Numerical methods for lattice field theory

Mike Peardon
Trinity College Dublin

August 11, 2007

Numerical methods - references

- Good introduction to the concepts: "Simulation", Sheldon M. Ross, Academic Press ISBN 0-12-598053-1
- Detail on the theory of Markov chains: "Markov chains, Gibbs fields, Monte Carlo simulations and queues", Pierre Brémaud, Springer ISBN 0-387-98509-3
- A classic: "The Art of Computer Programming, Volume 2" Donald E. Knuth, Addison-Wesley ISBN 0-201-48541-9.
- And another: "Numerical Recipes: The Art of Scientific Computing (3rd Edition)", Press, Teukolsky, Vetterling and Flannery, CUP ISBN 0-521-88068-8
- Applications to field theory: "The Monte Carlo method in quantum field theory", Colin Morningstar arXiv:hep-lat/0702020

Monte Carlo integration of the path integral of QFTs

- The ergodic theorem tells us Markov chains can be used to perform importance sampling Monte Carlo. We have seen a few methods for building suitable Markov processes with a stationary state of our choice.
- Making predictions from the (Euclidean) path integral of a lattice quantum field theory is now possible.

$$
\langle F\rangle=\frac{1}{Z} \int \mathcal{D} \phi \quad F(\phi) e^{-S(\phi)}
$$

- The (finite) lattice has made the path integral a high-dimensional "ordinary" integral, which we can estimate using Monte Carlo.
- The Boltzmann weight of configurations means only miniscule fractions of the configuration space contribute to the integral - it is crucial to use importance sampling.

Monte Carlo integration of the path integral of QFTs

- Start with bosonic fields. For a field ϕ representing a scalar boson on the lattice, we have

$$
S(\phi)=\sum_{x, y} \phi_{x} M_{x y} \phi_{y}+\sum_{x} S_{\mathrm{int}}\left(\phi_{x}\right)
$$

- $M_{x, y}$ describes the Klein-Gordon operator, so we could discretise on a lattice with spacing a using

$$
M_{x, y}=(a m)^{2} \delta_{x, y}-\sum_{\mu}\left(\delta_{x+\hat{\mu}, y}+\delta_{x-\hat{\mu}, y}-2 \delta_{x, y}\right)
$$

- Since (usually) $S_{\text {int }}$ is local, Metropolis-Hasting with a change at a single site will often work well. A suitable proposal step might be

$$
\phi_{x}^{\prime}=\phi_{x}+\delta
$$

with δ drawn from a normal distribution with mean 0 . The variance of this distribution can be used to control the acceptance rate, and so the efficiency of the simulation.

Gauge bosons

- For the pure Yang-Mills theory, the Wilson gauge action is localised.
- A link appears in the action in just $2 d$ plaquette terms.
- A local update (Gibbs sampler) is computationally efficient.

- For a Gibbs sampler, the action break-up $\left(S_{G}=S_{\text {Gibbs }}\left(U_{\mu}(x)+\tilde{S}_{\mu}(x)\right)\right.$ becomes

$$
S_{\text {Gibbs }}\left[U_{\mu}(x)\right]=\operatorname{Re} \operatorname{Tr}\left(U_{\mu}(x) \Sigma_{\mu}(x)\right)
$$

with

$$
\Sigma_{\mu}(x)=\sum_{\nu \neq \mu} U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)+U_{\nu}^{\dagger}(x+\hat{\mu}-\hat{\nu}) U_{\mu}^{\dagger}(x-\hat{\nu}) U_{\nu}(x-\hat{\nu})
$$

Gauge bosons

- Updating one link would require generating a group element from

$$
\mu(U)=\frac{\exp (-\beta \operatorname{Re} \operatorname{Tr} U \Sigma)}{\int d U \exp (-\beta \operatorname{Re} \operatorname{Tr} U \Sigma)}
$$

- Creutz developed an algorithm for $S U(2)$ (M. Creutz, Phys.Rev.D21 (1980) 2308-2315.)
- $S U(2)$ has the useful property that $\Sigma=k \bar{U}, \bar{U} \in S U(2)$. so re-write the problem in terms of $U^{\prime}=U \bar{U}$ and draw from

$$
\frac{1}{Z} \exp \left(\frac{1}{2} \beta k \operatorname{Tr} U^{\prime}\right) d U^{\prime}
$$

- For $S U(2)$, we can parameterise U^{\prime} in terms of 4 real numbers

$$
U=a_{0}+i \sum_{k=1}^{3} a_{k} \sigma_{k}
$$

Gauge bosons

- The group-invariant Haar measure (for this parameterisation) is $d U^{\prime}=\frac{1}{2 \pi^{2}} \delta\left(|a|^{2}-1\right) d^{4} a$ and changing to (three-dimensional) spherical polar co-ordinates deals with the constraint to give a distribution

$$
d \Omega d a_{0} \frac{1}{2} \sqrt{1-a_{0}^{2}} e^{\beta k a_{0}}
$$

which means a_{0} and the direction of the three-vector \underline{a} are independent (it has length $\sqrt{1-a_{0}^{2}}$).

- a_{0} is generated with the rejection method, first using $e^{\beta k a_{0}}$, then accepting with probability $\sqrt{1-a_{0}^{2}}$.
- "We leave it to the interested reader to design his own scheme for randomly selecting the direction for $\underline{a}^{\prime \prime}$ (Creutz).
- Cabibbo and Marinari used this to make a "quasi-heatbath" method for general $S U(N)$ by updating $S U(2)$ subgroups. $S U(2)$

Fermions

- The lattice physicist's complaint: "why are there no grassmann-valued variables in my computer?"
- While the algebra is simple to formulate, it is tricky to handle directly in a computer (it can be represented as a matrix algebra)

$$
\int \eta d \eta=1, \quad \int 1 d \eta=0
$$

- Direct representation of the algebra is avoided; integrate out a fermion bilinear to give an effective action.

$$
\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\bar{\psi} M \psi}=\operatorname{det} M
$$

- " γ_{5}-hermiticity" ($M^{\dagger}=\gamma_{5} M \gamma_{5}$) implies det M is real, but not that it is positive. Odd numbers of (mass-degenerate) fermions are potentially a problem: importance sampling need a +ve-definite weight.
- Use $|\operatorname{det} M|$ with $\operatorname{sgn} \operatorname{det} M$ in the observables. This introduces a "sign problem" : variances of estimators can be prohibitively large.

Fermions (2)

- Local Four-fermi (and more) interactions can be handled by introducing an auxiliary field. A simple example illustrates the idea:

$$
e^{\sigma \bar{\psi} \Gamma \psi-\sigma^{2} / 2}=1+\sigma \bar{\psi}\left\ulcorner\psi+\frac{\sigma^{2}}{2}\left(\overline { \psi } \ulcorner \psi) \left(\overline { \psi } \ulcorner \psi) \quad \text { if } \quad \left(\bar{\psi}\ulcorner\psi)^{3}=0\right.\right.\right.\right.
$$

so

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \sigma \quad e^{\sigma \bar{\psi}\left\ulcorner\psi-\sigma^{2} / 2\right.}=1+\frac{1}{2}\left(\overline { \psi } \ulcorner \psi) \left(\bar{\psi}\ulcorner\psi)=e^{\frac{1}{2}(\bar{\psi}\ulcorner\psi)(\bar{\psi}\ulcorner\psi)}\right.\right.
$$

- The four-fermi interaction at one site is then replaced by an interaction with a new (non-propagating!) field and a fermion bilinear
- We can now integrate out the fermion and put the auxiliary field on the computer.

Fermions (3)

- We have just postponed the problem of simulating fermions.
- Now we have a non-local function of the remaining (bosonic/gauge/auxiliary) fields that coupled to the fermions.
- Manipulating large determinants is computationally expensive. A "bosonisation" trick is commonly used: the pseudofermion field.
- For two flavours of fermions with a γ_{5}-hermian lattice representation of the Dirac matrix, we have

$$
\operatorname{det} M^{2}=\operatorname{det} M^{\dagger} M=\frac{1}{\operatorname{det}\left[M^{\dagger} M\right]^{-1}}
$$

and this is represented as a gaussian integral;

$$
\frac{1}{\operatorname{det}\left[M^{\dagger} M\right]^{-1}}=\int \mathcal{D} \phi \mathcal{D} \phi^{*} \quad e^{-\phi^{*}\left[M^{\dagger} M\right]^{-1} \phi}
$$

- The pseudofermions inherit the spin structure and colour charge.
- For (eg) quarks coupled to a gluon field, M depends on the links.

QCD

- With this machinery, Euclidean lattice QCD can be manipulated in a computer. An expression for an observable is:

$$
\langle F\rangle=\int \mathcal{D} U \mathcal{D} \phi^{*} \mathcal{D} \phi \quad F[U] \quad \mu\left(U, \phi^{*}, \phi\right)
$$

where μ is the (importance sampling) weight

$$
\mu\left(U, \phi^{*}, \phi\right)=\frac{1}{\mathcal{Z}} \exp \left\{-\beta S_{G}[U]-\phi^{*}\left(M^{\dagger}[U] M[U]\right)^{-1} \phi\right\}
$$

with \mathcal{Z} the path integral

$$
\mathcal{Z}=\int \mathcal{D} \cup \mathcal{D} \phi^{*} \mathcal{D} \phi \exp \left\{-\beta S_{G}[U]-\phi^{*}\left(M^{\dagger}[U] M[U]\right)^{-1} \phi\right\}
$$

- So if a Markov chain of configurations can be generated with stationary state μ then the ergodic theorem gives us $\langle F\rangle=E[F(U)]_{\mu}$

Molecular dynamics

- Consider a bosonic theory with a (possibly non-local) action S. The importance sampling measure we want to draw from is

$$
\mu[\phi]=\frac{1}{Z} e^{-S[\phi]}
$$

- For every degree of freedom in ϕ, add an independent partner, π. The joint probability distribution for this system is

$$
\mu^{\prime}[\phi, \pi]=\frac{1}{Z^{\prime}} e^{-S[\phi]-T[\pi]}
$$

$E[f(\phi)]$ is unchanged: the density is a separable product $e^{-S} \times e^{-T}$

- We'll choose $T[\pi]=\frac{1}{2} \sum_{x} \pi^{2}$ so π is normally distributed.
- Now the magic sleight-of-hand; write

$$
\mathcal{H}=S+T
$$

and pretend \mathcal{H} is a (classical) hamiltonian, which defines equations of motion in a new fictitious time co-ordinate when π is thought of as the momentum conjugate to ϕ.

William Rowan Hamilton (1805-1865)

Molecular dynamics (2)

- These equations of motion define an area-preserving (Liouville's theorem) reversible mapping on the phase space $\{\phi, \pi\}$.
- We can use this to define a Markov process suitable for importance sampling:
(1) Draw π from the normal distribution.
(2) Integrate the equations of motion for \mathcal{H} for some time interval, τ.
- The equations of motion are

$$
\dot{\phi}_{i}=\pi_{i}, \quad \dot{\pi}_{i}=-\frac{\partial S}{\partial \phi_{i}}
$$

- but unfortunately it is usually impossible to write a simple expression that solves the equations of motion. We must use a numerical integrator and this will introduce a finite-step-size error.
- Langevin dynamics (stochastic differential equations) use a similar idea. The R-algorithm is adaptable to fractional powers of the fermion matrix, and is popular for staggered fermions.

Molecular dynamics (3)

- To avoid finite-step-size integrator errors for the equations of motion, a modified algorithm, HMC was proposed (S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Phys.Lett.B195 (1987) 216-222.)
- Remember that the Metropolis-Hastings algorithm has two parts; a reversible, area-preserving proposal step followed by an accept-reject test and it obeys detailed balance for a given stationary state.
- Numerical integrators that exactly preserve \mathcal{H} are hard to build, but ones that almost conserve \mathcal{H} but retain the important properties (reversibility and area-preservation) can be found.
- The best-known integrators with these properties are called reversible symplectic integrators.

The leap-frog integrator

- Update $\phi: \phi_{i}\left(t+\frac{h}{2}\right)=\phi_{i}(t)+\frac{h}{2} \pi_{i}(t)$
- Update $\pi: \pi_{i}(t+h)=\pi_{i}(t)-h \frac{\partial S}{\partial \phi_{i}}\left(t+\frac{h}{2}\right)$
- Update $\phi: \phi_{i}(t+h)=\phi_{i}\left(t+\frac{h}{2}\right)+\frac{h}{2} \pi_{i}(t)$

Hybrid Monte Carlo

Hybrid Monte Carlo

(1) Draw new conjugate momenta, π from the normal distribution
(2) Store the current field, ϕ and compute $\mathcal{H}(\pi, \phi)$
(3) Integrate the equations of motion using a reversible, symplectic integrator with step-size h (such as leap-frog) so $(\phi, \pi) \xrightarrow{\text { leapfrog }}\left(\phi^{\prime}, \pi^{\prime}\right)$
(9) Compute $\mathcal{H}\left(\pi^{\prime}, \phi^{\prime}\right)$ and the change, $\Delta \mathcal{H}$
(0) Accept ϕ^{\prime} as the new entry in the Markov chain with probability

$$
\mathcal{P}_{\mathrm{acc}}=\min \left[1, e^{-\Delta \mathcal{H}}\right]
$$

if the new configuration is rejected, then make ϕ the new entry.

- As $h \rightarrow 0, \Delta \mathcal{H} \rightarrow 0$, so $\mathcal{P}_{\text {acc }} \rightarrow 1$
- $E\left[e^{-\Delta \mathcal{H}}\right]=1$ and $E[\Delta \mathcal{H}]=\frac{1}{2} E\left[(\Delta \mathcal{H})^{2}\right]$ for small $\Delta \mathcal{H}$

Molecular dynamics (4)

- For gauge theories, our degrees of freedom are constrained, so we need to define hamiltonian dynamics on curved manifolds.
- A Lie group G (all continuous gauge groups) has particularly helpful properties. At all points, there is a well-defined, tangent space (the Lie algebra at the identity element) in which conjugate momenta naturally live.
- A useful definition for a momentum variable p conjugate to a group element U is

$$
p=p_{a} T_{a} \text { so } p \in \mathcal{L}(G)
$$

with T_{a} the (hermitian) generators of the group and define the equation of motion for U to be

$$
\dot{U}=i p U
$$

- The extra appearance of U shows we need to rotate the Lie algebra (where p lives) to be tangent to U. The left multiplication is a convention (right works just as well).

