QCD thermodynamics at low and high temperatures

high-T (T>> Λ), perturbation theory should work, however: expansion in g shows poor convergence (reorganization of the perturbative series) g^6 -order contribution is not calculable in the loop expansion non-perturbative (lattice) method is desirable

low-T : hadrons are "good" degrees of freedom and weakly interacting for T<<Λ (use chPT, Gerber, Leutwyler, NPB 321 (89) 387)

The simplest approach : consider gas of non-interacting hadrons too naïve ? Not necessarily many hadronic interactions dominated by resonance exchange in the s-channel , e.g. $\pi\pi \to \rho$

interacting hardon gas Hagedorn, Nouvo Cim. 35 (65) 395 Chapline et al, PRD 8 (73) 4302 Karsch et al, Eur.Phys.J.C29 (03)549

$$\ln Z(T,V) = \sum_{i} \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \eta \ln(1 + \eta e^{-\beta \sqrt{p^2 + m_i^2}})$$

 $\eta = -1$ -boson, $\eta = +1$ -fermion Calculate $\ln Z$ using the masses of about 1000 experimentally known non-strange resonances

Deconfinement transition : rapid increase of the pressure, energy denisty, entropy density (liberation of many new degrees of freedom ?) Cabbibo, Parisi, PLB 59 (75) 67 Is it a phase transition ? What is the order parameter ?

Lattice Monte-Carlo simulations : Kuti et al, PLB 98 (81) 199 free energy of static quarks McLerran, Svetitsky, PRD 24 (81) 450

Engels et al, PLB 101 (81) 89 -----

rapid rise in the energy density

Lattice set-up:

 $U_{\mu}(\tau, x) = e^{igA_{\mu}(\tau, x)}, \ N_{\sigma}^{3} \times N_{\tau}, \ T = 1/(N_{\tau}a)$

Thermodynamic limit: $N_{\sigma}/N_{\tau} \to \infty$; Continuum limit : $N_{\tau} \to \infty$, T-fixed Temperature is set by $a \leftrightarrow \beta = 2N_c/g^2$ allowable gauge transformations $U_{\mu}(x) \to \Omega(x+\mu)U_{\mu}(x)\Omega^{\dagger}(x)$

 $\Omega(0, \vec{x}) = \Omega(\beta, \vec{x})C, \quad C = e^{2\pi i n/N_c}I \quad \rightarrow Z(N) - \text{symmetry}$

$$L(\vec{x}) = \frac{1}{N_c} \operatorname{tr} \prod_{\tau=1}^{N_{\tau}} U_0(\tau, \vec{x})$$

Polyakov loop is changed $L(\vec{x}) \rightarrow e^{2\pi n i/N_c} L(\vec{x})$

 $< L > \neq 0 \rightarrow Z(N)$ spontaneously broken; $< L > = e^{-F_Q/T}$ -free energy of an isolated static quark is finite \Rightarrow deconfinement L is order parameter $\psi_a^{\dagger}(\tau, x), \ \psi_a(\tau, x)$ -creation annihilation operators for static quarks at time τ and position x

 $\psi_a^{\dagger c}(\tau, x), \ \psi_a^c(\tau, x)$ -creation annihilation operators for static antiquarks at time τ and position x

 $[\psi_a(\tau, x), \psi_b^{\dagger}(\tau, y)]_+ = \delta(x - y)\delta_{ab}$

$$(-i\partial_{\tau} - gA_0(\tau, x))\psi(\tau, x) = 0$$

formal solution $\psi(\tau, x) = \mathcal{P} \exp\left(ig \int_0^{\tau} d\tau' A_0(\tau', x)\right) \psi(0, x) = W(x)\psi(0, x)$ Free energy of static quark anti-quark pair

$$e^{-\beta F(x,y)} = \sum_{s} \langle s|e^{-\beta H}|s \rangle$$

 $|s\rangle$ denotes any state with a static quark at position x and static anti-quark at position y; $|s'\rangle$ states with no static quarks

$$\begin{split} e^{-\beta F(x,y)} &= \sum_{s'} < s' | \psi_a(0,x) \psi_b^c(0,y) e^{-\beta H} \psi_{a'}^{\dagger}(0,x) \psi_{b'}^{\dagger c}(0,y) | s' > \\ &= e^{-\beta H} e^{\beta H} e^{\beta H} e^{-\beta H} O(\tau) e^{\beta H} = O(\tau + \beta) \\ &= \sum_{s'} < s' | e^{-\beta H} \psi_a(\beta,x) \psi_b^c(\beta,y) \psi_{a'}^{\dagger}(0,x) \psi_{b'}^{\dagger c}(0,y) | s' > \\ &= Z(\beta) < W(x) W^{\dagger}(y) > \end{split}$$

The order of the phase transition in pure gauge theories:

- SU(2), center Z(2) 2nd order transition with Ising universality class
 Engels et al, NPB 332 (90) 737
- SU(3), weak 1st order transition Fukugita et al, PRL 63 (89) 1768
- SU(N), N > 3 strong 1st order transition
 Lucini et al, JHEP 0401 (04) 061
- Sp(N), N > 1 Z(2) center but 1st order transition Holland et al, NPB 694 (04) 35
- G(2) no center but 1st order transition Pepe, Wiese, NPB 768 (07) 21

The order of the phase transition is determined by mismatch in d.o.f : $\mathcal{O}(1)$ at low T and $\mathcal{O}(N_c^2)$ at high T

How to determine the transition temperature ?

 $\frac{\chi_L}{T^2} = N_\sigma^3 \left(\langle L^2 \rangle - \langle L \rangle^2 \right) = \langle (\delta L)^2 \rangle \text{ has a peak at } \beta_c$

Boyd et al., Nucl. Phys. B496 (1996) 167

 Use different volumes and Ferrenberg-Swedsen re-weighting to combine information collected at different gauge couplings
 Finite volume behavior can tell the order of the phase transition, e.g. for 1st order transition the peak height scales as spatial volume ! Determine the static potential at T = 0, determine the lattice spacing $a(\beta_c)$ using the string tension σ or the Sommer scale:

 $r^2 \frac{dV}{dr}|_{r=r_0} = 1.65$ $T_c = 1/(N_\tau a(\beta_c))$

Necco, Nucl. Phys. B683 (2004) 167

Continuum limit for *L* ?

Dumitru et al, hep-th/0311223

Bare triplet loop vs T, at different Nt

needs renormalization !

Free energy of static sources in QCD

• QCD partition function in the presence of a static $Q\bar{Q}$ pair (McLerran, Svetitsky PRD 24 (1981) 450)

$$\begin{aligned} \frac{Z_{q\bar{q}}(r,T)}{Z(T)} &= \frac{1}{Z(T)} \int DA_{\mu} D\bar{\psi} D\psi e^{-\int_{0}^{1/T} d\tau \int d^{3}x L_{QCD}(\tau,\vec{x})} W(\vec{r}) W^{\dagger}(0) \\ &= \langle W(\vec{r}) W^{\dagger}(0) \rangle, \\ Z(T) &= \int DA_{\mu} D\bar{\psi} D\psi e^{-\int_{0}^{1/T} d\tau \int d^{3}x L_{QCD}(\tau,\vec{x})} \\ W(\vec{x}) &= P e^{ig \int_{0}^{1/T} d\tau A_{0}(\tau,\vec{x})} = \prod_{\tau=0}^{N_{\tau}-1} U_{0}(\tau,\vec{x}) \text{ temporal Wilson line, } L(\vec{x}) = \operatorname{Tr} W(\vec{x}) \\ \text{Polyakov loop.} \end{aligned}$$

• Different color channels

$$Z_{q\bar{q}}(r,T) = Z_{q\bar{q}}^{(1)}P_1 + Z_{q\bar{q}}^{(8)}P_8$$

 $P_1 = \frac{1}{9} 1 \otimes 1 - \frac{2}{3} \overline{t}^a \otimes t^a$, $P_8 = \frac{8}{9} 1 \otimes 1 + \frac{2}{3} \overline{t}^a \otimes t^a$, $\overline{t}^a = -t^{a\star}$ Brown, Weisberger, PRD 20 (79) 3239; Nadkarni, PRD 34 (86) 3904

$$\frac{Z_{q\bar{q}}^{(1)}(r,T)}{Z(T)} = \frac{1}{Z(T)} \frac{\text{Tr }(P_1 Z_{q\bar{q}})}{\text{Tr }P_1} = \frac{1}{3} \text{Tr } \langle W(\vec{r}) W^{\dagger}(0) \rangle$$

$$\frac{Z_{q\bar{q}}^{(8)}(r,T)}{Z(T)} = \frac{1}{Z(T)} \frac{\operatorname{Tr} (P_8 Z_{q\bar{q}})}{\operatorname{Tr} P_8} = \frac{1}{8} \langle \operatorname{Tr} W(r) \operatorname{Tr} W^{\dagger}(0) \rangle - \frac{1}{24} \operatorname{Tr} \langle W(r) W^{\dagger}(0) \rangle$$
$$\frac{Z_{q\bar{q}}^{(av)}(r,T)}{Z(T)} = \frac{1}{Z(T)} \frac{\operatorname{Tr} ((P_1 + P_8) Z_{q\bar{q}})}{\operatorname{Tr} (P_1 + P_8)} = \frac{1}{9} \langle \operatorname{Tr} W(r) \operatorname{Tr} W^{\dagger}(0) \rangle$$

• The free energy, internal energy energy and the entropy

$$F_{i}(r,T) = -T \ln \frac{Z_{q\bar{q}}^{(i)}(r,T)}{Z(T)} = V_{i}(r,T) - TS_{i}(r,T)$$

$$V_{i}(r,T) = T^{2} \frac{\partial}{\partial T} \ln\left(\frac{Z_{q\bar{q}}^{(i)}(r,T)}{Z(T)}\right) = -T^{2} \frac{\partial F_{i}(r,T)/T}{\partial T}; S_{i}(r,T) = -\frac{\partial F_{i}(r,T)}{\partial T}$$
$$i = 1, 8, av$$

Color average free energy is explicitly gauge invariant

$$\frac{1}{9} < L(R)L^{\dagger}(0) > = e^{-F_{av}(R,T)/T} = \frac{1}{9}e^{-F_{1}(R,T)/T} + \frac{8}{9}e^{-F_{8}(R,T)/T}$$

• $W(\vec{x})$ not gauge invariant \Rightarrow gauge invariant version:

 $\tilde{W}(\vec{x}) = \Omega^{\dagger}(\vec{x})W(\vec{x})\Omega(\vec{x}),$

- $(\Omega(\vec{x}) \text{ is an SU(3) matrix, } \Omega = f_{\alpha}^n D_{\mu}^2 f_{\alpha}^{(n)} = \lambda_n f_{\alpha}^{(n)} \tau = 0\text{-ra})$
- Philipsen, PLB 535 (02) 138
- or fix to Coulomb gauge

₩

in the T = 0 limit a transfer matrix can be defined and and both definitions are equivalent to the standard definition in terms of Wison loops .

Philipsen, PLB 535 (02) 138

Numerical results in SU(3) gauge theory at $T < T_c$

- 1) F_1 is T-ndependent for $r\sqrt{\sigma} < 1$ (< 0.5 fm)
 - 2) the same $\sigma(T)r$ behavior of F_1, F_8, F_{av} for $r\sqrt{\sigma} > 3 \ (> 1.5 fm)$

Free energy in the pertubative high temperature limit

$$\exp(-F_{1}(r,T)/T) = \frac{1}{3} \operatorname{Tr} \langle W(\vec{r}) W^{\dagger}(0) \rangle, \quad W \simeq 1 + igA_{0}/T$$

$$\implies F_{1}(r,T) = -g^{2}C_{F} \frac{e^{-m_{D}r}}{4\pi r} = U_{1}(r,T), \quad C_{F} = \frac{N^{2}-1}{2N} \quad m_{D} = gT$$
At leading order: $F_{8}(r,T)/F_{1}(r,T) = -1/8 \quad S_{1}(r,T) = 0$
At next to leading order: $F_{1}(r,T) = -g^{2}C_{F} \frac{e^{-m_{D}r}}{4\pi r} - \frac{C_{F}m_{D}g^{2}}{4\pi}$
 $F_{1}(r = \infty, T) = F_{\infty}(T) \neq 0$
and the entropy appears: $S_{1}(r,T) = \frac{C_{F}g^{2}m_{D}0}{4\pi T}(1 - e^{-m_{D}r}) \sim \mathcal{O}(g^{3})$

The internal energy is different from the free energy $U_1(r,T) = F_1(r,T) + TS_1(r,T) = -g^2 C_F \frac{e^{-m_{D0}r}}{4\pi r} - \frac{C_F g^2 m_{D0}}{4\pi} e^{-m_{D0}r}$ $U_1(r = \infty, T) = U_\infty(T) = 0$ The work to be done in order to bring the static quark anti-quark pair separated by distance r_1 to distance r_2 is determined by color averaged free energy:

$$A = F_{av}(r_2) - F_{av}(r_1)$$

In leading order perturbation theory:

$$F_{av}(r,T) = -\frac{1}{9} \frac{\alpha_s^2}{r^2 T} \exp(-2m_D r)$$

In QED

$$F_{av}(r,T) = -\frac{\alpha}{r} \exp(-m_D r)$$

In QCD the work is reduced due to cancelation between color singlet and octet contribution

Numeerical results for $T > T_c$

• The free energy and the entropy contribution

 $F_1(r \to \infty, T) = F_8(r \to \infty, T) = F_{av}(r \to \infty, T) = F_\infty(T)$

 $F_{\infty}(T)$ is decreasing with $T \Rightarrow$

$$-rac{\partial F_{\infty}(T)}{\partial T} \equiv S_{\infty}(T) > 0$$

 Long vs. short distance physics, screening No temperature dependence in

$$\alpha_{eff}(r,T) = \frac{3}{4} \frac{dF_1(r,T)}{dr}$$

 $\alpha_{eff}(r_{med},T) = \alpha_{eff}^{max} \rightarrow r_{med}(T) = 0.5 fm \cdot T_c/T$ which separates the short and long distance physics.

 $r < r_{med}(T)$ exponential screening for $r < r_{med}(T)$

remnants of T = 0 non-perturbative physics in the deconfined phase close to T_c

• Screening at coupling at large distances

$$F_1(r,T) = -rac{4}{3}rac{lpha(T)}{r}\exp(-\sqrt{4\pi ilde{lpha}(T)}r)$$

LO expectations $\alpha(T) = \tilde{\alpha}(T)$ holds for $T \ge 6T_c$

• High temperature limit:

Leading order expansion ($rT \gg 1$, $g \ll 1$): $-F_1(r,T)/F_8(r,T) = 8$, $-F_1^2/(TF_{av}) = 1$ 16

$$F_1 = -rac{4}{3} rac{lpha_s(T)}{r} \exp(-m_{D0}r), F_{av} = -rac{1}{9} rac{lpha_s^2}{r^2 T} \exp(-m_{D0}r)$$

 $-F_1^2/(TF_{av})\sim const
eq 16, \ rT < 0.6$ rT > 0.6 non-perturbative behavior

The renormalized Polyakov loop

Kaczmarek et al, PLB 543 (02) 41, PRD 70 (04) 074505, hep-lat/0309121

Correlation length near the transition

 $T < T_c$:

 $T > T_c$:

$$< L(r)L^{\dagger}(0) > \sim e^{-\sigma(T)r/T}$$

$$\ln(\frac{\langle L(r)L^{\dagger}(0) \rangle}{|\langle L \rangle|^{2}}) \sim e^{-\mu(T)r}$$

QCD is far from the large N-limit !

Deconfinement transition in QCD

Dynamical quarks break Z(3) symmetry => no phase transition

Static quark anti-quark free energy in 2+1f QCD

RBC-Bielefeld Collaboration:

M. Cheng, N.H. Christ, S. Eijiri, K. Hübner, C. Jung, F., O. Kaczmarek, F. Karsch,

E. Laermann, J. Liddle, R. Mawhinney, C. Miao, P. Petreczky, K. Petrov, C. Schmidt,

W. Söldner, J. Van der Heide

 $16^3 \times 4$, $24^3 \times 6$ lattices, $m_\pi \simeq 200$ MeV

Static quark anti-quark free energy in 2+1f QCD

Renormalized Polyakov loop in 2+1F QCD

see talk by Karsch at Lattice 2007, data for temporal extent=8 are from HotQCD Collaboration

How different is full QCD from SU(3) gauge theory ?

Quark flavor dependence in $F_{\infty}(T)$, $U_{\infty}(T)$ and $L_{ren}(T)$ is small when ploted as function of T/T_c

Screening mass in 2+1F QCD

$$m_D(T) = A\sqrt{1 + \frac{N_f}{6}}g^{2\text{-loop}}(T)T$$
$$m_D \simeq 1.4m_D^{LO}$$

quarks modify the perturbative pre-factors, non-perturbative effects are in the soft gluon sector

Homework:

Using the definition

$$\exp(-F_1(r,T)/T) = \frac{1}{3} \operatorname{Tr} \langle W(\vec{r}) W^{\dagger}(0) \rangle$$
, and $W \simeq 1 + igA_0/T$

show that $F_1 = -\frac{4}{3} \frac{\alpha_s}{r} \exp(-m_D r)$ at leading order (hint : use a gauge where A_0 is time independent and the resummed gluon propagator $D_{00}^{ab}(k) = \frac{\delta_{ab}}{(\vec{k}^2 + m_D^2)}$)

Using the above result for F_1 and the leading order relation $F_8/F_1 = -1/8$ as well as the relation

$$\exp(-F_{av}/T) = \frac{1}{9}\exp(-F_1/T) + \frac{8}{9}\exp(-F_8/T)$$

show that $F_{av} = -\frac{1}{9}\frac{\alpha_s^2}{r^2T}\exp(-2m_Dr)$ (hint : expand the exponent to second order)

Arrive at the above result for F_{av} starting from its definition $\exp(-F_{av}/T) = \frac{1}{9} < \operatorname{Tr}W(r)\operatorname{Tr}W^{\dagger}(0) > \text{ and using the perturba-}$ tive expansion for the Wilson line W. (hint : use the same steps as in the redivation of F_1 above)