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Numerical methods - references

Good introduction to the concepts: “Simulation”, Sheldon M. Ross,
Academic Press ISBN 0-12-598053-1

Detail on the theory of Markov chains: “Markov chains, Gibbs fields,
Monte Carlo simulations and queues”, Pierre Brémaud, Springer
ISBN 0-387-98509-3

A classic: “The Art of Computer Programming, Volume 2” Donald E.
Knuth, Addison-Wesley ISBN 0-201-48541-9.

And another: “Numerical Recipes: The Art of Scientific Computing
(3rd Edition)”, Press, Teukolsky, Vetterling and Flannery, CUP ISBN
0-521-88068-8

Applications to field theory: “The Monte Carlo method in quantum
field theory”, Colin Morningstar arXiv:hep-lat/0702020
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Markov Processes

A more general method for generating points in
configuration space is provided by considering
Markov processes.

In 1906, Markov was interested in
demonstrating that independence was not
necessary to prove the (weak) law of large
numbers.

He analysed the alternating patterns of vowels
and consonants in Pushkin’s novel “Eugene
Onegin”.
In a Markov process, a system makes stochastic transitions such that
the probability of a transition occuring depends only on the start and
end states. The system retains no memory of how it came to be in
the current state. The resulting sequence of states of the system is
called a Markov chain.
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Markov Processes (2)

A Markov Chain

Let {ψi} for i = 0..n + 1 be a sequence of states generated from a finite
state space Ω by a stochastic process. Let χk ∈ Ω be a state, such that
χi ∪ χj = ∅ if i 6= j and Ω = χ1 ∪ χ2 ∪ χ3 ∪ . . . χm. If the conditional
probability obeys

P(ψn+1 = χi |ψn = χj , ψn−1 = χjn−1 , . . . , ψ0 = χj0) = P(ψn+1 = χi |ψn = χj),

then the sequence is called a Markov Chain

Moreover, if P(ψn+1 = χi |ψn = χj) is independent of n, the sequence
is a homogenous Markov chain.

From now on, most of the Markov chains we will consider will be
homogenous, so we’ll drop the label.
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Markov Processes (3)

The transition probabilites fully describe the system. They can be
written in matrix form (usually called the Markov matrix);

Mij = P(ψn+1 = χi |ψn = χj)

The probability the system is in a given state after one application of
the process is then

P(ψn+1 = χi ) =
m∑

j=1

P(ψn+1 = χi |ψn = χj)P(ψn = χj)

Writing the probabilistic state of the system as a vector, application
of the process looks like linear algebra

pi (n + 1) = P(ψn+1 = χi ) = Mijpj(n)
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Markov Processes (4)

An example: Seattle’s weather.
It is noticed by a resident that on a rainy day in Seattle, the
probability tomorrow is rainy is 80%. Similarly, on a sunny day the
probability tomorrow is sunny is 40%.
This suggests Seattle’s weather can be described by a (homogenous)
Markov process. From this data, can we compute the probability any
given day is sunny or rainy?
For this system, the Markov matrix is

Sunny Rainy
Sunny
Rainy

(
0.4
0.6

0.2
0.8

)
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Markov Processes (5)

If today is sunny, then ψ0 =

(
1
0

)
, the state vector for tomorrow is

then ψ1 =

(
0.4
0.6

)
, and ψ2 =

(
0.28
0.72

)
, ψ3 =

(
0.256
0.744

)
, . . .

If today is rainy, then ψ0 =

(
0
1

)
, the state vector for tomorrow is

then ψ1 =

(
0.2
0.8

)
, and ψ2 =

(
0.24
0.76

)
, ψ3 =

(
0.248
0.752

)
,

The vector ψ quickly collapses to a fixed-point, which must be π, the
eigenvector of M with eigenvalue 1, normalised such that∑2

i=1 πi = 1.

We find π =

(
0.25
0.75

)
. This is the invariant probability distribution

of the process; with no prior information these are the probabilities
any given day is sunny (25%) or rainy (75%).
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The Markov Matrix (1)
The Markov matrix has some elementary properties

1 Since all elements are probabilities,

0 ≤ Mij ≤ 1

2 Since the system always ends in Ω,

N∑
i=1

Mij = 1

From these properties alone, the eigenvalues of M must be in the
unit disk; |λ| ≤ 1, since if v is an eigenvector,∑

j

Mijvj = λvi =⇒ |
∑

j

Mijvj | = |λ||vi | =⇒
∑

j

Mij |vj | ≥ |λ||vi |

∑
j

(
|vj |
∑

i

Mij

)
≥ |λ|

∑
i

|vi | =⇒ 1 ≥ |λ|
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The Markov Matrix (2)

Also, a Markov matrix must have at least one eigenvalue equal
to unity. Considering the vector vi = 1, ∀i , we see∑

i

viMij =
∑

i

Mij = 1, ∀j

and thus v is a left-eigenvector, with eigenvalue 1.

Similarly, for the right-eigenvectors,∑
j

Mijvj = λvi =⇒
∑

j

vj

∑
i

Mij = λ
∑

i

vi =⇒
∑

j

vj = λ
∑

i

vi

and so either λ = 1 or if λ 6= 1 then
∑

i vi = 0
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Topology of the Markov matrix

To proceed, we need to consider the topology of the Markov matrix.
By topology, we mean the properties of the transition graph, a
directed graph with all states as nodes, and all non-zero transitions as
links between nodes. For example, the diagram below shows a Markov
matrix (with 0 < κ1,2,3,4 < 1) and the corresponding transition graph. 1− κ1 − κ2 κ3 0

κ1 κ4 0
κ2 1− κ3 − κ4 1

 1 2

3

A state χi is accessible from χj if there is some M such that
[MN ]ij > 0.

States χi and χj communicate if χi is accessible from χj and χj is
accessible from χi

States that communicate fall into classes; for the example above the
communication classes would be {1, 2}, {3}
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Topology of the Markov matrix (2)

If the chain has only one communication class, then it is said to be
irreducible.

Now define the return time, Ti for state χi . This is the biggest
possible interval between successive occurances of χi in the chain.

A state χi is called recurrent if P(Ti <∞) = 1, otherwise it is called
transient.

A recurrent state is called positive recurrent if E [Ti ] <∞,
otherwise it is null recurrent (positive recurrence means “the chain
will return if you wait”).

Recurrence is a communication class property; if χi and χj

communicate, they are both positive recurrent, both null recurrent or
both transient.

Since an irreducible chain has just one class, all states are have the
same nature.
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The important results. . .

Unique stationary state

An irreducible homogenous Markov chain has a unique stationary
distribution if and only if it is positive recurrent.

This stationary distribution is the only eigenvector of the Markov
matrix that can be interpreted as a probability, since if |λ| < 1 then∑

i vi = 0, so the entries in v must be both positive and negative.

The ergodic theorem

Let Xn, n ≥ 0 be an irreducible, positive recurrent Markov chain with
stationary distribution π and let f : Ω→ R such that∑

χ∈Ω

|f (χ)| π(χ) <∞

then for any initial state,

lim
N→∞

N∑
k=1

f (Xk) =
∑
χ∈Ω

f (χ) π(χ)
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Detailed Balance

So how can we construct Markov processes with our chosen fixed
point, π?

One very useful technique is to build methods that obey the detailed
balance condition for π.

Mijπj = Mjiπi (no sum)

and for a system described by continuous variables, this would read

P(φi ← φj)π(φj) = P(φj ← φi )π(φi )

where P now defines a probability density for making transitions from
two states.

If the Markov process obeys detailed balance for π, then

Mijπj = Mjiπi =⇒
∑

i

Mijπj =
∑

i

Mjiπi =⇒ πj =
∑

i

Mjiπi

and so π is the stationary distribution for M. If the chain is
irreducible and positive recurrent then this is unique.
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The Gibbs sampler
A commonly used Markov process to
generate importance sampling ensembles is
the Gibbs sampler

Use single-variable methods
(transformation, rejection, etc.) and
update each degree of freedom in turn.
The update order only changes
performance (as we shall see).

“A mathematician may say anything he
pleases, but a physicist must be at least
partially sane”

Let the current state of a system with m degrees of freedom be

Φ = {φ(1), φ(2), . . . , φ(q), . . . φ(m)}

and select a site, q to update and make the next entry in the chain

Φ′ = {φ(1), φ(2), . . . , φ′(q), . . . φ(m)}

by drawing φ′(q) from the conditional probability

π(q)(φ(q)) = π(φ(q)|φ(p 6=q))
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The Gibbs sampler (2)

The theorem of conditional probability P(A|B) = P(A ∩ B)/P(B)
tells us

π(φ(q)|φ(p 6=q)) =
π(Φ)

π(φ(p 6=q))

and

π(φ′(q)|φ(p 6=q)) =
π(Φ′)

π(φ(p 6=q))

so
π(φ′(q)|φ(p 6=q))

π(φ(q)|φ(p 6=q))
=
π(Φ′)

π(Φ)

so if the single-site update obeys detailed balance for the local
conditional probability (lhs) then it must also obey detailed balance
for the full system’s fixed point probability (rhs).

If all sites can be updated, then the chain is usually irreducible and
positive recurrent. Pathological cases can be constructed, however!
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Example 1 - the Ising model in 1d
A simple example: 1d Ising model with m spins.

Σ = {σ(i) ∈ {−1,+1}, i = 1..m} with σ(0) ≡ σ(m)

S(Σ) =
m∑

i=1

(1− σ(i)σ(i+1))

Ernst Ising

We want to generate configurations with stationary probability

π(Σ) =
1

Z (β)
e−βS(Σ)

(with β the inverse temperature) in order to perform importance
sampling. Use the Gibbs sampler to define a Markov chain.

At each step in the chain, replace spin σ(q) in Σ. Need the
conditional probability for this spin in the stationary state. It is

π(σ(q)|{σ(p 6=q)}) =
π(Σ)∑

σ(q)=±1 π(Σ)

Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 9, 2007 16 / 24



Example 1 - the Ising model in 1d (2)

Split off the part of S which depends on σ(q), (This is a
nearest-neighbour interaction, so computing this is cheap).

S = −σ(q)σ(q+1) − σ(q−1)σ(q) + S̃ (q)

so S̃ (q) is independent of σ(q)

The conditional probability becomes

π(σ(q)|{σ(p 6=q)}) =
eβσ(q)µ(q)−βS̃(q)∑

σ(q)=±1 eβσ(q)µ(q)−βS̃(q)
=

eβσ(q)µ(q)

2 coshβσ(q)µ(q)

with µ(q) = σ(q−1) + σ(q+1)

Now generating the Markov chain becomes

1 Choose a site q, throw away the current value of σ
(q)
i

2 Compute µ(q) (a local computation).

3 Draw a new value for σ
(q)
i+1 from the conditional probability

Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 9, 2007 17 / 24



The Metropolis-Hastings method (1)
Gibbs samplers are useful for local theories, but
inefficient when all degrees of freedom interact with
one-another.

More general methods are needed. . .

The Metropolis-Hastings algorithm is composed of two parts
1 A reversible proposal step, which suggests a new state Φ′

2 The accept/reject test.

Pacc = min

[
1,
π(Φ′)

π(Φ)

]
For a discrete system with states {χ1, χ2, . . . }, the Markov transition
probability for moving from state χj → χi is then

Mij = min

[
1,
πi

πj

]
Rij when i 6= j

where Rij = P(χi ← χj) is the conditional probability state χi is
proposed (in step 1) given the current state is χj .
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The Metropolis-Hastings method (2)

Mij

Mji
=

min
[
1, πi

πj

]
Rij

min
[
1,

πj

πi

]
Rji

Reversibility of the proposal step implies Rij = Rji and if

Mij

Mji
=
πi

πj
if πi ≤ πj or

Mij

Mji
=

1

πj/πi
=
πi

πj
if πi > πj

so detailed balance holds and if the proposal step is chosen carefully,
the Markov chain is irreducible and positive recurrent so it is a
suitable ensemble for importance sampling.

For a system described by continuous random numbers, the proposal
step must be an area-preserving mapping,

Φ′ : Ω→ Ω such that

∣∣∣∣DΦ′

DΦ

∣∣∣∣ = 1
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Autocorrelations
While the Markov process is called memoryless, this does not mean
nearby entries in the chain are independent random variables.
Statistical analysis of Markov Chain Monte Carlo data must thus be
done carefully.
Markov chains must be “burnt in” to remove dependence on the
initial state (often a very unlikely one!) before sampling is done.
To see this, consider a two-state system with homogenous Markov
matrix

M =

(
1− κ1 κ2

κ1 1− κ2

)
, 0 < κ1,2 < 1

The conditional probability is

P(ψt = χi |ψt−n = χj) = [Mn]ij

The eigenvalues of M are 1, λ2 = 1− κ1 − κ2 and

Mn =
1

κ1 + κ2

(
κ1 + λn

2κ2 κ1(1− λn
2)

κ2(1− λn
2) κ2 + λn

2κ1

)
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Autocorrelations (2)

M has two parts; one constant and the other ∝ λn
2.

Since the chain is irreducible and positive recurrent, |λ2| < 1 so the
correlation term falls exponentially; λn

2 = e−n/τ where
τ = 1/ ln(1− κ1 − κ2) is the (exponential) autocorrelation time.

Suppose we measure some observable Fi = f (ψi ) on the states in our
chain. The autocorrelation function of f on the chain is defined as

Cf (t) = E [(Fi+t − µF )(Fi − µF )] = E [FtF0]− µ2
F

so by definition, Cf (0) = σ2
F and the previous analysis suggests

lim
t→∞

Cf (t) ∝ e−t/τ

where τ is related to the second-largest eigenvalues of the Markov
matrix
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Autocorrelations (3)

We use our MC data to estimate an integral, and the sample variance
is also used to provided an uncertainty in our determination (via the
central limit theorem). For correlated data, more care is needed.

The variance of the sample mean, F̄ =
∑N

i=1 Fi for correlated data is

σ2
F̄

= E [F̄ 2]− E [F̄ ]2 =
1

N2

N∑
i=1

N∑
j=1

(
E [FiFj ]− µ2

F

)
then using the definition of the autocorrelation time

σ2
F̄

=
σ2

F

N

(
1 + 2

N−1∑
t=1

(1− t

N
)
CF (t)

CF (0)

)

The quantity in the bracket is often called the integrated
autocorrelation time of F . It is the ratio of the true variance of F̄
to the “naive” variance (σ2

F/N).
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Autocorrelations (4)

If measurements are expensive, make them on a subset of
well-separated configurations.

Another alternative is to bin data from the chain. Take the original
sequence and average over adjacent pairs

F1,F2,︸ ︷︷ ︸
F̄

(2)
1 ,

F3,F4,︸ ︷︷ ︸
F̄

(2)
2 ,

F5,F6,︸ ︷︷ ︸
F̄

(2)
3 ,

and compute the sample variance of F̄ (2). Since the autocorrelations
in this new variable are weaker, the “naive” error estimate will be
more reliable.

NB: The “naive” variance of the mean (assuming N independent)
measurements is σ2

F̄
= σ2

F/N

This binning is then repeated until a stable error estimate is found.

For more detail, see “Markov chain Monte Carlo simulations and their
statistical analysis” Bernd Berg (World Scientific ISBN 981-238-935-0).
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Autocorrelations (5)

Different algorithms (simulating the same physics) will have different
autocorrelation behaviour.

Want independent samples: smaller autocorrelations are better.

Example - 1d Ising model comparing the Gibbs sampler to a
Metropolis update where the proposal is a single spin-flip. Measure
the autocorrelation of the total magnetisation.

Metropolis is better.
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Markov time, t
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Metropolis (with flip proposal)
Gibbs sampler
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