=i \frac{m_{Q} y+m_{Q}+k}{2 m_{Q} v \cdot k+k^{2}+i \varepsilon} \rightarrow i \frac{1+y}{2} \frac{1}{v \cdot k+i \varepsilon}
$$

- Lagrangian

$$
L_{Q}=\bar{Q}_{v}(i v \cdot D) Q_{v} ; \quad Q(x)=e^{-i m_{Q} \cdot x} Q_{v}(x)
$$

- States are distinguished by the heavy quark velocity.

Heavy meson states

- Usual normalization

$$
\left\langle H\left(p^{\prime}\right) \mid H(p)\right\rangle=2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \quad\left\langle H\left(v^{\prime}, k^{\prime}\right) \mid H(v, k)\right\rangle=2 v^{0} \delta_{v, v^{\prime}}(2 \pi)^{3} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

HQET normalization

$$
|H(p)\rangle=\sqrt{m_{H}}\left[|H(v)\rangle+O\left(1 / m_{Q}\right)\right]
$$

- Decay constant

$$
\langle 0| \bar{q} \gamma_{\mu} \gamma_{5} Q(0)|P(p)\rangle=i f_{P} p_{\mu} \quad\langle 0| \bar{q} \gamma_{\mu} \gamma_{5} Q_{v}|P(v)\rangle=i\left(f_{P} \sqrt{m_{P}}\right) v_{\mu}
$$

> Heavy quark scaling

$$
f_{P} \sim \frac{1}{\sqrt{m_{P}}}\left[1+O\left(1 / m_{P}\right)\right]
$$

- Form factors: B \rightarrow Dlv as an example

$$
\left\langle D\left(p^{\prime}\right)\right| V_{\mu}|B(p)\rangle=f_{+}\left(q^{2}\right)\left(p+p^{\prime}\right)_{\mu}+f_{-}\left(q^{2}\right)\left(p-p^{\prime}\right)_{\mu}=\sqrt{m_{B} m_{D}}\left[h_{+}(w)\left(v+v^{\prime}\right)_{\mu}+h_{-}(w)\left(v-v^{\prime}\right)_{\mu}\right]
$$

given by a function of $w=v . v$ '

Isgur-Wise function

- Form factors:

$$
\begin{aligned}
& \left\langle D\left(v^{\prime}\right)\right| V^{\mu}|B(v)\rangle=h_{+}(w)\left(v+v^{\prime}\right)^{\mu}+h_{-}(w)\left(v-v^{\prime}\right)^{\mu}, \\
& \left\langle D^{*}\left(v^{\prime}, \varepsilon\right)\right| V^{\mu}|B(v)\rangle=h_{v}(w) \varepsilon^{\mu v \alpha \beta} \varepsilon_{v}^{*} v_{\alpha}^{\prime} v_{\beta} \\
& \left\langle D^{*}\left(v^{\prime}, \varepsilon\right)\right| A^{\mu}|B(v)\rangle=-i h_{A 1}(w)(1+w) \varepsilon^{* \mu}+i h_{A 2}(w)\left(\varepsilon^{*} \cdot v^{\prime}\right) v^{\mu}+i h_{A 3}(w)\left(\varepsilon^{*} \cdot v\right) v^{\prime \mu}
\end{aligned}
$$

- Heavy quark limit: $\mathrm{m}_{\mathrm{b}}, \mathrm{m}_{\mathrm{c}} \rightarrow \infty$

$$
\begin{aligned}
& h_{+}(w)=h_{V}(w)=h_{A 1}(w)=h_{A 3}(w)=\xi(w) \quad \text { Isgur-Wise function } \\
& h_{-}(w)=h_{A 2}(w)=0
\end{aligned}
$$

- Zero recoil limit
- $\xi(w=1)=$ l because of the vector current conservation (number of heavy quark).
- A strong constraint, like the $f_{+}(0)=\mid$ of pion/kaon form factor.

$1 / m_{\mathrm{Q}}$ corrections

- Luke's theorem

b The leading correction of $\mathrm{O}\left(\mathrm{I} / \mathrm{m}_{\mathrm{Q}}\right)$ vanishes in the zero recoil limit $\mathrm{w}=\mathrm{I}$.

$$
\begin{aligned}
& h_{+}(1)=\eta_{V}\left[1-l_{P}\left(\frac{1}{2 m_{c}}-\frac{1}{2 m_{b}}\right)^{2}+O\left(1 / m_{Q}^{3}\right)\right] \\
& h_{A 1}(1)=\eta_{A}\left[1-\frac{l_{V}}{\left(2 m_{c}\right)^{2}}+\frac{2 l_{A}}{\left(2 m_{c}\right)\left(2 m_{b}\right)}-\frac{l_{P}}{\left(2 m_{b}\right)^{2}}+O\left(1 / m_{Q}^{3}\right)\right]
\end{aligned}
$$

- An analog of the Ademollo-Gatto theorem; comes from the symmetry $\langle\mathrm{D}| \leftrightarrow|\mathrm{B}\rangle$.
- Extraction of $\left|V_{c b}\right|$ is most precise in the zero recoil limit.

Lattice calculation: IW function shape

- Lattice calculation is possible with a similar method as used for $\mathrm{K} \rightarrow \pi$ form factor
- Except that the heavy quark is heavy: treated by HQET on the lattice (for example).
- Putting velocity is non-trivial.
- Because of a S / N issue, NRQCD is better (or the conventional lattice formulation).
- Sometimes called Moving NRQCD.

For detailed discussion of heavy quark formulations, see Kronfeld's lecture.

Lattice calculation: zero recoil limit

- In the zero recoil limit, lattice can calculate the $\mathrm{O}\left(\mathrm{I} / \mathrm{m}_{\mathrm{Q}}{ }^{2}\right)$ (or higher) deviation from the heavy quark limit.
- Clever ratios (again!)

$$
\begin{aligned}
& R_{+}=\frac{\langle D| \bar{c} \gamma_{4} b|\bar{B}\rangle\langle\bar{B}| \bar{b} \gamma_{4}|D\rangle}{\langle D| \bar{c} \gamma_{4} c|D\rangle\langle\bar{B}| \bar{b} \gamma_{4}|\bar{B}\rangle}=\left|h_{+}(1)\right|^{2}=\eta_{V}\left[1-l_{P}\left(\frac{1}{2 m_{c}}-\frac{1}{2 m_{b}}\right)^{2}+O\left(1 / m_{Q}^{2}\right)\right] \\
& R_{1}=\frac{\left\langle D^{*}\right| \bar{c} \gamma_{4}\left|\bar{B}^{*}\right\rangle\left\langle\bar{B}^{*}\right| \bar{b} \gamma_{4} c\left|D^{*}\right\rangle}{\left.\left\langle D^{*}\right|\left|\bar{c} \gamma_{4} c\right| D^{*}\right\rangle\left\langle\bar{B}^{*} \mid \bar{b} \gamma_{4} b \bar{B}^{*}\right\rangle}=\left|h_{1}(1)\right|^{2}=\eta_{v}\left[1-l_{v}\left(\frac{1}{2 m_{c}}-\frac{1}{2 m_{b}}\right)^{2}+O\left(1 / m_{Q}^{2}\right)\right] \\
& R_{A 1}=\frac{\left\langle D^{*}\right| \bar{c} \gamma_{j} \gamma_{5} b|\bar{B}\rangle\left\langle\bar{B}^{*}\right| \bar{b} \gamma_{j} \gamma_{5} c|D\rangle}{\left\langle D^{*}\right| \bar{c} \gamma_{j} \gamma_{5} c|D\rangle\left\langle\bar{B}^{*}\right| \bar{b} \gamma_{j} \gamma_{5} b|\bar{B}\rangle}=\left|\hat{h}_{A 1}(1)\right|^{2}=\eta_{A}\left[1-l_{A}\left(\frac{1}{2 m_{c}}-\frac{1}{2 m_{b}}\right)^{2}+O\left(1 / m_{Q}^{2}\right)\right]
\end{aligned}
$$

Fermilab group (SH et al.), 2001

- These determine the expansion coefficients l_{P}, l_{V}, l_{A} to reconstruct $h_{A 1}(I)$.

$$
h_{A 1}(1)=\eta_{A}\left[1-\frac{l_{V}}{\left(2 m_{c}\right)^{2}}+\frac{2 l_{A}}{\left(2 m_{c}\right)\left(2 m_{b}\right)}-\frac{l_{P}}{\left(2 m_{b}\right)^{2}}+O\left(1 / m_{Q}^{3}\right)\right]
$$

More recent work

Laiho et al. (at Lattice 2007)

- Including dynamical fermions
- Asqtad improved staggered (2+1 flavors)
- With a single ratio $\frac{\left\langle D^{*}\right| \bar{c} \gamma_{j} \gamma_{5} b|\bar{B}\rangle\langle\bar{B}| \bar{b} \gamma_{j} \gamma_{5} c\left|D^{*}\right\rangle}{\left\langle D^{*}\right| \bar{c} \gamma_{4} c\left|D^{*}\right\rangle\langle\bar{B}| \bar{b} \gamma_{4} b|\bar{B}\rangle}=\left|h_{A_{1}}(1)\right|^{2}$
- Not equal to one in the heavy quark limit, but the error is still controllable.
> Three lattice spacings
- Result

$$
h_{A I}(I)=0.924(I I)(I 9) .
$$

- Error is competitive with inclusive.

"Exclusive" summary

- Experiment

> $F(1)\left|V_{c b}\right|$ is now measured to 2%.

- Slope of the form factor has not been well measured, but now converging.
- Theory
- Most recent lattice calculation has got 2\%.
- Theoretical calculation of $F(1)$ can become better than I\%?
- Combined
- $\left|V_{c b}\right|=0.0402(7)(8)$, compared to 0.04I7(7) from inclusive.

IV. CKM Phenomenology: at tree level
 $$
\text { 4. } \mathrm{V}_{\mathrm{ub}}
$$

Heavy-to-light

- Less known parameter: $\left(\rho^{2}+\eta^{2}\right)^{1 / 2}$
- Inclusive:

$$
V_{\text {CKM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- do not specify the final state (except that it contains a charm).
- Heavy decays can be well controlled by perturbation theory.

- Exclusive:
> treats a definite final state (e.g. π, $\rho, \omega, \ldots)$.
> Heavy quark symmetry does not help a lot...

Inclusive $\mathrm{b} \rightarrow \mathrm{u}$

- Perturbation theory

- Valid when energy scale is large. In this case, provided by the mass difference $\mathrm{m}_{\mathrm{b}} \sim 5 \mathrm{GeV}$; better than $\mathrm{b} \rightarrow \mathrm{c}$
- Valid when smeared over final state. In this case, the sum is over many final states, thus much safer.
- Experimentally harder
- Must distinguish $b \rightarrow u$ from $b \rightarrow c$ background, which is $100 \times$ larger.
- Needs cut to enhance the signal.

$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} l v$ kinematics

- 3-body decay characterized by
- E_{1} : charged lepton energy
- q^{2} : Iv invariant mass
> m_{x} :hadron invariant mass
- Several cuts to enhance $\mathrm{b} \rightarrow \mathrm{u}$
- E_{1} cut
- m_{X} cut
- q^{2} cut
b Light-cone parameter $\mathrm{P}_{+}=\mathrm{E}_{\mathrm{x}}-\left|\mathrm{P}_{\mathrm{x}}\right|$
P.

Shape function

- Non-perturbative physics enters as the shape function
- An analog of the B meson matrix element in HQE
- In this case, the distribution in the lightcone variable

$$
f\left(k_{+}\right)=\frac{1}{2 m_{B}}\langle\bar{B}| \bar{b}_{v} \delta\left(\text { in } \cdot D+k_{+}\right) b_{v}|\bar{B}\rangle
$$

also observable from $B \rightarrow X_{s} \gamma$.

- Possible to calculate on the lattice??

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ inclusive

Now, $\left|\mathrm{V}_{\mathrm{ub}}\right|$ is reasonably precise ~ 8\%.

- |Vub| $=0.0440(20)(27)$ (PDG 2006)
- Sets the challenge for lattice QCD.

Exclusive decays

- Use the exclusive decays $\mathrm{B} \rightarrow \pi \mid v$, $\rho \mathrm{lv}$, $\omega \mid v$, etc. to determine $\left|V_{u b}\right|$.
- Need a precise calculation of the form
 factors $=$ non-perturbative physics.
- Very different systematic effect from the inclusive decays, thus a good crosscheck.
- Heavy quark symmetry does not help a lot. Only the heavy quark scaling is useful.

Kinematics

- $\mathrm{B} \rightarrow \pi \mathrm{l}$
- $q^{2}: I v$ invariant mass; $0 \leq q^{2} \leq\left(m_{B}-m_{\pi}\right)^{2}$
> small $q^{2} \Leftrightarrow$ large recoil of π
small q^{2}
- large $\mathrm{q}^{2} \Leftrightarrow$ small recoil of π
- Differential decay rate

$$
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left|p_{\pi}\right|^{3}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

- Depends only on $f_{+} ; f_{0}$ term is suppressed by small m_{1}.
- Lattice calculation
- Possible only when both B and π have small spatial momenta.
\Rightarrow large q^{2} region

Lattice calculation

- Calculation of 3pt function
- Use the sequential source method with momentum insertion.
- The clever ratios not so much useful:
 numerator and denominator are not similar.
- Most difficult among other semi-leptonic decays. Several checks to be done
b Operator matching
, Heavy quark scaling
- Chiral extrapolation
- Dispersion relation

Operator matching

- Lattice operators have to be matched to the continuum operator.

$$
V_{\mu}^{(Q q) \text { cont }}=Z^{(Q q)} V_{\mu}^{(Q q) \text { latt }}
$$

- Usually done using perturbation theory at one-loop. Neglected higher orders could be sizable.
- For light-light currents the nonperturbative matching is available in many cases.
- In the double ratios $(\mathrm{K} \rightarrow \pi, \mathrm{B} \rightarrow \mathrm{D})$ the matching factors largely cancel.

$$
\frac{Z^{\left(q q^{\prime}\right)} Z^{\left(q^{\prime} q\right)}}{Z^{(q q)} Z^{\left(q^{\prime} q^{\prime}\right.}}
$$

- Cancellation is less precise for heavy-to-light, thus larger systematic error.

Heavy quark scaling

- HQET normalization

$$
\left\langle\pi\left(k_{\pi}\right)\right| \bar{q} \gamma^{\mu} b|B(v)\rangle=2\left[f_{1}\left(v \cdot k_{\pi}\right) v^{\mu}+f_{2}\left(v \cdot k_{\pi}\right) \frac{k_{\pi}^{\mu}}{v \cdot k_{\pi}}\right]
$$

JLQCD (200I)

- Related to the conventional form factors

$$
\begin{aligned}
f^{+}\left(q^{2}\right)= & \sqrt{m_{B}}\left\{\frac{f_{2}\left(v \cdot k_{\pi}\right)}{v \cdot k_{\pi}}+\frac{f_{1}\left(v \cdot k_{\pi}\right)}{m_{B}}\right\}, \\
f^{0}\left(q^{2}\right)= & \frac{2}{\sqrt{m_{B}}} \frac{m_{B}^{2}}{m_{B}^{2}-m_{\pi}^{2}}\left\{\left[f_{1}\left(v \cdot k_{\pi}\right)+f_{2}\left(v \cdot k_{\pi}\right)\right]\right. \\
& \left.-\frac{v \cdot k_{\pi}}{m_{B}}\left[f_{1}\left(v \cdot k_{\pi}\right)+\frac{m_{\pi}^{2}}{\left(v \cdot k_{\pi}\right)^{2}} f_{2}\left(v \cdot k_{\pi}\right)\right]\right\}
\end{aligned}
$$

- HQET scaling is manifest

$$
\begin{aligned}
f^{+}\left(q^{2}\right) & \sim \sqrt{m_{B}}, \\
f^{0}\left(q^{2}\right) & \sim \frac{1}{\sqrt{m_{B}}},
\end{aligned}
$$

Possible to check the consistency among different heavy quark formulations

Chiral extrapolation

- Soft pion theorem

JLQCD (2001)

$$
f_{0}\left(q_{\max }^{2}\right)=\frac{f_{B}}{f_{\pi}}
$$

- Valid in the chiral limit.
b Chiral extrapolation is not trivial because q^{2} changes as m_{q} changes.

- ChPT predicts the chiral log
- Calculation exists (Becirevic-Prelovsek-Zupan, 2002), not fully tested so far.

Dispersion relation

- Near $q^{2}{ }_{\text {max }}$ the B^{*} pole dominates the dispersion relation.

$$
F\left(q^{2}\right)=\frac{1}{2 \pi i} \rho d t \frac{F(t)}{t-q^{2}}=\frac{1}{\pi} \int_{t_{0}}^{\infty} d t \frac{\operatorname{Im} F(t)}{t-q^{2}}
$$

- Using the $\mathrm{B}^{*} \mathrm{~B} \pi$ coupling,

$$
\lim _{q^{2} \rightarrow m_{B}^{2}} f^{+}\left(q^{2}\right)=\frac{f_{B^{*}}}{f_{\pi}} \frac{g}{1-q^{2} / m_{B^{*}}^{2}}
$$

Or
$\lim _{v \cdot k_{\pi} \rightarrow 0} f_{2}\left(v \cdot k_{\pi}\right)=g \frac{f_{B^{*}} \sqrt{m_{B^{*}}}}{2 f_{\pi}} \frac{v \cdot k_{\pi}}{v \cdot k_{\pi}+\Delta_{B}}$
which implies constant f_{2}.

Most recent results

- Lattice data available only in the large q^{2} region; take exp data only in that region to extract $\left|\mathrm{V}_{\mathrm{ub}}\right|$.
- $\left|\mathrm{V}_{\mathrm{ub}}\right|=0.00384(+67-49)$, to be compared with 0.00440 (20)(27) from inclusive.
- Error is $\times(2-3)$ larger, mostly theoretical.

HPQCD 2006

Semi-leptonic decays...

- Complicated!
- But good, because there are many different ways to check lattice calculations.
- All come from symmetries (chiral, heavy quark) and analyticity.
- Lattice calculation must pass these stringent theoretical tests in order to make reliable predictions.
- Heavy-to-light is the greatest challenge. Need $<5 \%$ accuracy to be competitive.

