Numerical methods for lattice field theory

Mike Peardon
Trinity College Dublin

August 13, 2007

Hybrid Monte Carlo

Hybrid Monte Carlo

(1) Draw new conjugate momenta, π from the normal distribution
(2) Store the current field, ϕ and compute $\mathcal{H}(\pi, \phi)$
(3) Integrate the equations of motion using a reversible, symplectic integrator with step-size h (such as leap-frog) so $(\phi, \pi) \xrightarrow{\text { leapfrog }}\left(\phi^{\prime}, \pi^{\prime}\right)$
(9) Compute $\mathcal{H}\left(\pi^{\prime}, \phi^{\prime}\right)$ and the change, $\Delta \mathcal{H}$
(0) Accept ϕ^{\prime} as the new entry in the Markov chain with probability

$$
\mathcal{P}_{\mathrm{acc}}=\min \left[1, e^{-\Delta \mathcal{H}}\right]
$$

if the new configuration is rejected, then make ϕ the new entry.

- As $h \rightarrow 0, \Delta \mathcal{H} \rightarrow 0$, so $\mathcal{P}_{\text {acc }} \rightarrow 1$
- $E\left[e^{-\Delta \mathcal{H}}\right]=1$ and $E[\Delta \mathcal{H}]=\frac{1}{2} E\left[(\Delta \mathcal{H})^{2}\right]$ for small $\Delta \mathcal{H}$

Metropolis-Hastings Acceptance probabilities

- The algorithm needs some tuning; make h small and the computer cost rises, make h too big and all proposals are rejected as $\Delta \mathcal{H}$ is large.
- $P_{\text {acc }} \propto \operatorname{erfc}\left(h^{2} / h_{0}^{2}\right)$. Example below from the $N_{f}=2$ Schwinger model (2d QED)

Molecular dynamics (4)

- For gauge theories, our degrees of freedom are constrained, so we need to define hamiltonian dynamics on curved manifolds.
- A Lie group G (all continuous gauge groups) has particularly helpful properties. At all points, there is a well-defined, tangent space (the Lie algebra at the identity element) in which conjugate momenta naturally live.
- A useful definition for a momentum variable p conjugate to a group element U is

$$
p=p_{a} T_{a} \text { so } p \in \mathcal{L}(G)
$$

with T_{a} the (hermitian) generators of the group and define the equation of motion for U to be

$$
\dot{U}=i p U
$$

- The extra appearance of U shows we need to rotate the Lie algebra (where p lives) to be tangent to U. The left multiplication is a convention (right works just as well).

Molecular dynamics (5)

- The (group invariant) kinetic term is

$$
T=\operatorname{Tr} p^{2}=\frac{1}{2} \sum_{a} p_{a}^{2}
$$

and so the co-ordinates p_{a} are still normally distributed.

- A toy example:

$$
S[U]=\operatorname{Re} \operatorname{Tr} U \Sigma \text { so } \mathcal{H}[U, p]=\operatorname{Tr} p^{2}+\operatorname{Re} \operatorname{Tr} U \Sigma
$$

with $U \in S U(N)$ and $\Sigma \in G L(N)$ a constant background.

- A simple way to find the equations of motion is to demand the hamiltonian is conserved and use the definition of \dot{p}, so:

$$
\dot{\mathcal{H}}=2 \operatorname{Tr} \dot{p} p+\operatorname{Re} \operatorname{Tr} \dot{U} \Sigma=0
$$

substitute $\dot{U}=i p U$ and we get

$$
\dot{p}=\frac{i}{4}\left\{U \Sigma-\Sigma^{\dagger} U^{\dagger}-\frac{1}{N} \operatorname{Tr}\left(U \Sigma-\Sigma^{\dagger} U^{\dagger}\right)\right\}
$$

Molecular dynamics (6)

- Now QCD:

$$
S=\beta \sum_{x} \operatorname{Re} \operatorname{Tr}\left(1-U_{\square}(x)\right)+\phi^{*}\left[M^{\dagger} M\right]^{-1} \phi
$$

the ϕ fields are (usually) held fixed in the integration stage, and are drawn at the start of the trajectory from a heat-bath (since they are normally distributed).

- The force term from the gauge action is the staple sum - the same object found in the Gibbs sampler methods. For the pseudofermions

$$
\frac{d}{d t}\left\{\phi^{*}\left[M^{\dagger} M\right]^{-1} \phi\right\}=-\phi^{*}\left[M^{\dagger} M\right]^{-1} \frac{d}{d t}\left(M^{\dagger} M\right)\left[M^{\dagger} M\right]^{-1} \phi
$$

- Define $X=\left[M^{\dagger} M\right]^{-1} \phi$ and $Y=M X$, we get

$$
\frac{d}{d t}\left\{\phi^{*}\left[M^{\dagger} M\right]^{-1} \phi\right\}=-Y^{*} \frac{d M}{d t} X-X^{*} \frac{d M^{\dagger}}{d t} Y
$$

Molecular dynamics (7)

- The sparse structure of M generates a few terms, bilinear in the derived fields, X, Y; an example (for the Wilson fermion matrix) would yield a similar expression for Σ in

$$
\begin{aligned}
& \qquad \dot{p}_{\mu}(x) \propto i\left(U_{\mu}(x) \Sigma_{\mu}(x)-\Sigma^{\dagger} U_{\mu}^{\dagger}(x)-\frac{2}{N} \operatorname{Im} \operatorname{Tr} U_{\mu}(x) \Sigma_{\mu}(x)\right) \\
& \Sigma_{\mu}(x)=\left(1-\gamma_{\mu}\right)^{\alpha \beta} X^{\alpha}(x+\hat{\mu}) Y^{* \beta}(x)+\ldots \\
& (\alpha, \beta \text { spin components })
\end{aligned}
$$

- The computationally intensive part is computing X and Y; this requires sparse matrix inversion.
- Fortunately, for each (pair of) inverses computed, all links are updated.

Symplectic integrators

- Classical dynamics is a smooth flow in a phase space, $\Lambda=\left(\phi_{i}, \pi_{i}\right)$. Phase space has a geometric structure.

Symplectic integrators

- An integrator is a function $A: \Lambda \rightarrow \Lambda$ so $(\phi, \pi) \xrightarrow{A}\left(\phi^{\prime}, \pi^{\prime}\right)$
- Define the block Jacobian $K_{A}=\left(\begin{array}{ll}\frac{\partial \phi^{\prime}}{\partial \phi} & \frac{\partial \pi^{\prime}}{\partial \phi} \\ \frac{\partial \phi^{\prime}}{\partial \pi} & \frac{\partial \pi^{\prime}}{\partial \pi}\end{array}\right)$ and $J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
- Then integrator A is called symplectic if

$$
K_{A}^{T} J K_{A}=J
$$

- This structure means symplectic integrators behave like a Lie group with the Poisson bracket acting as the Lie bracket.

$$
\{f, g\}=\sum_{i} \frac{\partial f}{\partial \phi_{i}} \frac{\partial g}{\partial \pi_{i}}-\frac{\partial f}{\partial \pi_{i}} \frac{\partial g}{\partial \phi_{i}}
$$

The Seattle Phase Space Needle

- Integrating a simple one-dimensional system illustrates the difference between symplectic and non-symplectic (the Euler integrator)

Simple harmonic oscillator

Symplectic integrators (3)

- A useful linear operator on the space of functions on Λ is $\Delta_{X}=\{\cdot, X\}$ with X another operator on Λ then time-evolution for any function, f becomes

$$
\frac{d f}{d t}=\Delta_{\mathcal{H}} f=\{f, \mathcal{H}\} \quad \text { so } \quad f(t)=e^{t \Delta_{\mathcal{H}}} f(0)
$$

- $e^{t \Delta_{\mathcal{H}}}$ is hard (impossible) to construct in practise. Is there a recipe for constructing useful symplectic integrators?
- $\mathcal{H}=T+S$ so consider the action of Δ_{T} and Δ_{S}. For example,

$$
\Delta_{T} f=\{f, T\}=\sum_{i} \frac{\partial f}{\partial \phi_{i}} \pi_{i} \quad \text { so } \quad \Delta_{T} \phi_{i}=\pi_{i}, \Delta_{T} \pi_{i}=0
$$

this then leads to

$$
e^{h \Delta_{T}} f(\phi(t), \pi(t))=f(\phi(t)+h \pi(t), \pi(t))
$$

and so $e^{h \Delta_{T}}$ is just the symplectic operator that adds $h \pi$ to ϕ

Symplectic integrators (4)

- It is easy to apply the symplectic operators $e^{h \Delta_{T}}$ and $e^{h \Delta_{s}}$; they are just adding momenta and the force to π and ϕ respectively.
- The two simplest symmetric symplectic integrator are then

$$
e^{\frac{h}{2} \Delta_{T}} e^{h \Delta_{S}} e^{\frac{h}{2} \Delta_{T}} \text { and } e^{\frac{h}{2} \Delta_{S}} e^{h \Delta_{T}} e^{\frac{h}{2} \Delta_{S}}
$$

- and applying these n times forms the n-step leap-frog integrator.
- Since the poisson bracket behaves like a Lie algebra, we can use the Baker-Campbell-Hausdorff, so: $e^{\frac{h}{2} \Delta_{T}} e^{h \Delta_{S}} e^{\frac{h}{2} \Delta_{T}}=e^{h \Delta_{\mathcal{H}}+h^{3} \Delta^{\prime}}$ with

$$
\Delta^{\prime}=\frac{1}{12}\left[\Delta_{S},\left[\Delta_{S}, \Delta_{T}\right]\right]+\frac{1}{24}\left[\Delta_{T},\left[\Delta_{S}, \Delta_{T}\right]\right]
$$

- The Lie-algebraic properties also imply any compound of symplectic integrators can be written as $e^{h \Delta_{\mathcal{H}^{\prime}}}$ with \mathcal{H}^{\prime} some Hamiltonian. This implies there is a different energy function that is exactly conserved by every symplectic integrator. For leap-frog,

$$
\mathcal{H}^{\prime}=\mathcal{H}+\frac{h^{2}}{12}\left(\pi_{i} \frac{\partial^{2} S}{\partial \phi_{i} \phi_{j}} \pi_{j}-\frac{1}{2} \frac{\partial S}{\partial \phi_{i}} \frac{\partial S}{\partial \phi_{i}}\right)
$$

Symplectic integrators (5)

- Better integrators can be constructed, by building longer (symmetric) compounds. The Omelyan integrator is

$$
e^{h \mathcal{H}+h^{3} \Delta_{O}}=e^{\lambda h \Delta_{T}} e^{\frac{h}{2} \Delta_{S}} e^{(1-2 \lambda) h \Delta_{T}} e^{\frac{h}{2} \Delta_{S}} e^{\lambda h \Delta_{T}}
$$

and this gives

$$
\Delta_{O}=\alpha(\lambda)\left[\Delta_{T},\left[\Delta_{S}, \Delta_{T}\right]\right]+\beta(\lambda)\left[\Delta_{S},\left[\Delta_{S}, \Delta_{T}\right]\right]
$$

Minimising $\alpha^{2}+\beta^{2}$ gives $\lambda \approx 0.193$. This integrator works well, giving a speed-up of about 1.5-2.

- Getting rid of $\mathcal{O}\left(h^{2}\right)$ errors altogether using a compound of $e^{h \Delta_{T}}$ and $e^{h \Delta_{S}}$ requires seven terms, and is not useful in practice, since the integrators go unstable at smaller step-size.

Symplectic integrators (6)

- The action, S can often be split into a sum of terms, $S=S_{1}+S_{2}+\ldots$ each with its own force, $\frac{\partial S_{1}}{\partial \phi_{i}}, \frac{\partial S_{2}}{\partial \phi_{i}}, \ldots$ and symplectic integrator $e^{h \Delta S_{1}}, e^{h \Delta_{S_{2}}}, \ldots$
- If the forces have very different sizes, then this splitting can be used to build better integrators; write

$$
e^{h \Delta_{\mathcal{H}_{1}^{\prime}}}=\prod_{i=1}^{m} e^{\frac{h}{2 m} \Delta_{T}} e^{\frac{h}{m} \Delta_{S_{1}}} e^{\frac{h}{2 m} \Delta_{T}}
$$

then a modified leapfrog integrator is

$$
e^{\frac{h}{2} \Delta_{S_{2}}} e^{h \mathcal{H}_{1}^{\prime}} e^{\frac{h}{2} \Delta_{S_{2}}}
$$

J.Sexton and D.Weingarten, Nucl. Phys. B380 (1992), 665

- This integrator has two time-scales, h and $\frac{h}{m}$ and tuning these scales leads to a faster algorithm, provided the force that is computationally cheap dominates.

Extensions to HMC (1)

- Odd-flavour simulations can be performed in HMC. Now the required importance sampling measure is $|\operatorname{det} M|$ and this is converted (using γ_{5}-hermiticity) to $\operatorname{det} \sqrt{M^{\dagger} M}$. This is then bosonised as before.
- Computationally efficient ways of representing $\sqrt{M^{\dagger} M}$ needed.
- Polynomial approximations: PHMC K. Jansen and R. Frezzotti, Phys. Lett. B402 (1997) 328 If $\mathcal{P}(x) \approx \frac{1}{\sqrt{x}}$, then the action on the pseudofermions becomes

$$
\begin{gathered}
S_{\phi}=\phi^{*} \mathcal{P}\left(M^{\dagger} M\right) \phi=\phi^{*}\left(\prod_{i=1}^{N}\left(M^{\dagger} M-z_{i}\right)\right) \phi, \text { with } z_{i} \text { the roots of } \mathcal{P} \\
=\phi^{*}\left(\prod_{i=1}^{N}\left(\gamma_{5} M-\sqrt{z_{i}}\right)\left(\gamma_{5} M-{\sqrt{z_{i}}}^{*}\right)\right) \phi
\end{gathered}
$$

- Differentiating with respect to molecular dynamics time gives

$$
\frac{d S_{\phi}}{d t}=\sum_{i=1}^{N} Y_{i}^{*} \frac{d M}{d t} X_{i}+X_{i}^{*} \frac{d M^{\dagger}}{d t} Y_{i}
$$

Extensions to HMC (2)

- Rational approximations: RHMC
M.Clark and A.Kennedy, Nucl.Phys.B (Proc. Suppl.) 129 (2004) 850 If $\mathcal{R}(x)=\frac{A(x)}{B(x)} \approx \frac{1}{\sqrt{x}}$, then the action on the pseudofermions becomes

$$
S_{\phi}=\phi^{*} \mathcal{R}\left(M^{\dagger} M\right) \phi
$$

- A rational approximation (with A, B suitably chosen) can be written

$$
R(x)=c_{0}+\sum_{i=1}^{n} \frac{c_{i}}{x+d_{i}}
$$

For example, an optimised rational approximation (A. Kennedy, hep-lat/0504038) to $\frac{1}{\sqrt{x}}$ with $x \in[0.003,1]$ is $1 / \sqrt{x} \approx$

$$
\begin{aligned}
& 0.390460391 \frac{(x+2.3475661045)(x+0.1058344600)(x+0.0073063814)}{(x+0.4105999719)(x+0.0286165446)(x+0.0012779193)} \\
= & 0.3904603901+\frac{0.0511093775}{x+0.0012779193}+\frac{0.1408286237}{x+0.0286165446}+\frac{0.5964845033}{x+0.4105999719}
\end{aligned}
$$

Extensions to HMC (3)

- The matrix approximation is then

$$
\left(M^{\dagger} M\right)^{-1 / 2} \approx \mathcal{R}\left(M^{\dagger} M\right)=c_{0}+\sum_{i=1}^{n} c_{i}\left(M^{\dagger} M+d_{i}\right)^{-1}
$$

- Now evaluating \mathcal{R} requires matrix inversion again, but the advantage is that machine precision can be reached for fairly low orders of polynomials, A, B in contrast to polynomial approximation.
- For rational approximations to $x^{-1 / 2}$ the coefficients are + ve.
- The solution of $\left(M^{\dagger} M+d_{i}\right) \chi_{i}=\phi$ for many different values of d_{i} can be achieved with "multi-mass" solver. Convergence determined by the least-well-conditioned problem (i.e. smallest d_{i}).
- Further modifications to the way the fermion determinant is represented are possible. Two of the most popular current methods are the Hasenbusch mass preconditioner and Lüscher's Schur alternating approach.
M.Hasenbusch - Phys.Lett.B519 (2001) 177 M.Lüscher - Comput.Phys.Commun 165 (2005) 199.

Krylov Space methods (1)

- For almost all these methods, we need an efficient way of solving $A[U] \psi=\eta$ for a sparse matrix A.
- The most common way to solve these problems is to use a Krylov space method. The n-dimensional Krylov space, $\mathcal{K}_{n}\left(A, v_{0}\right)$ is the vector space

$$
\operatorname{span}\left\{v_{0}, A v_{0}, A^{2} v_{0}, \ldots\right\}
$$

- When $n=N$, the rank of A the solution must lie in $\mathcal{K}_{n}\left(A, v_{0}\right)$ (Cayley-Hamilton). N is large, these methods are considered as iterative, with "good" convergence properties (usually exponential).
- New methods are emerging that are not Krylov space methods (such as deflation methods).

Krylov Space methods (2)

- For A positive-definite hermitian, then the best method is (usually) conjugate gradient:

The conjugate gradient algorithm

$$
r_{0}=\eta-A \psi_{0}, p_{0}=r_{0}
$$

Until convergence ($\left|r_{k}\right|$ small $)$, repeat for $k=0,1,2, \ldots$

$$
\begin{gathered}
\alpha_{k}=\frac{r_{k}^{*} \cdot r_{k}}{p_{k}^{*} \cdot A p_{k}} \\
\psi_{k+1}=\psi_{k}+\alpha_{k} p_{k} \\
r_{k+1}=\psi_{k}-\alpha_{k} A p_{k} \\
\beta_{k}=\frac{r_{k+1}^{*} \cdot r_{k+1}}{r_{k}^{*} \cdot r_{k}} \\
p_{k+1}=r_{k+1}+\beta_{k} p_{k}
\end{gathered}
$$

- Simple iterations and low storage requirements

Krylov Space methods (3)

- For A non-hermitian, the method is generalised to the BiCG algorithm, which has some improved versions, BiCGStab,
- Convergence of these methods is accelerated through preconditioning. In lattice QCD with Wilson-like quarks, the most commonly used form is even-odd (or red-black) preconditioning. Write $M \psi=\eta$ as

$$
\left(\begin{array}{cc}
M_{e e} & M_{e o} \\
M_{o e} & M_{o o}
\end{array}\right)\binom{\psi_{e}}{\psi_{o}}=\binom{\eta_{e}}{\eta_{o}}
$$

and then solve the equivalent problem:
$\left(\begin{array}{cc}M_{e e} & 0 \\ 0 & M_{o o}-M_{o e} M_{e e}^{-1} M_{e o}\end{array}\right)\binom{\psi_{e}+M_{e e}^{-1} M_{e o} \psi_{o}}{\psi_{0}}=\binom{\eta_{e}}{\eta_{o}-M_{o e} M_{e e}^{-1} \eta_{e}}$

- Recently, interest has been in methods that use "deflation". Here, as the Krylov space is constructed, an set of approximate low eigenvectors for A is built and stored. These can be used in to accelerate inversion. See e.g.
W. Wilcox, presentation at Lattice 2007.

