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Motivation

The numerical treatment of fermions is a long standing problem in lattice QCD. In the
usual approach, the fermions are formally integrated out and the fermion determinant is
evaluated. This fermion determinant is then taken into account as an additional weight
factor in the Monte–Carlo simulation. Since the calculation of this determinant is plagued
by thefermion sign problem, it is numerically very costly [1]. Thus, finding an alterna-
tive formulation of the problem would be enormously helpful. One possible alternative is
thefermion loop representation. This approach is explored here for a lower dimensional
model, namely theGross–Neveu model[2].

Theoretical framework

We work with the 2d lattice version of the Gross–Neveu model for one flavor. The action
of this model is given by
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whereφ is a scalar background field andm andg are the bare mass and the coupling
constant. The sums run over all lattice pointsn of the latticeΛ. The fermion fieldsψ, ψ
are Grassmann valued 2–spinors.

The Euclidean partiton function is obtained by integratingexp(−S[ψ,ψ, φ]) over
all three types of fields. By integrating out only the scalar field φ, one gets a purely
fermionic theory with the quartic interaction term
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On the lattice one can use hopping expansion techniques to map this model onto
a model of2 sets of loops [3]. These two sets will subsequently be referred to as “red”
(r) and “blue” (b) loops. The loops of each single set are non–oriented, closed and self–
avoiding. Loops of different colors, however, do not have torespect this self–avoidance.
The partition function for the fermion loop representationis then a sum over all possible
configurations of the loops in the two sets, more precisely
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1 f
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Here,c is the total number of corners in both sets andn1, n2 are the number of singly or
doubly occupied sites, respectively. The functionsf1 andf2 are simple functions of the
mass parameterm and the coupling constantg,

f1 =
2 +m

(2 +m)2 + g
, f2 =

1

(2 +m)2 + g
.

Finally, we have a partition function which is a sum over terms with only real and
positive weights! Thus, all problems due to signs, coming from the Pauli statistics, are
gone. This mapping is exact in the thermodynamic limit. For finite lattice volumes the
loop configurations can be divided into three different equivalence classes. The finite
size effects therefrom vanish, however, like1/

√
V , for V being the lattice volume.

Numerical Simulation

The numerical simulation is done for both approaches, the standard representation and
the fermion loop formalism. In the loop approach a local Metropolis update is used, in
which red and blue loops are updated alternately. Thus, a full sweep through the lattice
is performed for one color and meanwhile the other color serves as background field. As
observables we use first and second order derivatives of the free energyF = − lnZ. For
the fermion loops these expressions can be written in terms of moments of occupation
numbers. The conventional definition of the chiral condensate χ and susceptibilityCχ
are
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V
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In the fermion loop approach we have
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The numbern0 is the total number of empty lattice sites.

Results

Results from the loop approach are compared to those from a simulation using the stan-
dard representation. The results for that “benchmark simulation” are produced using the
reweighting technique for the fermion determinant. In the free caseg = 0 we make use
of Fourier transformation and thus obtain exact results in the standard approach. In the
loop formalism this case is not special at all. Thus, the point g = 0 is the optimal test-
ing point, because exact results are available for almost arbitrarily large lattice volumes.
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Fig. 1: The chiral
condensateχ for g =

0 as a function of
m. On the l.h.s. we
plot the lattice vol-
umes162 and 322, on
the r.h.s.642 and1282

can be found.
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Fig. 2: Same as
Fig. 1, now for the
chiral susceptibility
Cχ.

In Fig. 1 we show results for the chiral condensateχ for several lattice volumes.
The different data sets agree very well for lattice sizes322 and larger. The largest gap
between the data is found nearm = 0, the chiral point, where the fermions become
massless. For bigger lattices the loop results fall exactlyon top of the analytic results.

The situation for the chiral susceptibility is similar, seeFig. 2. There the discrep-
ancy is getting acceptable from a lattice size of642 on. The reason for this discrepancy in
the two approaches are finite size effects from different types of boundary conditions for
the loop approach (i.e., the above discussed equivalence classes). A much more detailed
discussion of that analysis can be found in [4], a further development is [5].

Summary

We have explored an alternative formulation for fermionic systems using the example
of the Gross–Neveu model. The representation in terms of fermion loops allowed us to
simulate the system without having to evaluate the fermion determinant.

Here, we simulated the model using a simple local update and compared the out-
come to analytic results from Fourier transformation. We saw that finite size effects
decrease like1/

√
V and thus the thermodynamic limit, where the loop representation

becomes exact, is approached rapidly.
An important issue is of course the assessment of the gain in numerical efficiency

when using the loop algorithm. Already with the local algorithm used here a consider-
able increase of the accessible volumes was found. The standard approach could be used
on lattices with a maximum volume of32 × 64, while in the loop formulation we were
able to simulate systems up to700×700, which is an increase of the volume by more than
two orders of magnitude! This enormous improvement is a strong incentive to search for
loop representations also in higher dimensional fermionicsystems.
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