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Introduction
To extract CKM matrix elements and test the Standard

Model using exclusive electroweak decays of mesons, the

form factors have to be known. The short-distance inter-

actions can be calculated perturbatively via an operator

product expansion which yields an effective Hamiltonian.

The hadronic matrix elements of this Hamiltonian must

then be calculated nonperturbatively, and lattice QCD

provides a first principles approach to this task.

A very interesting decay, for example, is B → K∗γ. As

a loop-mediated flavour-changing neutral current process

it is particularly sensitive to possible new physics contribu-

tions. The accurate lattice calculation of the correspond-

ing form factors is difficult due to the large b quark mass

and the high recoil momentum of the K∗, which cause

large discretization errors.

Both problems can be reduced simultaneously by describing the b quark with an

effective field theory called moving Non-Relativistic QCD (mNRQCD). Here, the B

meson is given a large momentum in the opposite direction so that the K∗ momentum

becomes smaller. The non-relativistic description of the b quark is performed in the

reference frame where the B meson is at rest, i.e. in a reference frame moving relative

to the lattice. In other words, not only the b quark mass is removed from the effective

Lagrangian as in standard NRQCD, but instead a 4-momentum mbu where u is an

arbitrary 4-velocity.

Form Factors and CKM Matrix Elements

The effective weak Hamiltonian relevant to B → K∗γ can be written as

Heff = −VtbV ∗
ts

GF√
2

8
∑

n=1

Cn(µ)On,

where O1, ..., O6 are 4-quark operators, O7 is an electromagnetic and O8 is a chromo-

magnetic dipole operator. The Cn(µ) are the Wilson coefficients. The operator O7 for

the direct transition b→ sγ results from Feynman diagrams like the following,

and is given by

O7 =
e

16π2
mb TµνF

µν
e.m. with Tµν = s̄σµν

1 + γ5

2
b.

Neglecting certain long-distance effects, one only needs to calculate the hadronic matrix

element of O7 and hence Tµν. It can be parametrized as follows:

qν〈K∗(k, ǫ)|Tµν|B(p)〉 = 2 T1(q
2) ǫµνρσ ǫ∗ν pρ kσ

+i T2(q
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[
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with q ≡ p − k. For the physical on-shell photon, one has q2 = 0. Note that

T1(0) = T2(0). The decay rate is

Γ(B → K∗γ) =
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Form Factors from Correlation Functions

The matrix element 〈K∗(k, ǫ)|Tµν|B(p)〉 can be calculated on the lattice from the Eu-

clidean 3-point function

C(3)
σµν(k, p, τ, τ ′) =
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x
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x′

〈
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σ
(0) T lat.
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〉
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which for τ ′ ≫ τ ≫ 0 becomes
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The required amplitudes ZK∗, ZB and the energies EK∗, EB can be obtained from the

2-point functions
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Here, ΦK∗
σ

and ΦB are suitable interpolating operators with the structure ΦK∗
σ
∼ uγσs,

ΦB ∼ uγ5b, and T lat.
µν =

∑

i CiT
(i) lat.
µν is a sum of lattice operators corresponding to the

continuum Tµν, where the matching coefficients Ci can be calculated perturbatively.

The continuum moving NRQCD Lagrangian

In the calculations of the B meson decay form factors, the heavy b Dirac field Ψ(x) with

mass m will be expressed in terms of 2-component mNRQCD quark and antiquark fields

ψv(x), χv(x), such that a 4-momentum mu is removed from the Lagrangian.

To formally derive the tree-level mNRQCD Lagrangian on Minkowski space, one

can start in the reference frame with coordinates x′ where the B meson is at rest. The

Dirac spinor of the b field in this frame is Ψ′(x′) = [S(Λ)]
−1

Ψ(x). One then performs

a Foldy-Wouthuysen transformation for Ψ′(x′),

Ψ′(x′) =

[

1 +
iγ · D′

2m
+ ...

]

e−imx
′0γ0

Ψ̃′(x′),

which results in the standard HQET/NRQCD Lagrangian at v = 0,

L = Ψ̃′

[

iγ0D′
0 −

D2

2m
+ ...

]

Ψ̃′.

Upon expressing this Lagrangian in the lattice frame (coordinates x), which has a rel-

ative 4-velovity u, we obtain

L = Ψ̃

[

iγ0u ·D +
(u ·D)2 −D2

2m
+ ...

]

Ψ̃,

where Ψ̃′(x′) ≡ Ψ̃(x). This is similar to the HQET Lagrangian with 4-velocity u. It

contains higher order time derivatives, which can be removed by a further field redefi-

nition:

Ψ̃(x) =
1√
γ

[

1 +
i

4γm
γ0

[(

1

1 − v2
− 1

)

D0 +

(

1

1 − v2
+ 1

)

v · D
]

+ ...
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.

This gives L = Lψv + Lχv with Lψv = ψ†
v [iD0 +H ]ψv, where H = H0 + δH contains

no time derivatives. This has the advantage that Green functions can be calculated as

an initial value problem. Including terms of order O(m−2), H is given by

H0 = iv·D +
D2 − (v·D)2

2γm

δH = +
i
{

v·D, D2
}

− 2i(v·D)3
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with B′ = γ

(

B − v × E− γ

1 + γ
v(v ·B)

)

, E′ = γ

(

E + v × B − γ

1 + γ
v(v ·E)

)

.

As an effective field theory, mNRQCD is non-renormalisable and requires a UV cut-off

lower than m, which will be provided by the lattice. One can not take the contin-

uum limit, but one can systematically include higher order terms in the lattice action

(including the light quark and gluon actions) in order to correct for lattice spacing

errors.

mNRQCD Green Functions on the Lattice

By definition, the Euclidean Green function Gψv(x, τ,x
′, τ ′) satisfies for τ > τ ′

(D4 +H)Gψv(x, τ,x
′, τ ′) = 0 ⇒ ∂4Gψv(x, τ,x

′, τ ′) = −(H + ig A4)Gψv(x, τ,x
′, τ ′).

Since H does not contain time derivatives, this can be integrated to

Gψv(x, τ2,x
′, τ ′) = T exp

(

−
∫ τ2

τ1

(H + ig A4) dτ

)

Gψv(x, τ1,x
′, τ ′).

On the lattice, this evolution equation is conveniently approximated by

Gψv(x, τ,x
′, τ ′) =

(

1 − δH |τ
2

)(

1 − H0|τ
2n

)n

U †
4(x, τ − 1)

×
(

1 − H0|τ−1

2n

)n(

1 − δH |τ−1

2

)

Gψv(x, τ − 1,x′, τ ′),

where H0 and H are now discretized. Note that using this equation, Green functions

can be calculated in a single pass through the lattice. Antiquark Green functions can be

obtained from the complex conjugate of quark Green functions at the negative velocity.

Codes for numerical Simulations

We are currently using a tadpole- and O(a4)-improved lattice version of the above

O(Λ2/m2) Lagrangian for simulations. To this end, two codes have been developed:

•An object-oriented C++ code for the automatic generation and simplification of ex-

plicit algebraic expressions for improved lattice derivatives. It can output LATEX and

Fortran 90 source code.

•A Fortran 90 code for the calculation of moving NRQCD Green functions on MILC

gauge configurations, incorporating the results of the C++ code.

Work in Progress
In order to test the moving NRQCD formal-

ism, we are currently performing simulations for

heavy-heavy mesons on MILC gauge configura-

tions. This includes the calculation of disper-

sion relations for different states of the bottomo-

nium system and decay constants at different

velocities. We examine the dependence on the

bare parameters m, v, and others.

The renormalization of these parameters is

also compared to perturbative results at 1 loop,

which have been obtained by L. Khomskii.

Dispersion relation E(k) for the
ηb(1S) meson at v = 0.2. The contin-
uous curve shows a fit E(k) = ∆E0 +
√

(ZPP0 + k)2 +M2
kin

Future Plans

The next steps will include tests of moving NRQCD for heavy-light mesons, proba-

bly using improved staggered light quarks, and then the calculation of form factors

for decays like B → πlν and B → K∗γ. This will also require perturbative matching

calculations for the vector-, axial vector- and tensor currents in mNRQCD.
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