Numerical methods for lattice field theory

Mike Peardon

Trinity College Dublin

August 11, 2007

Numerical methods - references

- Good introduction to the concepts: "Simulation", Sheldon M. Ross, Academic Press ISBN 0-12-598053-1
- Detail on the theory of Markov chains: "Markov chains, Gibbs fields, Monte Carlo simulations and queues", Pierre Brémaud, Springer ISBN 0-387-98509-3
- A classic: "The Art of Computer Programming, Volume 2" Donald E. Knuth, Addison-Wesley ISBN 0-201-48541-9.
- And another: "Numerical Recipes: The Art of Scientific Computing (3rd Edition)", Press, Teukolsky, Vetterling and Flannery, CUP ISBN 0-521-88068-8
- Applications to field theory: "The Monte Carlo method in quantum field theory", Colin Morningstar arXiv:hep-lat/0702020

Monte Carlo integration of the path integral of QFTs

- The ergodic theorem tells us Markov chains can be used to perform importance sampling Monte Carlo. We have seen a few methods for building suitable Markov processes with a stationary state of our choice.
- Making predictions from the (Euclidean) path integral of a lattice quantum field theory is now possible.

$$\langle F \rangle = \frac{1}{Z} \int \mathcal{D}\phi \ F(\phi) e^{-S(\phi)}$$

- The (finite) lattice has made the path integral a high-dimensional "ordinary" integral, which we can estimate using Monte Carlo.
- The Boltzmann weight of configurations means only miniscule fractions of the configuration space contribute to the integral it is crucial to use importance sampling.

Monte Carlo integration of the path integral of QFTs

 \bullet Start with bosonic fields. For a field ϕ representing a scalar boson on the lattice, we have

$$\mathcal{S}(\phi) = \sum_{x,y} \phi_x \mathcal{M}_{xy} \phi_y + \sum_x \mathcal{S}_{ ext{int}}(\phi_x)$$

• $M_{x,y}$ describes the Klein-Gordon operator, so we could discretise on a lattice with spacing *a* using

$$M_{x,y} = (am)^2 \delta_{x,y} - \sum_{\mu} \left(\delta_{x+\hat{\mu},y} + \delta_{x-\hat{\mu},y} - 2\delta_{x,y} \right)$$

• Since (usually) S_{int} is local, Metropolis-Hasting with a change at a single site will often work well. A suitable proposal step might be

$$\phi'_x = \phi_x + \delta$$

with δ drawn from a normal distribution with mean 0. The variance of this distribution can be used to control the acceptance rate, and so the efficiency of the simulation.

Gauge bosons

- For the pure Yang-Mills theory, the Wilson gauge action is localised.
- A link appears in the action in just 2d plaquette terms.
- A local update (Gibbs sampler) is computationally efficient.
- For a Gibbs sampler, the action break-up $(S_G = S_{\text{Gibbs}}(U_\mu(x) + \tilde{S}_\mu(x))$ becomes

 $S_{ ext{Gibbs}}[U_{\mu}(x)] = \operatorname{ReTr} (U_{\mu}(x)\Sigma_{\mu}(x))$

with

$$\Sigma_{\mu}(x) = \sum_{
u
eq \mu} U_{
u}(x+\hat{\mu})U^{\dagger}_{\mu}(x+\hat{
u})U^{\dagger}_{
u}(x) + U^{\dagger}_{
u}(x+\hat{\mu}-\hat{
u})U^{\dagger}_{\mu}(x-\hat{
u})U_{
u}(x-\hat{
u})$$

Gauge bosons

• Updating one link would require generating a group element from

$$\mu(U) = rac{\exp(-eta \operatorname{ReTr} U\Sigma)}{\int dU \exp(-eta \operatorname{ReTr} U\Sigma)}$$

- Creutz developed an algorithm for *SU*(2) (M. Creutz, Phys.Rev.D21 (1980) 2308-2315.)
- SU(2) has the useful property that $\Sigma = k\overline{U}, \overline{U} \in SU(2)$. so re-write the problem in terms of $U' = U\overline{U}$ and draw from

$$\frac{1}{Z}\exp(\frac{1}{2}\beta k \mathrm{Tr} \ U')dU'$$

• For SU(2), we can parameterise U' in terms of 4 real numbers

$$U = a_0 + i \sum_{k=1}^3 a_k \sigma_k$$

Gauge bosons

• The group-invariant Haar measure (for this parameterisation) is $dU' = \frac{1}{2\pi^2} \delta(|a|^2 - 1) d^4 a$ and changing to (three-dimensional) spherical polar co-ordinates deals with the constraint to give a distribution

$$d\Omega da_0 \;\; {1\over 2} \sqrt{1-a_0^2} e^{eta k a_0}$$

which means a_0 and the direction of the three-vector \underline{a} are independent (it has length $\sqrt{1-a_0^2}$).

- a_0 is generated with the rejection method, first using $e^{\beta k a_0}$, then accepting with probability $\sqrt{1-a_0^2}$.
- "We leave it to the interested reader to design his own scheme for randomly selecting the direction for <u>a</u>" (Creutz).
- Cabibbo and Marinari used this to make a "quasi-heatbath" method for general SU(N) by updating SU(2) subgroups. SU(2)

Fermions

- The lattice physicist's complaint: "why are there no grassmann-valued variables in my computer?"
- While the algebra is simple to formulate, it is tricky to handle directly in a computer (it *can* be represented as a matrix algebra)

$$\int \eta d\eta = 1, \;\; \int 1 \; d\eta = 0$$

• Direct representation of the algebra is avoided; integrate out a fermion bilinear to give an effective action.

$$\int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}M\psi} = \det M$$

- " γ_5 -hermiticity" ($M^{\dagger} = \gamma_5 M \gamma_5$) implies det M is real, but not that it is positive. Odd numbers of (mass-degenerate) fermions are potentially a problem: importance sampling need a +ve-definite weight.
- Use $|\det M|$ with sgn det M in the observables. This introduces a "sign problem": variances of estimators can be prohibitively large.

Fermions (2)

• Local Four-fermi (and more) interactions can be handled by introducing an auxiliary field. A simple example illustrates the idea:

$$e^{\sigma\bar{\psi}\Gamma\psi-\sigma^{2}/2} = 1 + \sigma\bar{\psi}\Gamma\psi + \frac{\sigma^{2}}{2}\left(\bar{\psi}\Gamma\psi\right)\left(\bar{\psi}\Gamma\psi\right) \quad \text{if} \quad \left(\bar{\psi}\Gamma\psi\right)^{3} = 0$$

SO

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} d\sigma \ e^{\sigma\bar{\psi}\Gamma\psi-\sigma^{2}/2} = 1 + \frac{1}{2}\left(\bar{\psi}\Gamma\psi\right)\left(\bar{\psi}\Gamma\psi\right) = e^{\frac{1}{2}\left(\bar{\psi}\Gamma\psi\right)\left(\bar{\psi}\Gamma\psi\right)}$$

- The four-fermi interaction at one site is then replaced by an interaction with a new (non-propagating!) field and a fermion bilinear
- We can now integrate out the fermion and put the auxiliary field on the computer.

Fermions (3)

- We have just postponed the problem of simulating fermions.
- Now we have a non-local function of the remaining (bosonic/gauge/auxiliary) fields that coupled to the fermions.
- Manipulating large determinants is computationally expensive. A "bosonisation" trick is commonly used: the pseudofermion field.
- For two flavours of fermions with a γ_5 -hermian lattice representation of the Dirac matrix, we have

$$\det M^2 = \det M^\dagger M = rac{1}{\det \ [M^\dagger M]^{-1}}$$

and this is represented as a gaussian integral;

$$rac{1}{\det{[M^{\dagger}M]^{-1}}} = \int \mathcal{D}\phi \mathcal{D}\phi^{*} ~~ \mathrm{e}^{-\phi^{*}[M^{\dagger}M]^{-1}\phi}$$

• The pseudofermions inherit the spin structure and colour charge.

• For (eg) quarks coupled to a gluon field, *M* depends on the links.

QCD

• With this machinery, Euclidean lattice QCD can be manipulated in a computer. An expression for an observable is:

$$\langle \mathsf{F}
angle = \int \mathcal{D} U \mathcal{D} \phi^* \mathcal{D} \phi ~~ \mathsf{F}[U] ~~ \mu(U,\phi^*,\phi)$$

where μ is the (importance sampling) weight

$$\mu(U,\phi^*,\phi) = \frac{1}{\mathcal{Z}} \exp\left\{-\beta S_G[U] - \phi^* \left(M^{\dagger}[U]M[U]\right)^{-1}\phi\right\}$$

with \mathcal{Z} the path integral

$$\mathcal{Z} = \int \mathcal{D}U\mathcal{D}\phi^*\mathcal{D}\phi \quad \exp\left\{-\beta S_G[U] - \phi^*\left(M^{\dagger}[U]M[U]\right)^{-1}\phi\right\}$$

 So if a Markov chain of configurations can be generated with stationary state μ then the ergodic theorem gives us (F) = E[F(U)]_μ

Molecular dynamics

• Consider a bosonic theory with a (possibly non-local) action *S*. The importance sampling measure we want to draw from is

$$\mu[\phi] = \frac{1}{Z} e^{-S[\phi]}$$

 For every degree of freedom in φ, add an independent partner, π. The joint probability distribution for this system is

$$\mu'[\phi,\pi] = \frac{1}{Z'} e^{-S[\phi] - T[\pi]}$$

 $E[f(\phi)]$ is unchanged: the density is a separable product $e^{-S} \times e^{-T}$

- We'll choose $T[\pi] = \frac{1}{2} \sum_{x} \pi^2$ so π is normally distributed.
- Now the magic sleight-of-hand; write

$\mathcal{H} = S + T$

and pretend \mathcal{H} is a (classical) hamiltonian, which defines equations of motion in a new fictitious time co-ordinate when π is thought of as the momentum conjugate to ϕ .

... a word from my sponsors...

William Rowan Hamilton (1805-1865)

Andrews Professor of Astronomy Trinity College Dublin

Molecular dynamics (2)

- These equations of motion define an area-preserving (Liouville's theorem) reversible mapping on the phase space {φ, π}.
- We can use this to define a Markov process suitable for importance sampling:
 - **(**) Draw π from the normal distribution.
 - **2** Integrate the equations of motion for \mathcal{H} for some time interval, τ .
- The equations of motion are

$$\dot{\phi}_i = \pi_i, \quad \dot{\pi}_i = -\frac{\partial S}{\partial \phi_i}$$

- but unfortunately it is usually impossible to write a simple expression that solves the equations of motion. We must use a numerical integrator and this will introduce a finite-step-size error.
- Langevin dynamics (stochastic differential equations) use a similar idea. The R-algorithm is adaptable to fractional powers of the fermion matrix, and is popular for staggered fermions.

Molecular dynamics (3)

- To avoid finite-step-size integrator errors for the equations of motion, a modified algorithm, **HMC** was proposed (S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Phys.Lett.B195 (1987) 216-222.)
- Remember that the Metropolis-Hastings algorithm has two parts; a reversible, area-preserving proposal step followed by an accept-reject test and it obeys detailed balance for a given stationary state.
- Numerical integrators that exactly preserve \mathcal{H} are hard to build, but ones that *almost* conserve \mathcal{H} but retain the important properties (reversibility and area-preservation) can be found.
- The best-known integrators with these properties are called reversible symplectic integrators.

The leap-frog integrator

- Update $\phi: \phi_i(t+\frac{h}{2}) = \phi_i(t) + \frac{h}{2}\pi_i(t)$
- Update $\pi: \pi_i(t+h) = \pi_i(t) h \frac{\partial S}{\partial \phi_i}(t+\frac{h}{2})$
- Update $\phi: \phi_i(t+h) = \phi_i(t+\frac{h}{2}) + \frac{h}{2}\pi_i(t)$

Hybrid Monte Carlo

Hybrid Monte Carlo

- **()** Draw new conjugate momenta, π from the normal distribution
- **2** Store the current field, ϕ and compute $\mathcal{H}(\pi, \phi)$
- O Integrate the equations of motion using a reversible, symplectic integrator with step-size h (such as leap-frog) so (φ, π) ^{leapfrog} (φ', π')
- Compute $\mathcal{H}(\pi', \phi')$ and the change, $\Delta \mathcal{H}$
- **③** Accept ϕ' as the new entry in the Markov chain with probability

$$\mathcal{P}_{
m acc} = {\sf min}\left[1, e^{-\Delta \mathcal{H}}
ight]$$

if the new configuration is rejected, then make ϕ the new entry.

• As
$$h
ightarrow 0, \Delta \mathcal{H}
ightarrow 0$$
, so $\mathcal{P}_{
m acc}
ightarrow 1$

• $E[e^{-\Delta \mathcal{H}}] = 1$ and $E[\Delta \mathcal{H}] = \frac{1}{2}E[(\Delta \mathcal{H})^2]$ for small $\Delta \mathcal{H}$

Molecular dynamics (4)

- For gauge theories, our degrees of freedom are constrained, so we need to define hamiltonian dynamics on curved manifolds.
- A Lie group *G* (all continuous gauge groups) has particularly helpful properties. At all points, there is a well-defined, tangent space (the Lie algebra at the identity element) in which conjugate momenta naturally live.
- A useful definition for a momentum variable *p* conjugate to a group element *U* is

 $p = p_a T_a$ so $p \in \mathcal{L}(G)$

with T_a the (hermitian) generators of the group and define the equation of motion for U to be

$\dot{U} = ipU$

• The extra appearance of *U* shows we need to rotate the Lie algebra (where *p* lives) to be tangent to *U*. The left multiplication is a convention (right works just as well).