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Hybrid Monte Carlo

Hybrid Monte Carlo

1 Draw new conjugate momenta, π from the normal distribution

2 Store the current field, φ and compute H(π, φ)

3 Integrate the equations of motion using a reversible, symplectic

integrator with step-size h (such as leap-frog) so (φ, π)
leapfrog−→ (φ′, π′)

4 Compute H(π′, φ′) and the change, ∆H
5 Accept φ′ as the new entry in the Markov chain with probability

Pacc = min
[
1, e−∆H

]
if the new configuration is rejected, then make φ the new entry.

As h → 0,∆H → 0, so Pacc → 1

E [e−∆H] = 1 and E [∆H] = 1
2E [(∆H)2] for small ∆H
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Metropolis-Hastings Acceptance probabilities
The algorithm needs some tuning; make h small and the computer
cost rises, make h too big and all proposals are rejected as ∆H is
large.
Pacc ∝ erfc(h2/h2

0). Example below from the Nf = 2 Schwinger
model (2d QED)
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Molecular dynamics (4)

For gauge theories, our degrees of freedom are constrained, so we
need to define hamiltonian dynamics on curved manifolds.

A Lie group G (all continuous gauge groups) has particularly helpful
properties. At all points, there is a well-defined, tangent space (the
Lie algebra at the identity element) in which conjugate momenta
naturally live.

A useful definition for a momentum variable p conjugate to a group
element U is

p = paTa so p ∈ L(G )

with Ta the (hermitian) generators of the group and define the
equation of motion for U to be

U̇ = ipU

The extra appearance of U shows we need to rotate the Lie algebra
(where p lives) to be tangent to U. The left multiplication is a
convention (right works just as well).
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Molecular dynamics (5)

The (group invariant) kinetic term is

T = Tr p2 =
1

2

∑
a

p2
a

and so the co-ordinates pa are still normally distributed.

A toy example:

S [U] = ReTr UΣ so H[U, p] = Tr p2 + ReTr UΣ

with U ∈ SU(N) and Σ ∈ GL(N) a constant background.

A simple way to find the equations of motion is to demand the
hamiltonian is conserved and use the definition of ṗ, so:

Ḣ = 2Tr ṗp + ReTr U̇Σ = 0

substitute U̇ = ipU and we get

ṗ =
i

4

{
UΣ− Σ†U† − 1

N
Tr
(
UΣ− Σ†U†

)}
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Molecular dynamics (6)

Now QCD:

S = β
∑
x

ReTr (1− U�(x)) + φ∗
[
M†M

]−1
φ

the φ fields are (usually) held fixed in the integration stage, and are
drawn at the start of the trajectory from a heat-bath (since they are
normally distributed).

The force term from the gauge action is the staple sum - the same
object found in the Gibbs sampler methods. For the pseudofermions

d

dt

{
φ∗
[
M†M

]−1
φ

}
= −φ∗

[
M†M

]−1 d

dt

(
M†M

) [
M†M

]−1
φ

Define X =
[
M†M

]−1
φ and Y = MX , we get

d

dt

{
φ∗
[
M†M

]−1
φ

}
= −Y ∗ dM

dt
X − X ∗ dM†

dt
Y
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Molecular dynamics (7)

The sparse structure of M generates a few terms, bilinear in the
derived fields, X ,Y ; an example (for the Wilson fermion matrix)
would yield a similar expression for Σ in

ṗµ(x) ∝ i(Uµ(x)Σµ(x)− Σ†U†
µ(x)− 2

N
ImTr Uµ(x)Σµ(x))

Σµ(x) = (1− γµ)αβXα(x + µ̂)Y ∗β(x) + . . .

(α, β spin components)

The computationally intensive part is computing X and Y ; this
requires sparse matrix inversion.

Fortunately, for each (pair of) inverses computed, all links are
updated.
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Symplectic integrators
Classical dynamics is a smooth flow in a phase space, Λ = (φi , πi ).
Phase space has a geometric structure.

Symplectic integrators

An integrator is a function A : Λ → Λ so (φ, π)
A→ (φ′, π′)

Define the block Jacobian KA =

(
∂φ′

∂φ
∂π′

∂φ
∂φ′

∂π
∂π′

∂π

)
and J =

(
0 1
−1 0

)
Then integrator A is called symplectic if

KT
A JKA = J

This structure means symplectic integrators behave like a Lie group
with the Poisson bracket acting as the Lie bracket.

{f , g} =
∑

i

∂f

∂φi

∂g

∂πi
− ∂f

∂πi

∂g

∂φi
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The Seattle Phase Space Needle

Integrating a simple one-dimensional system illustrates the difference
between symplectic and non-symplectic (the Euler integrator)
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Symplectic integrators (3)

A useful linear operator on the space of functions on Λ is
∆X = {·,X} with X another operator on Λ then time-evolution for
any function, f becomes

df

dt
= ∆Hf = {f ,H} so f (t) = et∆Hf (0)

et∆H is hard (impossible) to construct in practise. Is there a recipe
for constructing useful symplectic integrators?

H = T + S so consider the action of ∆T and ∆S . For example,

∆T f = {f ,T} =
∑

i

∂f

∂φi
πi so ∆Tφi = πi ,∆Tπi = 0

this then leads to

eh∆T f (φ(t), π(t)) = f (φ(t) + hπ(t), π(t))

and so eh∆T is just the symplectic operator that adds hπ to φ
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Symplectic integrators (4)
It is easy to apply the symplectic operators eh∆T and eh∆S ; they are
just adding momenta and the force to π and φ respectively.
The two simplest symmetric symplectic integrator are then

e
h
2
∆T eh∆S e

h
2
∆T and e

h
2
∆S eh∆T e

h
2
∆S

and applying these n times forms the n-step leap-frog integrator.
Since the poisson bracket behaves like a Lie algebra, we can use the

Baker-Campbell-Hausdorff, so: e
h
2
∆T eh∆S e

h
2
∆T = eh∆H+h3∆′

with

∆′ =
1

12
[∆S , [∆S ,∆T ]] +

1

24
[∆T , [∆S ,∆T ]]

The Lie-algebraic properties also imply any compound of symplectic
integrators can be written as eh∆H′ with H′ some Hamiltonian. This
implies there is a different energy function that is exactly conserved
by every symplectic integrator. For leap-frog,

H′ = H+
h2

12

(
πi

∂2S

∂φiφj
πj −

1

2

∂S

∂φi

∂S

∂φi

)
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Symplectic integrators (5)

Better integrators can be constructed, by building longer (symmetric)
compounds. The Omelyan integrator is

ehH+h3∆O = eλh∆T e
h
2
∆S e(1−2λ)h∆T e

h
2
∆S eλh∆T

and this gives

∆O = α(λ)[∆T , [∆S ,∆T ]] + β(λ)[∆S , [∆S ,∆T ]]

Minimising α2 + β2 gives λ ≈ 0.193. This integrator works well,
giving a speed-up of about 1.5-2.

Getting rid of O(h2) errors altogether using a compound of eh∆T and
eh∆S requires seven terms, and is not useful in practice, since the
integrators go unstable at smaller step-size.
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Symplectic integrators (6)

The action, S can often be split into a sum of terms,
S = S1 + S2 + . . . each with its own force, ∂S1

∂φi
, ∂S2

∂φi
, . . . and

symplectic integrator eh∆S1 , eh∆S2 , . . .

If the forces have very different sizes, then this splitting can be used
to build better integrators; write

e
h∆H′

1 =
m∏

i=1

e
h

2m
∆T e

h
m

∆S1 e
h

2m
∆T

then a modified leapfrog integrator is

e
h
2
∆S2 ehH′

1e
h
2
∆S2

J.Sexton and D.Weingarten, Nucl. Phys. B380 (1992), 665

This integrator has two time-scales, h and h
m and tuning these scales

leads to a faster algorithm, provided the force that is computationally
cheap dominates.
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Extensions to HMC (1)
Odd-flavour simulations can be performed in HMC. Now the required
importance sampling measure is | det M| and this is converted (using
γ5-hermiticity) to det

√
M†M. This is then bosonised as before.

Computationally efficient ways of representing
√

M†M needed.
Polynomial approximations: PHMC
K. Jansen and R. Frezzotti, Phys. Lett. B402 (1997) 328
If P(x) ≈ 1√

x
, then the action on the pseudofermions becomes

Sφ = φ∗P(M†M)φ = φ∗

(
N∏

i=1

(M†M − zi )

)
φ, with zi the roots of P

= φ∗

(
N∏

i=1

(γ5M −
√

zi )(γ5M −
√

zi
∗)

)
φ

Differentiating with respect to molecular dynamics time gives

dSφ

dt
=

N∑
i=1

Y ∗
i

dM

dt
Xi + X ∗

i

dM†

dt
Yi

Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 13, 2007 14 / 19



Extensions to HMC (2)

Rational approximations: RHMC
M.Clark and A.Kennedy, Nucl.Phys.B (Proc. Suppl.) 129 (2004) 850

If R(x) = A(x)
B(x) ≈

1√
x
, then the action on the pseudofermions becomes

Sφ = φ∗R(M†M)φ

A rational approximation (with A,B suitably chosen) can be written

R(x) = c0 +
n∑

i=1

ci

x + di

For example, an optimised rational approximation (A. Kennedy,
hep-lat/0504038) to 1√

x
with x ∈ [0.003, 1] is 1/

√
x ≈

0.390460391
(x + 2.3475661045)(x + 0.1058344600)(x + 0.0073063814)

(x + 0.4105999719)(x + 0.0286165446)(x + 0.0012779193)

= 0.3904603901+
0.0511093775

x + 0.0012779193
+

0.1408286237

x + 0.0286165446
+

0.5964845033

x + 0.4105999719
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Extensions to HMC (3)

The matrix approximation is then

(M†M)−1/2 ≈ R(M†M) = c0 +
n∑

i=1

ci (M
†M + di )

−1

Now evaluating R requires matrix inversion again, but the advantage
is that machine precision can be reached for fairly low orders of
polynomials, A,B in contrast to polynomial approximation.

For rational approximations to x−1/2 the coefficients are +ve.

The solution of (M†M + di )χi = φ for many different values of di can
be achieved with “multi-mass” solver. Convergence determined by
the least-well-conditioned problem (i.e. smallest di ).

Further modifications to the way the fermion determinant is
represented are possible. Two of the most popular current methods
are the Hasenbusch mass preconditioner and Lüscher’s Schur
alternating approach.
M.Hasenbusch - Phys.Lett.B519 (2001) 177
M.Lüscher - Comput.Phys.Commun 165 (2005) 199.
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Krylov Space methods (1)

For almost all these methods, we need an efficient way of solving
A[U]ψ = η for a sparse matrix A.

The most common way to solve these problems is to use a Krylov
space method. The n-dimensional Krylov space, Kn(A, v0) is the
vector space

span
{
v0,Av0,A

2v0, . . .
}

When n = N, the rank of A the solution must lie in Kn(A, v0)
(Cayley-Hamilton). N is large, these methods are considered as
iterative, with “good” convergence properties (usually exponential).

New methods are emerging that are not Krylov space methods (such
as deflation methods).
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Krylov Space methods (2)

For A positive-definite hermitian, then the best method is (usually)
conjugate gradient:

The conjugate gradient algorithm

r0 = η − Aψ0, p0 = r0

Until convergence (|rk | small), repeat for k = 0, 1, 2, . . .

αk =
r∗k · rk

p∗k · Apk

ψk+1 = ψk + αkpk

rk+1 = ψk − αkApk

βk =
r∗k+1 · rk+1

r∗k · rk
pk+1 = rk+1 + βkpk

Simple iterations and low storage requirements
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Krylov Space methods (3)
For A non-hermitian, the method is generalised to the BiCG
algorithm, which has some improved versions, BiCGStab,
Convergence of these methods is accelerated through
preconditioning. In lattice QCD with Wilson-like quarks, the most
commonly used form is even-odd (or red-black) preconditioning.
Write Mψ = η as(

Mee Meo

Moe Moo

)(
ψe

ψo

)
=

(
ηe

ηo

)
and then solve the equivalent problem:(

Mee 0
0 Moo −MoeM

−1
ee Meo

)(
ψe + M−1

ee Meoψo

ψo

)
=

(
ηe

ηo −MoeM
−1
ee ηe

)
Recently, interest has been in methods that use “deflation”. Here, as
the Krylov space is constructed, an set of approximate low
eigenvectors for A is built and stored. These can be used in to
accelerate inversion. See e.g.
W. Wilcox, presentation at Lattice 2007.

Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 13, 2007 19 / 19


	

