QCD at finite baryon density

The naive continuum prescription of introducing chemical potential by adding a term $\mu \int d^4 x_E \bar{\psi} \gamma_0 \psi$ does not work !

$$S = a^{3} \sum_{x} \left[ma\bar{\psi}_{x}\psi_{x} + \mu a\bar{\psi}_{x}\gamma_{0}\psi_{x} + \frac{1}{2} \sum_{\mu} (\bar{\psi}_{x}\gamma_{\mu}\psi_{x+\mu} - \bar{\psi}_{x-\mu}\gamma_{\mu}\psi_{x}) \right]$$

$$\downarrow$$

 $\epsilon(\mu) \sim \mu^2/a^2$ instead of $\epsilon(\mu) \sim \mu^4$

The correct prescription is

$$U_0(x) \to e^{\mu a} U_0(x), \quad U_0^{\dagger}(x) \to e^{-\mu a} U_0^{\dagger}(x)$$

Hasenfratz, Karsch, PLB 125 (83) 308

$$S = (\overline{\psi_x} e^{\mu a} U_0(x) \psi_{x+0} - \overline{\psi_x} e^{-\mu a} U_0^+(x) \psi_{x-0}) + \sum_{x,i} \eta_i(x) (\overline{\psi_x} U_i(x) \psi_{x+i} - \overline{\psi_x} U_i^+(x) \psi_{x-i}) + am \sum_x \overline{\psi_x} \psi_x$$

det M is complex => sign problem det M exp(-S) cannot be a probability

QCD Phase diagram

At physical quark masses the transition is likely a rapid crossover for $\mu = 0$ MILC, PRD 71 (04) 034504, RBC-Bielefeld, PRD 74 (06) 054507, Aoki et al, Nature 443 (06) 675

There should a critical end-point at some $\mu = \mu_c$ where the transition turns from crossover to 1st odrer. Where it is located ?

Quark number and strangeness fluctuations

$$\frac{p}{T^4} = \sum_{i,j} c_{i,j} \hat{\mu}_q^i \hat{\mu}_s^j, \quad c_{i,j} = \frac{1}{i!j!} \frac{\partial^i}{\partial \hat{\mu}_q^i} \frac{\partial^j}{\partial \hat{\mu}_s^j} \frac{1}{VT^3} \ln Z(T,V), \quad \hat{\mu}_i = \mu_i/T$$

Quark number fluctuations: $c_{20} \sim \langle q^2 \rangle - \langle q \rangle^2$ Strangeness fluctuations: $c_{02} \sim \langle S^2 \rangle - \langle S \rangle^2$

2+1 flavor **RBC-Bielefeld Collaboration**

precise method to locate the transition point

scaling field:
$$t = \left| \frac{T - T_c}{T_c} \right| + A \left(\frac{\mu_q}{T_c} \right)^2$$
, $\mu_{crit} = 0$
singular part: $f_s(T, \mu_q) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha}$

Y. Hatta, T. Ikeda, PRD67 (2003) 014028

$$c_2 \equiv \chi_q \sim \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_q^2} \sim t^{1-lpha} \quad , \quad c_4 \sim \frac{\partial^4 \ln \mathcal{Z}}{\partial \mu_q^4} \sim t^{-lpha} \quad (\mu = 0)$$

 $\epsilon \sim \frac{\partial \ln \mathcal{Z}}{\partial T} \sim t^{1-lpha} \quad , \quad C_V \sim \frac{\partial^2 \ln \mathcal{Z}}{\partial T^2} \sim t^{-lpha} \quad (\mu = 0)$

 $\Rightarrow 2^{nd}$ derivative w.r.t μ_q "looks like energy density" $\Rightarrow 4^{th}$ derivative w.r.t μ_q "looks like specific heat"

Comparison with resonance gas at low T

 $P(T,\mu) = P_B(T,\mu) + P_M(T,\mu) \quad \Delta P(T,\mu) = P(T,\mu) - P(T,\mu=0) = \Delta P_B$

$$\frac{\Delta P_B}{T^4} \approx F(T)(\cosh(\frac{3\mu_q}{T}) - 1) \quad F(T) = \frac{1}{2\pi^2} \int dm \rho(m)(\frac{m}{T})^2 K_2(\frac{m}{T})$$

Karsch, Redlich, Tawfik, PLB 571 (2003) 67

~1000 Exp. Know resonances

Compare with LGT results (Bielefeld-Swansea Coll) :

$$\frac{\Delta P}{T^4} \approx F(T) \left[c_2 \left(\frac{\mu_q}{T}\right)^2 + c_4 \left(\frac{\mu_q}{T}\right)^4 + c_6 \left(\frac{\mu_q}{T}\right)^6 \right]$$
$$\frac{n_q}{T^3} \approx F(T) \left[2c_2 \left(\frac{\mu_q}{T}\right) + 4c_4 \left(\frac{\mu_q}{T}\right)^3 + 6c_6 \left(\frac{\mu_q}{T}\right)^5 \right]$$
$$\frac{\chi_q}{T^2} \approx F(T) \left[2c_2 + 12c_4 \left(\frac{\mu_q}{T}\right)^2 + 30c_6 \left(\frac{\mu_q}{T}\right)^4 \right]$$

Consequences:

For fixed μ_q / T the ratio of These observable is T-independent

The ratios of the expansion coeffiecients are

$$\frac{c_4}{c_2} = \frac{3}{4}, \dots, \frac{c_6}{c_4} = 0.3$$

2-falvor, Bielefeld-Swansea Collaboration

Resonance gas model :Karsch, Redlich, Tawfik, EPJC 29 (2003) 549, PLB 571 (2003) 67

Radius of convergence :
$$\rho = \lim_{n \to \infty} \rho_{2n} = \lim_{n \to \infty} \sqrt{\left| \frac{c_{2n}}{c_{2n+2}} \right|}$$

gives the position of the nearest singularity, if all coefficients are positive the singularity is on the real axis

need higher order terms in the Taylor expansion

Locating the transition point with Lee-Yang zeros

 $Z(\beta_c) = 0$ for the true phase transition $(V = \infty)$ For finite volume there is no singularity but $Z(\beta^*) = 0$, $\text{Im}\beta^* > 0$ On the lattice one calculates

$$Z_{norm}(\operatorname{Re}\beta^*, \operatorname{Im}\beta^*) = \left| \frac{Z(\operatorname{Re}\beta^*, \operatorname{Im}\beta^*)}{Z(\operatorname{Re}\beta^*, 0)} \right|$$
$$= \left| \langle e^{-i\operatorname{Im}\beta^*S_G} \rangle_{(\operatorname{Re}\beta^*, 0)} \right|$$
$$\Downarrow$$

 Z_{norm} could be zero only if fluctuations of S_G are large (phase $>\pi/2$), i.e when the gauge action susceptibility $\langle S_G^2\rangle - \langle S_G\rangle^2$ has its maximum

 \Downarrow

 $\operatorname{Re}\beta^*$ for the β^* closest to the real axis provides an estimate of the pseudo-critical coupling

for a 1st order tramsition ${\rm Im}\beta^*\sim 1/V$

Ejiri, hep-lat/0506023

Locating the critical end-point with re-weighting

• Multi-parameter re-weghting:

$$Z(\beta,\mu) = \int \mathcal{D}U e^{-S_g(\beta_0,\mu)} \left[det M(\mu=0,U) \right]^{n_f/4} \left\{ e^{-S_g(\beta,U) + S_g(\beta_0,U)} \left[\frac{det M(\mu,U)}{det M(\mu=0,U)} \right]^{n_f/4} \right\}$$

• Lee-Yang zeroes: $Z(\beta^*, \mu) = 0$ $\operatorname{Im}\beta^*(L_s \to \infty) \neq 0 \longrightarrow \operatorname{Crossover}$ $\operatorname{Im}\beta^*(L_s \to \infty) = 0 \longrightarrow \operatorname{Phase transition}$

re-weighting in mu only (Glasgow method) has poor overlap

2001: Fodor, Katz, JHEP 0203 (2002) 014 Lattices: 4⁴, 6³ × 4, 8³ × 4 $m_{\pi}/m_{\rho} \simeq 0.3$

 $T_c = 172(3)$ MeV, $T_E = 160(4)$ MeV, $\mu_E = 725(35)MeV$

2004: Fodor, Katz, JHEP 0404 (2004) 050

 $m_{\pi}/m_{\rho} = 0.188(2)$ $6^3 \times 4, \ 8^3 \times 4, \ 10^3 \times 4, \ 12^3 \times 4$

Imaginary chemical potential

det M no sign problem => direct simulations are possible no singularity at finite volume => continue to real chemical potential => alternative way to do the Taylor expansion => canonical partition function

> $N_{f} = 4$ de Forcrand, Kratochvila, PoS LAT2005 (06) 167

different methods agree quite well !

Quark number and strangeness fluctuations at finite density

