Fundamental constants and electroweak phenomenology from the lattice

Lecture I: strong coupling constant

Shoji Hashimoto (KEK) @ INT summer school 2007, Seattle, August 2007.

QCD, the theory of strong interaction

We know that QCD is the theory of strong interaction. Any motivation for further study...?

As a nuclear theorist:

- want to know the properties of hadrons and nuclei, hopefully from the first principles
- As a particle theorist:
- want to solve the (non-SUSY) Yang-Mills theory, anyway
- want to test QCD including its non-perturbative aspects
- want to analyze the exp data at LHC; need for the study of more interesting physics, like Higgs and SUSY models
- want to test the Standard Model more precisely through low energy measurements; hadronic uncertainty is the obstacle

How is QCD tested?

Examples

▶ 3-jets event rate in the e⁺e⁻ collision

$$R_3 = \frac{\sigma(e^+e^- \to 3 \text{- jets})}{\sigma(e^+e^- \to \text{hadrons})} = C_1 \alpha_s(\mu^2) + \dots$$

 \blacktriangleright Scale dependence of α_{s} clearly seen

Including 4-jets

- Sensitivity to the 3-gluon vertex
- Can test the group structure

$$C_A = N = 3, C_F = \frac{N^2 - 1}{2N} = \frac{4}{3}$$

Plots from Bethke, Prog Part Nucl Phys 58 (2007) 351.

And concorrect

S Hashimoto (KEK) Aug 15, 2007

More tests of QCD

Deep inelastic scattering

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1 + (1+y)^2)F_1 + \frac{1-y}{x}(F_2 - 2xF_1) \right]$$

 Structure function (or parton density)
 F_i; their Q² dependence is from the QCD loop effects.

At the perturbative level, QCD describes various exp to a good precision.

Non-perturbative test?

Look at the quantities which can be determined from different inputs: perturbative and non-perturbative

Strong coupling constant

- High energy scattering + perturbation theory
- Low energy spectrum + lattice

Heavy quark masses

- Quarkonium spectral sum rule (mostly perturbative)
- Low-lying spectrum + lattice
- From heavy-light systems + lattice

Hadronic uncertainty

Not just testing QCD:

- Flavor physics
 - Extract fundamental constants (CKM matrix elements) from physical processes; Search for new physics effects: Many examples will appear in this lecture
- Processes involving quarks are always contaminated by hadronic uncertainty (= non-perturbative QCD effects). What to do?
 - Look for processes which are perturbative
 - Look for processes for which some symmetry helps to eliminate the uncertainty
 - Calculate them on the lattice

Contents

S Hashimoto (KEK) Aug 15, 2007

I. Strong coupling constant

I. How to define

- Running coupling
- Scheme dependence; MSbar, one's favorite choice
- Experimental measurements
- 2. Lattice calculation: scale setting
 - Basic steps: scale setting + scheme conversion
- 3. Lattice calculation: coupling conversion
 - Lattice perturbation theory
 - Scheme conversion through heavy quark potential
- 4. Recent lattice calculations
 - HPQCD, ...

II. Quark masses

- I. How to define
 - Pole mass; running mass
- 2. Heavy quark masses: continuum extraction
 - Quarkonium sum rules
 - B meson semileptonic decays
- 3. Lattice calculation: basic strategy
 - Input choices for heavy and light quarks
- 4. Lattice calculation: case study for heavy quark masses
 - Perturbative and non-perturbative matchings
 - Bottom and charm quarks

III. Chiral dynamics and light quark masses

1. Chiral symmetry breaking and quark masses

- GMOR relation
- Chiral perturbation theory
- Quark mass ratios
- 2. Lattice calculation of light quark masses
 - Basic strategy
 - Perturbative and non-perturbative matchings
- 3. Pion loop effects
 - Chiral log effects on chiral extrapolations
 - Quark masses and pion/kaon decay constants
 - Pion form factor and general strategy

IV. CKM phenomenology: at tree level

- I. Quark flavor physics
 - Flavor changing interactions; from W-exchange to four-fermi interactions; FCNC
 - Quark mixings: the CKM matrix, unitarity triangle
- 2. Vus, the Cabibbo angle
 - Flavor SU(3) breaking: one-loop ChPT and higher order corrections; Lattice calculation
- 3. Vcb
 - Inclusive and exclusive semi-leptonic decays
 - Heavy quark symmetry; lattice calculation
- 4. Vub
 - Continuum extraction from inclusive decays
 - Lattice calculation for exclusive processes

V. CKM phenomenology: at loop level

I. Kaon mixing

- Indirect and direct CP violations
- Lattice calculation of B_K
- ϵ'/ϵ , the grand challenge for the lattice

2. B meson mixings

- Lattice calculation, extraction of Vtd, Vts
- 3. Phenomenology of B meson decays
 - Many interesting decay modes: a few examples
 - Further opportunities for lattice QCD
- 4. Other applications
 - Muon g-2, neutron electric dipole moment, ...

I. Strong coupling constant 1. How to define

S Hashimoto (KEK) Aug 15, 2007

Defining the coupling constant

In QED:

Measure the force between two test charges, then α is easily extracted.

$$F(r) = \frac{\alpha}{r^2}, \quad \alpha = \frac{e^2}{4\pi}$$

- Note: running coupling
 - QED coupling constant depends on the scale, α

$$\alpha_{\rm eff}(q^2) = \frac{\alpha}{1 - \frac{\alpha}{3\pi} \left\{ \log\left(\frac{-q^2}{m^2}\right) - \frac{5}{3} \right\}}$$

but the infrared limit is regularized by the electron mass.

$$V(r) = -\frac{\alpha}{r} \left(1 + \frac{\alpha}{4\sqrt{\pi}} \frac{e^{-2mr}}{(mr)^{3/2}} + \dots \right)$$

In QCD, what to do?

- Quarks are confined; no way to put test charges.
 - Well, you may consider an Gedankenexperiment, but not possible in practice.
- Consider, instead, an experiment like e⁺e⁻→hadrons

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = \frac{\sum_q \sigma(e^+e^- \to q\overline{q})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$
$$= 3\sum_q Q_q^2 \left\{ 1 + \frac{\alpha_s}{\pi} + O(\alpha_s^2) \right\}$$

 $\alpha_{\rm s}$ is obtained by solving this eq.

Ultraviolet divergences

$$K_{QCD} = 1 + \frac{\alpha_s(\mu)}{\pi} + C_2 \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 + C_3 \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 + \dots$$

- Beyond the leading order, the UV divergence must be renormalized.
 - A renormalization scheme must be specified. A popular choice: the modified minimal subtraction MSbar
 - With the dimensional regularization (ϵ =4-D), subtract

$$\frac{2}{\varepsilon} - \gamma_E + \ln(4\pi)$$

- Once you decide to use it, you must stick to using it!
- In other words the α_s thus extracted must be understood in this particular choice of the renormalization scheme.

Any physical quantity should not depend on the choice of the renormalization scheme.

$$K_{QCD} = 1 + \frac{\alpha_s^{(I)}(\mu)}{\pi} + C^{(I)} \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_s^{(I)}(\mu)}{\pi}\right)^2 + \dots$$
$$= 1 + \frac{\alpha_s^{(II)}(\mu)}{\pi} + C^{(II)} \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_s^{(II)}(\mu)}{\pi}\right)^2 + \dots$$

One can read off the relation between the two schemes.

$$\alpha_{s}^{(II)}(\mu) = \alpha_{s}^{(I)}(\mu) \left\{ 1 + \frac{C^{(I)} - C^{(II)}}{\pi} \alpha_{s} + \dots \right\}$$

This is related to the ratio of the Λ parameters

$$\frac{\Lambda^{(I)}}{\Lambda^{(II)}} = \exp\left(-\frac{2\pi}{\beta_0}\left(\frac{1}{\alpha_s^{(I)}(\mu)} - \frac{1}{\alpha_s^{(II)}(\mu)}\right)\right) = \exp\left(-\frac{2(C^{(I)} - C^{(II)})}{\beta_0}\right)$$

Renormalization scale

$$K_{QCD} = 1 + \frac{\alpha_s(\mu)}{\pi} + C_2 \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 + C_3 \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 + \dots$$

Due to the renormalization...

 A renormalization scale µ is involved. A good choice is µ²=s to minimize the perturbative coefficients due to possible large logs

$$\beta_0 \ln \frac{s}{\mu^2}$$

which can be identified as a running coupling effect.

 If we change μ consistently (in C_i and α_s), then the physics result must be unchanged up to neglected higher order corrections.

Running coupling

In other words, the *running* coupling constant is introduced such that the observable is independent of μ.

$$\frac{dK_{QCD}}{d\mu} = \frac{d}{d\mu} \left[1 + \frac{\alpha_s(\mu)}{\pi} + C_2 \left(\frac{s}{\mu^2} \right) \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 + C_3 \left(\frac{s}{\mu^2} \right) \left(\frac{\alpha_s(\mu)}{\pi} \right)^3 + \dots \right] = 0$$

It leads to
$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln(\mu^2 / \Lambda^2)} \left[1 - \frac{2\beta_1}{\beta_0^2} \frac{\ln[\ln(\mu^2 / \Lambda^2)]}{\ln(\mu^2 / \Lambda^2)} + \dots \right]$$

Unambiguous definition

- The definition relies on perturbation theory.
- When you quote a value of $\alpha_{\rm s}$, you must specify
- Renormalization scheme:
 - e.g. MSbar
- Renormalization scale:
 - e.g. $\mu = M_Z$
- Number of flavors:
 - e.g. Nf=5
- Order of the truncation:
 - e.g. three loop

These are the common choices.

Some experimental measurements

- e⁺e⁻ annihilation
 - Beautiful agreements
 - One must avoid the resonance regions (light hadrons, charm, bottom)

Hadronic τ decays

- Looks similar to the e+e- annihilation.
- Scale is much lower
- contains non-perturbative contribution; evaluated using OPE

$$\begin{split} R_{\tau} &\sim \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left\{ \left(1 + \frac{2s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s) + \operatorname{Im} \Pi^{(0)}(s) \right\} \\ &= R_{0} \left[1 + \frac{\alpha_{s}(m_{\tau})}{\pi} + \dots + c \frac{\langle \alpha_{s} GG \rangle}{m_{\tau}^{4}} + c' \frac{\langle m \overline{q} q \rangle}{m_{\tau}^{4}} + \dots \right] \end{split}$$

 Nevertheless, final precision is very good; subject to test with other nonperturbative techniques.

I. Strong coupling constant 2. Lattice calculation: scale setting

The basic strategy

- ... Very simple
- I. Choose a set of lattice parameters: $\beta = 6/g_{lat}^2$, m_q
- 2. Determine the lattice spacing a with some physical input; it gives you a relation $\alpha_{\text{lat}}(a^{-1})$
- 3. Convert the bare lattice coupling $\alpha_{\text{lat}}(a^{-1})$ to $\alpha_s^{\text{MS}}(\mu)$
- 4. Run to your favorite scale, e.g. $\mu = M_Z$.

Scale setting

In any lattice QCD calculation you need a scale input. What is the best choice (reliable, stable, easy to calculate)?

- ρ meson mass:
 - Standard choice in the past. But a decaying particle with a large width. No way to control the m_q dependence near and below the $\pi\pi$ threshold.
- Pion decay constant (or K)
 - Stable particle. Not difficult to calculate. Need controlled chiral extrapolation. Matching of A_{μ} should be done non-perturbatively.
- string tension (or r_0):
 - Another popular choice. Very easy to calculate. But not a directly measurable quantity. Need to involve a potential model for quarkonium spectrum.

Can be any other physical quantity; must agree among them.

Quarkonium spectrum

- Charmonium, or bottomonium, spectrum is useful, because,
 - Low-lying spectrum experimentally very well known.
 - System is non-relativistic. Potential model works reasonably well. Can easily trace systematic errors.

Non-relativistic dynamics

Non-relativistic expansion

 $\langle p^2 \rangle$

 $2m_o$

Spin-averaged splittings

THE BOTTOMONIUM SYSTEM

- ► IS-IP or IS-2S
 - ▶ S wave: (m₀₋+3m₁₋)/4
 - P wave: (m₀₊+3m₁₊+5m₂₊)/9
 - Insensitive to the details of the heavy quark lagrangian (~v⁴)
 - Insensitive to the precise value of m_Q
 - IS-IP = 458 (c), 450 (b) MeV
 - IS-2S = 606 (c), 569 (b) MeV

Somewhat accidental, due to a scaling $\sim m_Q \alpha_s^2$.

Recent lattice calc (bottomonium)

- HPQCD-UKQCD (Gray et al., PRD72, 094507 (2007))
- On the 2+1-flavor MILC improvedstaggered lattices
- Using the NRQCD action (corrected to v⁶) for heavy quark.
- Sea quark mass dependence mild.
- Excellent agreement with the experimental values for IP-IS, 2P-IS, 3S-IS
- Lattice spacing obtained to 2-3% level.

I. Strong coupling constant 3. Lattice calculation: conversion

S Hashimoto (KEK) Aug 15, 2007

Conversion

convert: $\alpha_{s}^{MS}(\mu)=Z(\mu a) \alpha_{hat}(a^{-1})$

Requires perturbative expansion, but the convergence is bad!

$$Z(\mu a = 1) = 1 + 5.9\alpha_{\text{lat}} + 43.4\alpha_{\text{lat}}^2 + \dots \text{ at } n_f = 0$$

Luscher-Weisz, NPB452, 234 (1995).

At
$$\beta$$
=6, α_{lat} =0.08, then Z=1+0.47+0.28+...

- Not feasible to achieve an accurate determination,
- This is an example of the more general problem: poor convergence of lattice perturbation, if the bare lattice coupling is used
 - Solution given by Lepage-Mackenzie, PRD48(1993)2250.

Boosted coupling

Tadpole diagram leads to a quadratic divergence

A common choice: $u_0^4 \equiv \left\langle \frac{1}{3} \operatorname{Tr} U_{plaq} \right\rangle$

Boosted coupling:

 Correspondence between the lattice and continuum gauge fields

U_μ(x) ≡ e^{iagA_μ(x)} = 1+iagA_μ(x) - ¹/₂a²g²A²_μ(x) +...
 The terms with higher powers of a are not really suppressed much, because of power divergences.

- Replace as $U_{\mu}(x) \rightarrow u_0 [1 + iagA_{\mu}(x) + ...]$
 - and use some non-perturbative input for u_0 .
- Gauge action can be rewritten as

$$S_{g} = \sum \frac{1}{g_{lat}^{2}} \operatorname{Tr}(U_{plaq} + h.c.) = \sum \frac{1}{\tilde{g}_{lat}^{2}} \operatorname{Tr}(U_{plaq} + h.c.)$$

$$\rightarrow \sum \frac{1}{4\tilde{g}_{lat}^{2}} F_{\mu\nu}^{2} + ...$$

Prescription

Reorganize the perturbation series

Example: the scheme conversion

$$\alpha_{MS}(\mu = 1/a) = \alpha_{lat} + 5.9\alpha_{lat}^2 + 43.4\alpha_{lat}^3 + \dots$$

• Expand in terms of $\tilde{\alpha}_{\text{lat}} = \alpha_{\text{lat}} / P$ using

$$P^{\text{pert}} = 1 - 4.189\alpha_{\text{lat}} + 5.355\alpha_{\text{lat}}^2 + \dots$$

Namely,

$$\alpha_{MS} = P^{\text{pert}} \frac{\alpha_{\text{lat}}}{P} + 5.9 \left(P^{\text{pert}}\right)^2 \left(\frac{\alpha_{\text{lat}}}{P}\right)^2 + 43.4 \left(P^{\text{pert}}\right)^3 + \dots$$
$$= \frac{\alpha_{\text{lat}}}{P} + 1.7 \times \left(\frac{\alpha_{\text{lat}}}{P}\right)^2 - 11.4 \times \left(\frac{\alpha_{\text{lat}}}{P}\right)^3 + \dots$$

Convergence of the series is much better when expanded in the boosted coupling.

Renormalized coupling

- Another sensible way of defining the coupling constant: use a physical quantity, e.g. heavy quark potential.
 - Potential V(q) defines $\alpha_V(q)$
 - Relation to other definition can be obtained by calculating V(q). $\alpha_V(q = 1/a) = \alpha_{Iat} [1 + 6.706 \times \alpha + ...]$
 - Note that it is much closer to MSbar. $\alpha_{MS}(q) = \alpha_V(q) [1 - 0.822 \times \alpha + ...]$
 - Can be calculated non-perturbatively on the lattice (in principle). That means, a nonperturbative input.

Coupling determination

Expansion using the renormalized coupling.

• "Measure" $\alpha_V(q)$ through, e.g., the plaquete expectation value.

$$-\ln P = \frac{4\pi}{3} \alpha_V(q) \left[1 + (4\pi\beta_0 \ln(aq) - 3.33)\alpha_V + \dots \right]$$

 $\rightarrow \alpha(q)$

• The "best choice" for the scale q is estimated by an average momentum flow on the gluon line.

$$\ln(q^{*2}) \equiv \frac{\int d^4q f(q) \ln(q^2)}{\int d^4q f(q)}$$

- Based on Brodsky-Lepage-Mackenzie, PRD28(1983)228.
- For the plaquette, gives $q^*=3.40/a$, then

$$-\ln P = \frac{4\pi}{3} \alpha_V (3.40/a) [1 - 1.19\alpha_V + ...]$$

α

Conversion, again

Now, the conversion can be done from α_V to α_{MS} , using the better behaved perturbative expansion.

$$\alpha_{MS}(q) = \alpha_{V}(q) \left[1 - 0.822 \alpha_{V}(q) - 2.665 \alpha^{2} + \dots \right]$$

Peter, PRL78(1997)602.

- Then, the determination of α_s is done up to relative O(α_s^3) corrections at a reference scale q (=3.40/a).
 - All the expressions correspond to the quenched QCD (N_f=0).
 Similar expressions available for general N_f.
 - Early calculations were done in $N_f=0$; some theoretical argument and guesstimate used to $N_f=2$ (or 3). Recent calculations are $N_f=2(+1)$.
 - Numbers depend on the choice of the lattice action.

I. Strong coupling constant4. Recent lattice calculations

S Hashimoto (KEK) Aug 15, 2007

Case study 1: HPQCD

Mason et al., PRL95, 052002 (2005).

- Uses the MILC 2+1 flavor simulations with the improved staggered fermion
 - Fast, U(1) chiral symmetry
 - Taste breaking: light hadron physics are affected, need the SChPT.
 - Heavy quarks less affected, comes from quark loops, which is perturbative except in the threshold region.
 - Rooting issues: not a valid QFT at finite a, probably okay in the continuum limit.
- Scale setting from Bottomonium spectrum
- \blacktriangleright Conversion to MSbar using automated PT through α_V

Automated perturbation theory

Use a highly improved lattice action

- Better scaling; but very complicated. Writing the Feynman rules is already too hard to do by hand. Need two-loop (or even three-loop) calculations.
- Automated PT technique was developed (Trottier, Mason).

• Use many short distance quantities for the input of α_{v} .

$$\log W_{11} = -3.068 \,\alpha_V (3.33/a) \,(1 - 1.068 \,\alpha_V \\ + 1.69(4) \,\alpha_V^2 - 5(2) \,\alpha_V^3 - 1(6) \,\alpha_V^4 \cdots) \\ \log W_{12} = -5.551 \,\alpha_V (3.00/a) \,(1 - 0.858 \,\alpha_V \\ + 1.72(4) \,\alpha_V^2 - 5(2) \,\alpha_V^3 - 1(6) \,\alpha_V^4 \cdots)$$

> PT calculated to α_V^2 ; higher orders are fitted with lattice data at three lattice spacings.

Simulation results

Consistency checks

Final numbers:

 $\alpha_V^{(3)}(7.5 \,\text{GeV}) = 0.2082(40),$

 $\alpha_{MS}^{(5)}(M_{7}) = 0.1170(12).$

- With many different (short distance) quantities
- Obtained at different q*

Room for improvement?

Sources of errors

- Lattice spacing (<1% uncertainty)</p>
 - 1.4%-3% depending on the β value.
 - Beyond this level, lattice spacing must be reduced to 0.05 fm.
 NRQCD may not be used (1/am too large).
 - Or, further improve gauge, light quark, NRQCD actions?
- Perturbative expansion (<1% uncertainty)</p>
 - α_V^3 included. Even higher order calculation??

Case study 2: QCDSF-UKQCD

- Uses the non-perturbatively O(a)-improved Wilson fermion at $N_f=2$, combined with $N_f=0$
 - ▶ Four lattice spacings, the smallest *a*=0.07 fm.
- Scale setting from heavy quark potential (r_0 =0.467 fm)
 - > r_0 is easy to calculate, but not known experimentally.
 - This particular value is from a global fit of nucleon mass in N_f=2 data (CP-PACS, JLQCD, QCDSF, UKQCD).
 - MILC reported $r_0=0.467(10)$ fm from a matching to the bottomonium spectrum.
- Coupling conversion including α_s^3 (NNLO)
 - With the boosted coupling.

QCDSF-UKQCD results

- Continuum limit for $r_0\Lambda$
 - Discretization effect nicely controlled.

Extrapolation to N_f=3

- Done by matching the force perturbatively.
- Error is not really known.

Final result

 $\alpha_{MS}^{(5)}(M_{Z}) = 0.112(1)(2).$

About 2σ lower than HPQCD with x2 larger error bar.

Comparison to phenomenological values

Very nice agreement

Mason et al., "the QCD of confinement is the same theory as the QCD of jets"

Further improvement...?

Require non-perturbative matching

- How? MSbar is defined within perturbation theory.
- Possible by first going to very high scale, say 100 GeV, using non-perturbative running, and then convert to MSbar.
- Called the step scaling (ALPHA collaboration).
- Fully covered by Sint's lecture.

