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Motivation

The numerical treatment of fermions Is a long standing @wbin lattice QCD. In the
usual approach, the fermions are formally integrated odttha fermion determinant is
evaluated. This fermion determinant is then taken into aetas an additional weight
factor in the Monte—Carlo simulation. Since the calculatbthis determinant is plagued
by thefermion sign problemit is numerically very costly [1]. Thus, finding an alterna-
tive formulation of the problem would be enormously helpfdhe possible alternative is

thefermion loop representatiomhis approach is explored here for a lower dimensional

model, namely th&ross—Neveu modgl].

Theoretical framework

We work with the 2d lattice version of the Gross—Neveu modebhe flavor. The action
of this model is given by
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where¢ Is a scalar background field amd and g are the bare mass and the coupling
constant. The sums run over all lattice pointef the latticeA. The fermion fields), v
are Grassmann valued 2—spinors.

The Euclidean partiton function is obtained by integrating(— S, ¥, ¢|) over
all three types of fields. By integrating out only the scalatdfip, one gets a purely
fermionic theory with the quartic interaction term
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On the lattice one can use hopping expansion technigques pamsamodel onto
a model of2 sets of loops [3]. These two sets will subsequently be refeto as “red”
(r) and “blue” () loops. The loops of each single set are non—oriented, dlasd self—
avoiding. Loops of different colors, however, do not haveaspect this self—-avoidance.
The partition function for the fermion loop representati®then a sum over all possible
configurations of the loops in the two sets, more precisely
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Here,c Is the total number of corners in both sets angdn, are the number of singly or
doubly occupied sites, respectively. The functighand f; are simple functions of the
mass parameten and the coupling constant
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Finally, we have a partition function which is a sum over tenmth only real and
positive weights! Thus, all problems due to signs, comimgfrthe Pauli statistics, are
gone. This mapping Is exact in the thermodynamic limit. Hoitdilattice volumes the
loop configurations can be divided into three different egl@nce classes. The finite
size effects therefrom vanish, however, like,/V/, for VV being the lattice volume.

Numerical Simulation

The numerical simulation is done for both approaches, thedstrd representation and
the fermion loop formalism. In the loop approach a local Mptlis update Is used, In
which red and blue loops are updated alternately. Thus,| awdep through the lattice
IS performed for one color and meanwhile the other coloreseas background field. As
observables we use first and second order derivatives ofébeshergy’ = —In Z. For
the fermion loops these expressions can be written in tefmsoments of occupation
numbers. The conventional definition of the chiral condengaand susceptibilityC’,
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In the fermion loop approach we have
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The numben, Is the total number of empty lattice sites.

Results

Results from the loop approach are compared to those fromw@aion using the stan-
dard representation. The results for that “benchmark sihmrl” are produced using the
reweighting technique for the fermion determinant. In treefcase) = 0 we make use
of Fourier transformation and thus obtain exact resulth@edtandard approach. In the
loop formalism this case iIs not special at all. Thus, the pgia 0 Is the optimal test-
INg point, because exact results are avalilable for aimabdranly large lattice volumes.
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In Fig. 1 we show results for the chiral condensgttor several lattice volumes.
The different data sets agree very well for lattice siz&'sand larger. The largest gap
between the data is found near = 0, the chiral point, where the fermions become
massless. For bigger lattices the loop results fall examtlyop of the analytic results.

The situation for the chiral susceptibility is similar, deig. 2. There the discrep-
ancy is getting acceptable from a lattice siz&é4fon. The reason for this discrepancy in
the two approaches are finite size effects from differene syt boundary conditions for
the loop approach (i.e., the above discussed equivaleassad). A much more detailed
discussion of that analysis can be found in [4], a furtheet®yment is [5].

Summary

We have explored an alternative formulation for fermionystems using the example
of the Gross—Neveu model. The representation in terms ofiéer loops allowed us to
simulate the system without having to evaluate the fermetemninant.

Here, we simulated the model using a simple local update amgpared the out-
come to analytic results from Fourier transformation. We $aat finite size effects
decrease likd /+/V and thus the thermodynamic limit, where the loop represienta
becomes exact, is approached rapidly.

An important issue Is of course the assessment of the gaimmencal efficiency
when using the loop algorithm. Already with the local alggom used here a consider-
able increase of the accessible volumes was found. Theathagproach could be used
on lattices with a maximum volume 8P x 64, while in the loop formulation we were
able to simulate systems upa0 x 700, which is an increase of the volume by more than
two orders of magnitude! This enormous improvement is angtrocentive to search for
loop representations also in higher dimensional fermisggtems.
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