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Numerical methods - references

Good introduction to the concepts: “Simulation”, Sheldon M. Ross,
Academic Press ISBN 0-12-598053-1

Detail on the theory of Markov chains: “Markov chains, Gibbs fields,
Monte Carlo simulations and queues”, Pierre Brémaud, Springer
ISBN 0-387-98509-3

A classic: “The Art of Computer Programming, Volume 2” Donald E.
Knuth, Addison-Wesley ISBN 0-201-48541-9.

And another: “Numerical Recipes: The Art of Scientific Computing
(3rd Edition)”, Press, Teukolsky, Vetterling and Flannery, CUP ISBN
0-521-88068-8

Applications to field theory: “The Monte Carlo method in quantum
field theory”, Colin Morningstar arXiv:hep-lat/0702020
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An opening comment . . .

Monte Carlo is the worst method for computing
non-perturbative properties of quantum field theories -
except for all other methods that have been tried from
time to time.

Churchill said:

“Democracy is the worst form of government, except for all those
other forms that have been tried from time to time” (in a speech to
the House of Commons after losing the 1947 general election).
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Probability (1)

Outcomes, Events and Sample Spaces

Assume we have a precise description of the outcome, ω of the observation
of a random process. The set of all possible outcomes is called the sample
space, Ω. Any subset A ⊂ Ω can be regarded as representing an event
occuring.

The notation of set theory is helpful.

A particularly useful collection of events, A1,A2, . . .An are those that
are mutually incompatible and exhaustive, which implies

Ai ∩ Aj = ∅ when i 6= j

and
∪N

k=1Ak = Ω
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Probability (2)

A random variable is a function X : Ω → R such that for a ∈ R, the
event {ω,X (ω) ≤ a} can be assigned a probability.

A discrete random variable is a random variable for which X : Ω → E ,
where E is a denumerable set.

Axioms of probability

A probability (measure) on (F ,Ω)a is a mapping P : F → R such that

1 0 ≤ P(A) ≤ 1

2 P(Ω) = 1

3 P(
∑N

k=1 Ak) =
∑N

k=1 P(Ak) if Ak are mutually incompatible.

aF is the collection of events that are assigned a probability; for obscure reasons it is
not the same as Ω
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Probability (3)
Two events are called independent if

P(A ∩ B) = P(A)P(B)

Similarly, two random variables, X and Y are called independent if for
all a, b ∈ R,

P(X ≤ a,Y ≤ b) = P(X ≤ a)P(Y ≤ b)

A conditional probability of event A given B is

P(A|B) =
P(A ∩ B)

P(B)

The cumulative distribution function, FX describes the properties of a
random variable X and is

FX (x) = P(X ≤ x)

The probability density function, fX is defined when FX can be written

FX (x) =

∫ x

−∞
fX (z)dz
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Statistics (1)

Expectation

For an absolutely continuous c.d.f, and a function g , the expectation,
E [g(X )] is defined as

E [g(X )] =

∫ ∞
−∞

g(z) fX (z)dz

Mean and variance

The mean, µX of X is

µX = E [X ] =

∫ ∞
−∞

z fX (z)dz

and the variance, σ2
X is

σ2
X = E [(X − µX )2] = E [X 2]− µ2

X
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Statistics (2)

The strong law of large numbers (Kolmogorov)

If X̄ (n) is the sample mean of n independent, identically distributed
random numbers, {X1,X2, . . .Xn} with well-defined expected value µX ,
and variance σX then X̄ (n) converges almost surely to µX ;

P
(

lim
n→∞

X̄ (n) = µX

)
= 1

Bernoulli: “...so simple that even the stupidest man instinctively
knows it is true”

The central limit theorem (de Moivre, Laplace, Lyapunov, . . . )

lim
n→∞

P

(
X̄ (n) − µX

σX/
√

n
≤ z

)
=

1√
2π

∫ z

−∞
e−y2/2dy

As more statistics are gathered, all sample means become normally
distributed.
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The central limit theorem

Prob. densitiesX

X̄ (n)

√
nX̄ (n)

n = 2 n = 5 n = 50
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Generating (pseudo-)random numbers on a computer

A deterministic machine like a computer is incapable of generating
really random numbers.

Randomness is faked; algorithms can be devised that generate
sequences of numbers that appear random.

To appear random implies statistical identities hold for large sets of
these numbers. Testing randomness is done by both looking at
statistical correlations (for example checking that using d adjacent
entries in a sequence as co-ordinates of a d-dimensional point does
not result in points that lie on certain planes in preference) and using
a simulation to compute something known analytically. The
best-known is Marsaglia’s Diehard test.

The elements of these sequences that have passed all the appropriate
statistical tests are called pseudo-random.

The original example is the linear congruential sequence. For details
see eg. Knuth.
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Generating (pseudo-)random numbers on a computer (2)

Suppose we generate a sequence by applying some deterministic
algorithm A

X0
A−→ X1

A−→ X2, . . .

If any entry in the sequence can take any of m values, then the
sequence must repeat itself in at most m iterations.

The number of iterations before a sequence repeats itself is called the
cycle, which may depend on the initial state, X0.

This repetition of the sequence over-and-over again is definitely not
random! A useful generator must thus have

I m large - at least as large as the number of random numbers needed in
the computer program, preferrably much more.

I The maximum possible cycle, independent of starting point, X0.
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Generating (pseudo-)random numbers on a computer (3)
The best-known algorithm is:

The linear congruential sequence

The sequence, X0,X1,X2, . . . with 0 ≤ Xi < m is generated by the
recursion

Xn+1 = aXn + c mod m

with
X0 the seed
a the multiplier 0 ≤ a < m
c the increment 0 ≤ c < m
m the modulus m > 0

The period can be maximised by ensuring

c is relatively prime to m,

b = a− 1 is a multiple of p for every prime p dividing m and

b is a multiple of 4 if m is a multiple of 4.

See Knuth for details.
Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 9, 2007 12 / 37



An example linear congruential sequence

To demonstrate this in action, let’s pick parameters according to the
prescription above

m = 90 = 5× 3× 3× 2 then c = 13, b = 5× 3× 2 → a = 31 and
seed with X0 = 0

The sequence is below. No number appears more than once.

0, 13, 56, 39, 52, 5, 78, 1, 44, 27, 40, 83,
66, 79, 32, 15, 28, 71, 54, 67, 20, 3, 16, 59,
42, 55, 8, 81, 4, 47, 30, 43, 86, 69, 82, 35,
18, 31, 74, 57, 70, 23, 6, 19, 62, 45, 58, 11,
84, 7, 50, 33, 46, 89, 72, 85, 38, 21, 34, 77,
60, 73, 26, 9, 22, 65, 48, 61, 14, 87, 10, 53,
36, 49, 2, 75, 88, 41, 24, 37, 80, 63, 76, 29,
12, 25, 68, 51, 64, 17
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Generating (pseudo-)random numbers on a computer (4)

Many more algorithms exist now, and are used in real lattice QCD
codes:

Lüscher’s ranlux
This generator, based on Marsaglia and Zaman’s RCARRY algorithm
has a long period (10171) when set up properly. The quality is
established by considering the dynamics of chaotic systems.
(M. Lüscher, “A portable high-quality random number generator for
lattice field theory simulations”, Comput. Phys. Commun 79 (1994),
100-110. hep-lat/9309020)

Matsumoto and Nishimura’s mersenne twister
The period length is a Mersenne prime, and the most
commonly-known variant has a period of 219937 − 1 ≈ 4× 106001.
(M. Matsumoto and T. Nishimura, ”Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator”, ACM Trans. on Modeling and Computer Simulation Vol.
8, No. 1, January (1998) 3-30)
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Generating more general distributions

We will find it useful soon to generate random numbers with more
general distributions.

Consider taking a uniform variate U and applying some function v
(defined in [0, 1]; let us also assume it is increasing in that region).
We get a new random variable, V = v(U).

What is the probability distribution of
V ? A simple analysis, shown in the
figure (right) shows that equating the
probabilities

gives

fV (v) =
du

dv
=

(
dv

du

)−1

0 1

min

max

v

v

dv

du
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The transformation method

This observation suggest an algorithm, provided the function v can be
found.

v is the solution to

u =

∫ v(u)

−∞
fX (z)dz

unfortunately, there are few pdfs for which this method is efficient!

Perhaps the most important example for QCD: the Box-Muller
algorithm, which generates pairs of normally distributed random
numbers.

The Box-Muller algorithm

1 Generate two independent u.v. random numbers, U1,2 ∈ (0, 1]

2 Set Θ = 2πU1 and R =
√
−2 lnU2

3 Return R cos Θ or R sin Θ (or both; they are independent).
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The rejection method

Consider the following experiment, for regions F and Q ⊂ F :

1 Generate a random point, P with
co-ordinates (X ,Y ) inside F

2 If P is also inside Q, return X .

3 Otherwise go back to step 1.

Region Q

Region F

y

x

What is the p.d.f. for X? Answer: q(x)/
∫

q(z) dz where q bounds
the region Q. (There is no need to know the normalisation of q).

The rejection method

1 Generate X from p.d.f. f

2 Generate Y = c f (X )U where U is a uniform variate and c is a
constant such that f (x) > q(x).

3 If Y < q(X ), return X otherwise go to step 1.
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Monte Carlo integration
Consider X , a random point in V with probability density function
pX (x). A new stochastic variable F is defined by applying a function
f to X , so F = f (X ).
The expected value of F is then

E (F ) =

∫
V

f (x)pX (x)dx

If N independent instances of X are generated, and then N instances
of F are derived, the mean of this ensemble is

〈F 〉N =
1

N

N∑
i=1

Fi

The basic result of Monte Carlo

lim
N→∞

〈F 〉N = E (F ) =

∫
V

f (x)pX (x)dx
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Monte Carlo integration - an example

Estimate

I =

∫ 1

0

sin 10π(1− x)√
x

dx

using Monte Carlo.

Generate an ensemble of uniform variate points, {U1,U2, . . . }.
Then evaluate Fi = f (Ui ) and compute the mean of this ensemble.
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Importance Sampling

For almost all the physics problems we want to solve, we find just a
tiny fraction of configuration space contributes to the integral;
variance reduction will be crucial.

The most useful variance reduction technique is importance sampling

Instead of a flat sampling over the integration volume, the regions
where the integral dominates are sampled preferentially

For any p(x) > 0 in V , we have

I =

∫
V

f (z) Dz =

∫
V

f (z)

p(z)
p(z) Dz

Suppose we generate an ensemble of points, {X1,X2, . . . } in V with
p.d.f. p and compute the random variable

Ji =
f (Xi )

p(Xi )
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Importance Sampling

Then (as seen above), E [J] = I , so the sample mean converges to the
answer, independently of p but . . .

. . . the variance is

σ2
J = E [J2]− E [J]2 =

∫
V

f (z)2

p(z)2
p(z) Dz − I 2 =

∫
V

f (z)2

p(z)
Dz − I 2

and so this does depend on the choice of p.

The optimal choice of p would minimise σ2
J , so a functional variation

calculation yields the optimal choice to be

p(x) =
|f (x)|∫

V |f (z)| Dz

In practice, it is usually difficult to draw from this sampling (since if
we could, it is likely we could compute I directly!), but this suggests p
should be peaked where |f | is peaked.

For QFTs, importance sampling is just a synonym for using the
Boltzmann weight in the Euclidean path integral (doesn’t have to be!)
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Importance Sampling (3)

Another example. Using Monte Carlo, estimate

I (a) = 2

∫ a

0

∫ a

0
e−(x2+y2)/2dxdy

Note that
lim

a→∞
I (a) = π

Simple Monte Carlo
1 Generate independent

uniform variates X ,Y ∈ [0, a]

2 Compute F = e−(X 2+Y 2)/2

3 Repeat N times, and average
result, F̄ (N) return 2a2F̄ (N)

Importance sampling
1 Generate normally

distributed X ,Y ∈ [0,∞]

2 G = 1 if X ≤ a,Y ≤ a.

3 Repeat N times, and average
result, Ḡ (N) return πḠ (N)

As a →∞, the region contributing almost all the integral (near the
origin) becomes fractionally smaller and smaller - variance in simple
MC estimate will diverge.

Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 9, 2007 22 / 37



Importance Sampling (4)
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The variance in the importance sampling estimator becomes zero as
a →∞
Unfortunately, so far we have only developed algorithms to generate
random numbers with a general probability distribution function in
very low dimensions - for field theory applications, we want to
calculate integrals in many thousands of dimensions...
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Markov Processes

A more general method for generating points in
configuration space is provided by considering
Markov processes.

In 1906, Markov was interested in
demonstrating that independence was not
necessary to prove the (weak) law of large
numbers.

He analysed the alternating patterns of vowels
and consonants in Pushkin’s novel “Eugene
Onegin”.
In a Markov process, a system makes stochastic transitions such that
the probability of a transition occuring depends only on the start and
end states. The system retains no memory of how it came to be in
the current state. The resulting sequence of states of the system is
called a Markov chain.
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Markov Processes (2)

A Markov Chain

Let {ψi} for i = 0..n + 1 be a sequence of states generated from a finite
state space Ω by a stochastic process. Let χk ∈ Ω be a state, such that
χi ∪ χj = ∅ if i 6= j and Ω = χ1 ∪ χ2 ∪ χ3 ∪ . . . χm. If the conditional
probability obeys

P(ψn+1 = χi |ψn = χj , ψn−1 = χjn−1 , . . . , ψ0 = χj0) = P(ψn+1 = χi |ψn = χj),

then the sequence is called a Markov Chain

Moreover, if P(ψn+1 = χi |ψn = χj) is independent of n, the sequence
is a homogenous Markov chain.

From now on, most of the Markov chains we will consider will be
homogenous, so we’ll drop the label.
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Markov Processes (3)

The transition probabilites fully describe the system. They can be
written in matrix form (usually called the Markov matrix);

Mij = P(ψn+1 = χi |ψn = χj)

The probability the system is in a given state after one application of
the process is then

P(ψn+1 = χi ) =
m∑

j=1

P(ψn+1 = χi |ψn = χj)P(ψn = χj)

Writing the probabilistic state of the system as a vector, application
of the process looks like linear algebra

pi (n + 1) = P(ψn+1 = χi ) = Mijpj(n)
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Markov Processes (4)

An example: Seattle’s weather.
It is noticed by a resident that on a rainy day in Seattle, the
probability tomorrow is rainy is 80%. Similarly, on a sunny day the
probability tomorrow is sunny is 40%.
This suggests Seattle’s weather can be described by a (homogenous)
Markov process. From this data, can we compute the probability any
given day is sunny or rainy?
For this system, the Markov matrix is

Sunny Rainy
Sunny
Rainy

(
0.4
0.6

0.2
0.8

)
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Markov Processes (5)

If today is sunny, then ψ0 =

(
1
0

)
, the state vector for tomorrow is

then ψ1 =

(
0.4
0.6

)
, and ψ2 =

(
0.28
0.72

)
, ψ3 =

(
0.256
0.744

)
, . . .

If today is rainy, then ψ0 =

(
0
1

)
, the state vector for tomorrow is

then ψ1 =

(
0.2
0.8

)
, and ψ2 =

(
0.24
0.76

)
, ψ3 =

(
0.248
0.752

)
,

The vector ψ quickly collapses to a fixed-point, which must be π, the
eigenvector of M with eigenvalue 1, normalised such that∑2

i=1 πi = 1.

We find π =

(
0.25
0.75

)
. This is the invariant probability distribution

of the process; with no prior information these are the probabilities
any given day is sunny (25%) or rainy (75%).
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The Markov Matrix (1)
The Markov matrix has some elementary properties

1 Since all elements are probabilities,

0 ≤ Mij ≤ 1

2 Since the system always ends in Ω,

N∑
i=1

Mij = 1

From these properties alone, the eigenvalues of M must be in the
unit disk; |λ| ≤ 1, since if v is an eigenvector,∑

j

Mijvj = λvi =⇒ |
∑

j

Mijvj | = |λ||vi | =⇒
∑

j

Mij |vj | ≥ |λ||vi |

∑
j

(
|vj |
∑

i

Mij

)
≥ |λ|

∑
i

|vi | =⇒ 1 ≥ |λ|
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The Markov Matrix (2)

Also, a Markov matrix must have at least one eigenvalue equal
to unity. Considering the vector vi = 1, ∀i , we see∑

i

viMij =
∑

i

Mij = 1, ∀j

and thus v is a left-eigenvector, with eigenvalue 1.

Similarly, for the right-eigenvectors,∑
j

Mijvj = λvi =⇒
∑

j

vj

∑
i

Mij = λ
∑

i

vi =⇒
∑

j

vj = λ
∑

i

vi

and so either λ = 1 or if λ 6= 1 then
∑

i vi = 0
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