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Numerical methods - references

Good introduction to the concepts: “Simulation”, Sheldon M. Ross,
Academic Press ISBN 0-12-598053-1

Detail on the theory of Markov chains: “Markov chains, Gibbs fields,
Monte Carlo simulations and queues”, Pierre Brémaud, Springer
ISBN 0-387-98509-3

A classic: “The Art of Computer Programming, Volume 2” Donald E.
Knuth, Addison-Wesley ISBN 0-201-48541-9.

And another: “Numerical Recipes: The Art of Scientific Computing
(3rd Edition)”, Press, Teukolsky, Vetterling and Flannery, CUP ISBN
0-521-88068-8

Applications to field theory: “The Monte Carlo method in quantum
field theory”, Colin Morningstar arXiv:hep-lat/0702020
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Monte Carlo integration of the path integral of QFTs

The ergodic theorem tells us Markov chains can be used to perform
importance sampling Monte Carlo. We have seen a few methods for
building suitable Markov processes with a stationary state of our
choice.

Making predictions from the (Euclidean) path integral of a lattice
quantum field theory is now possible.

〈F 〉 =
1

Z

∫
Dφ F (φ)e−S(φ)

The (finite) lattice has made the path integral a high-dimensional
“ordinary” integral, which we can estimate using Monte Carlo.

The Boltzmann weight of configurations means only miniscule
fractions of the configuration space contribute to the integral - it is
crucial to use importance sampling.
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Monte Carlo integration of the path integral of QFTs

Start with bosonic fields. For a field φ representing a scalar boson on
the lattice, we have

S(φ) =
∑
x ,y

φxMxyφy +
∑
x

Sint(φx)

Mx ,y describes the Klein-Gordon operator, so we could discretise on a
lattice with spacing a using

Mx ,y = (am)2δx ,y −
∑
µ

(δx+µ̂,y + δx−µ̂,y − 2δx ,y )

Since (usually) Sint is local, Metropolis-Hasting with a change at a
single site will often work well. A suitable proposal step might be

φ′x = φx + δ

with δ drawn from a normal distribution with mean 0. The variance
of this distribution can be used to control the acceptance rate, and so
the efficiency of the simulation.
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Gauge bosons

For the pure Yang-Mills theory, the
Wilson gauge action is localised.

A link appears in the action in just 2d
plaquette terms.

A local update (Gibbs sampler) is
computationally efficient.

For a Gibbs sampler, the action break-up
(SG = SGibbs(Uµ(x) + S̃µ(x)) becomes

SGibbs[Uµ(x)] = ReTr (Uµ(x)Σµ(x))

with

Σµ(x) =
∑
ν 6=µ

Uν(x + µ̂)U†
µ(x + ν̂)U†

ν(x)+U†
ν(x + µ̂− ν̂)U†

µ(x− ν̂)Uν(x− ν̂)
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Gauge bosons

Updating one link would require generating a group element from

µ(U) =
exp(−β ReTr UΣ)∫
dU exp(−βReTr UΣ)

Creutz developed an algorithm for SU(2) (M. Creutz, Phys.Rev.D21
(1980) 2308-2315.)

SU(2) has the useful property that Σ = kŪ, Ū ∈ SU(2). so re-write
the problem in terms of U ′ = UŪ and draw from

1

Z
exp(

1

2
βkTr U ′)dU ′

For SU(2), we can parameterise U ′ in terms of 4 real numbers

U = a0 + i
3∑

k=1

akσk
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Gauge bosons

The group-invariant Haar measure (for this parameterisation) is
dU ′ = 1

2π2 δ(|a|2 − 1)d4a and changing to (three-dimensional)
spherical polar co-ordinates deals with the constraint to give a
distribution

dΩda0
1

2

√
1− a2

0e
βka0

which means a0 and the direction of the three-vector a are

independent (it has length
√

1− a2
0).

a0 is generated with the rejection method, first using eβka0 , then

accepting with probability
√

1− a2
0.

“We leave it to the interested reader to design his own scheme for
randomly selecting the direction for a” (Creutz).

Cabibbo and Marinari used this to make a “quasi-heatbath” method
for general SU(N) by updating SU(2) subgroups. SU(2)
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Fermions
The lattice physicist’s complaint: “why are there no
grassmann-valued variables in my computer?”
While the algebra is simple to formulate, it is tricky to handle directly
in a computer (it can be represented as a matrix algebra)∫

ηdη = 1,

∫
1 dη = 0

Direct representation of the algebra is avoided; integrate out a
fermion bilinear to give an effective action.∫

Dψ̄Dψe−ψ̄Mψ = detM

“γ5-hermiticity” (M† = γ5Mγ5) implies det M is real, but not that it
is positive. Odd numbers of (mass-degenerate) fermions are
potentially a problem: importance sampling need a +ve-definite
weight.
Use | det M| with sgn det M in the observables. This introduces a
“sign problem”: variances of estimators can be prohibitively large.
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Fermions (2)

Local Four-fermi (and more) interactions can be handled by
introducing an auxiliary field. A simple example illustrates the idea:

eσψ̄Γψ−σ2/2 = 1 + σψ̄Γψ +
σ2

2

(
ψ̄Γψ

) (
ψ̄Γψ

)
if

(
ψ̄Γψ

)3
= 0

so

1

2π

∫ ∞

−∞
dσ eσψ̄Γψ−σ2/2 = 1 +

1

2

(
ψ̄Γψ

) (
ψ̄Γψ

)
= e

1
2(ψ̄Γψ)(ψ̄Γψ)

The four-fermi interaction at one site is then replaced by an
interaction with a new (non-propagating!) field and a fermion bilinear

We can now integrate out the fermion and put the auxiliary field on
the computer.
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Fermions (3)

We have just postponed the problem of simulating fermions.

Now we have a non-local function of the remaining
(bosonic/gauge/auxiliary) fields that coupled to the fermions.

Manipulating large determinants is computationally expensive. A
“bosonisation” trick is commonly used: the pseudofermion field.

For two flavours of fermions with a γ5-hermian lattice representation
of the Dirac matrix, we have

det M2 = detM†M =
1

det [M†M]−1

and this is represented as a gaussian integral;

1

det [M†M]−1
=

∫
DφDφ∗ e−φ

∗[M†M]−1φ

The pseudofermions inherit the spin structure and colour charge.

For (eg) quarks coupled to a gluon field, M depends on the links.
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QCD

With this machinery, Euclidean lattice QCD can be manipulated in a
computer. An expression for an observable is:

〈F 〉 =

∫
DUDφ∗Dφ F [U] µ(U, φ∗, φ)

where µ is the (importance sampling) weight

µ(U, φ∗, φ) =
1

Z
exp

{
−βSG [U]− φ∗

(
M†[U]M[U]

)−1
φ

}
with Z the path integral

Z =

∫
DUDφ∗Dφ exp

{
−βSG [U]− φ∗

(
M†[U]M[U]

)−1
φ

}
So if a Markov chain of configurations can be generated with
stationary state µ then the ergodic theorem gives us 〈F 〉 = E [F (U)]µ
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Molecular dynamics

Consider a bosonic theory with a (possibly non-local) action S . The
importance sampling measure we want to draw from is

µ[φ] =
1

Z
e−S[φ]

For every degree of freedom in φ, add an independent partner, π. The
joint probability distribution for this system is

µ′[φ, π] =
1

Z ′ e
−S[φ]−T [π]

E [f (φ)] is unchanged: the density is a separable product e−S × e−T

We’ll choose T [π] = 1
2

∑
x π

2 so π is normally distributed.

Now the magic sleight-of-hand; write

H = S + T

and pretend H is a (classical) hamiltonian, which defines equations of
motion in a new fictitious time co-ordinate when π is thought of as
the momentum conjugate to φ.
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. . . a word from my sponsors. . .

William Rowan Hamilton (1805-1865)

Andrews Professor of Astronomy
Trinity College Dublin

Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 11, 2007 13 / 20



Molecular dynamics (2)

These equations of motion define an area-preserving (Liouville’s
theorem) reversible mapping on the phase space {φ, π}.
We can use this to define a Markov process suitable for importance
sampling:

1 Draw π from the normal distribution.
2 Integrate the equations of motion for H for some time interval, τ .

The equations of motion are

φ̇i = πi , π̇i = − ∂S

∂φi

but unfortunately it is usually impossible to write a simple expression
that solves the equations of motion. We must use a numerical
integrator and this will introduce a finite-step-size error.

Langevin dynamics (stochastic differential equations) use a similar
idea. The R-algorithm is adaptable to fractional powers of the
fermion matrix, and is popular for staggered fermions.
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Molecular dynamics (3)
To avoid finite-step-size integrator errors for the equations of motion,
a modified algorithm, HMC was proposed (S. Duane, A.D. Kennedy,
B.J. Pendleton and D. Roweth, Phys.Lett.B195 (1987) 216-222.)
Remember that the Metropolis-Hastings algorithm has two parts; a
reversible, area-preserving proposal step followed by an accept-reject
test and it obeys detailed balance for a given stationary state.
Numerical integrators that exactly preserve H are hard to build, but
ones that almost conserve H but retain the important properties
(reversibility and area-preservation) can be found.
The best-known integrators with these properties are called reversible
symplectic integrators.

The leap-frog integrator

I Update φ : φi (t + h
2 ) = φi (t) + h

2πi (t)

I Update π : πi (t + h) = πi (t)− h ∂S
∂φi

(t + h
2 )

I Update φ : φi (t + h) = φi (t + h
2 ) + h

2πi (t)
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Hybrid Monte Carlo

Hybrid Monte Carlo

1 Draw new conjugate momenta, π from the normal distribution

2 Store the current field, φ and compute H(π, φ)

3 Integrate the equations of motion using a reversible, symplectic

integrator with step-size h (such as leap-frog) so (φ, π)
leapfrog−→ (φ′, π′)

4 Compute H(π′, φ′) and the change, ∆H
5 Accept φ′ as the new entry in the Markov chain with probability

Pacc = min
[
1, e−∆H

]
if the new configuration is rejected, then make φ the new entry.

As h → 0,∆H → 0, so Pacc → 1

E [e−∆H] = 1 and E [∆H] = 1
2E [(∆H)2] for small ∆H
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Molecular dynamics (4)

For gauge theories, our degrees of freedom are constrained, so we
need to define hamiltonian dynamics on curved manifolds.

A Lie group G (all continuous gauge groups) has particularly helpful
properties. At all points, there is a well-defined, tangent space (the
Lie algebra at the identity element) in which conjugate momenta
naturally live.

A useful definition for a momentum variable p conjugate to a group
element U is

p = paTa so p ∈ L(G )

with Ta the (hermitian) generators of the group and define the
equation of motion for U to be

U̇ = ipU

The extra appearance of U shows we need to rotate the Lie algebra
(where p lives) to be tangent to U. The left multiplication is a
convention (right works just as well).
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