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Outline of Lecture Series: Higgs Physics from the Lattice

1. Standard Model Higgs Physics
• Outlook for the Higgs Particle
• Standard Model Review
• Expectations from the Renormalization Group
• Nonperturbative Lattice Issues?

2. Triviality and Higgs Mass Upper Bound
• Renormalization Group and Triviality in Lattice Higgs and Yukawa couplings
• Higgs Upper Bound in 1-component φ4 Lattice Model
• Higgs Upper Bound in O(4) Lattice Model
• Strongly Interacting Higgs Sector?
• Higgs Resonance on the Lattice

3. Vacuum Instability and Higgs Mass Lower Bound
• Vacuum Instability and Triviality in Top-Higgs Yukawa Models
• Chiral Lattice Fermions
• Top-Higgs and Top-Higgs-QCD sectors with Chiral Lattice Fermions
• Higgs mass lower bound
• Running couplings in 2-loop continuum Renormalization Group
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Standard Model Scales: Running Higgs coupling

1-loop Higgs couplings:

1-loop Feynman diagrams: Higgs boson
self-couplings

Running Higgs coupling λ(t) is defined as the
Higgs 4-point function at scale t=log p

µ

Higgs beta function: βλ(t) = dλ(t)
dt
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Standard Model Scales: Running gauge and Yukawa couplings

1-loop gauge couplings:
1-loop Feynman diagrams: gauge boson
couplings to fermions

Running gauge couplings g(t), g′(t), g3(t) can
be defined as the gauge-fermion 3-point
function at scale t=log p

µ

gauge beta functions: βg(t) = dg(t)
dt

1-loop Yukawa couplings:
1-loop Feynman diagrams: Higgs boson
Yukawa couplings to fermions

Running Top coupling gTop(t) is defined as
the Higgs fermion 3-point function at scale
t=log p

µ

Top beta function: βgTop (t) =
dgTop(t)

dt
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Standard Model Scales: RG Fixed Points and Triviality

running of λ, gt, g3
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IR fixed line at R̄ = 1
16 (
√

65 − 1) = 0.44
Trivial fixed point only!
Is the Landau pole the upper bound?
Is λ(Λ) = 0 the lower bound?

I Top-Higgs-QCD sector (1-loop)
Pendleton-Ross fixed point:

mt =

√
2
9 g3(µ = mt)v/

√
2 ≈ 95 GeV

mH =

√
(
√

689−25
72 g3

√
2v ≈ 53 GeV

Weak gauge couplings and 2-loop destabilize the Pendleton-Ross fixed point

“Landau pole” only in α1 at µ = 1041GeV with all couplings running?
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Landau pole in perturbation theory: Higgs mass upper bound

The RGE in the pure Higgs sector is known to three-loop order in the MS scheme

β(λ) =
d λ
d t
=

3
2π2 λ

2 −
39

32π4 λ
3 +

7176 + 4032ζ(3)
(16π2)3 λ4.

The RGE exhibits an IR attractive fixed point λ=0 (perturbative “triviality”) with general
solution in one loop order

λ(µ) =
1

1
λ(Λ)

+ 3
2π2 lnΛµ

, λ(Λ) =
λ(µ)

1 − 3
2π2 λ(µ)lnΛµ

.

Increasing λ(µ) at fixed λ(Λ), the Landau pole is hit at 3
2π2 λ(µ)lnΛµ = 1 with the naive upper

bound λ(µ) < 2π2

3lnΛµ
which is related to the upper bound on the Higgs mass λ =

m2
H

v2 .

When we try to increase λ(µ) at fixed λ(Λ) beyond the Landau pole limit, something else will
happen which will reveal the intrinsic non-removable cutoff in the theory. This will be
illustrated in the large N limit of the Higgs-Yukawa fermion model.
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Functional integral saddle point: Large NF limit of Top-Higgs model

The Lagrangian density of the continuum model after rescaling the coupling constants:

L =
1
2
φ
(
−� + m2)φ

)
+ ψ̄iγµ∂µψi −

y
√

NF
ψ̄iψiφ +

1
24

λ

NF
φ4 , i = 1, 2, ...NF .

With rescaling of the scalar field φ→
√

NF and integrating out the fermion fields, the partition
function is given by

Z =
∫
Dφ exp

[
−NF

(
−Tr ln(γµ∂µ − yφ) +

∫
d4x[

1
2
φ(−� + m2)φ +

1
24
λφ4]

)]
.

The NF → ∞ limit is a saddle point for the functional integral. The solution of the saddle point
equations is equivalent to summing all Feyman diagrams with leading fermion bubbles which
are proportional to NF.
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Renormalization: Large NF limit of Top-Higgs model
I We first consider a Higgs-Yukawa model of a single real scalar field coupled to NF

massless fermions in the exact NF → ∞ limit

I This will allow us to demonstrate that the theory is trivial and the supposed vacuum
instability is an artifact of ignoring the necessary cutoff in the model

I Bare Lagrangian of the Higgs-Yukawa theory in Euclidean space-time is defined by

L =
1
2

m2
0φ

2
0 +

1
24
λ0φ

4
0 +

1
2

(
∂µφ0

)2
+ ψ̄a

0

(
γµ∂µ + y0φ0

)
ψa

0,

I where a = 1, ...,NF sums over the degenerate fermion flavors and the subscript 0 denotes
bare quantities.

I We rewrite this as

L =
1
2

m2
0Zφφ2 +

1
24
λ0Z2

φφ
4 +

1
2

Zφ
(
∂µφ

)2
+ Zψψ̄a

(
γµ∂µ + y0

√
Zφφ

)
ψa

=
1
2

(m2 + δm2)φ2 +
1
24

(λ + δλ)φ4 +
1
2

(1 + δzφ)
(
∂µφ

)2

+(1 + δzψ)ψ̄aγµ∂µψ
a + ψ̄a(y + δy)φψa,

I with wavefunction renormalization factors, renormalized parameters, and counterterms

Zφ = 1 + δzφ, Zψ = 1 + δzψ ,

m2
0Zφ = m2 + δm2, λ0Z2

φ = λ + δλ, Zψ
√

Zφy0 = y + δy .
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Renormalization: Large NF limit of Top-Higgs model

I In the limit where NF becomes large, all Feynman diagrams with Higgs loops are
suppressed relative to those with fermion loops. Hence, two of the counterterms vanish,

Renormalization conditions (1,2)

δy = 0, δzψ = 0

as there are no radiative corrections to the fermion propagator or to the Higgs-fermion
coupling.

I To maintain tree level relation m2 + 1
6λv2 = 0 to all orders:

Renormalization condition (3)

δm2 +
1
6
δλv2 − 4NFy2

∫
k

1
k2 + y2v2 = 0
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Renormalization: Large NF limit of Top-Higgs model

I In the large NF limit, the inverse propagator of the Higgs fluctuation ϕ = φ − v is

G−1
ϕϕ(p2) = p2 + m2 +

1
2
λv2 + p2δzφ + δm2 +

1
2
δλv2 − Σ(p2)

Σ(p2) = −4NFy2
∫

k

y2v2 − k.(k − p)
(k2 + y2v2)((k − p)2 + y2v2)

We impose the condition G−1
ϕϕ(p2 → 0) = p2 + m2

H , which separates into two
renormalization conditions:

Renormalization condition (4)

δm2 +
1
2
δλv2 − Σ(p2 = 0) = 0

Renormalization condition (5)

δzφ −
dΣ(p2)

dp2

∣∣∣∣∣∣
p2=0
= 0
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Counterterms: Large NF limit of Top-Higgs model

I Renormalization condition δm2 + 1
2 δλv2 − Σ(p2 = 0) = 0 maintains the tree-level relation

m2
H = m2 + 1

2λv2 = 1
3λv2 exactly. The counterterms precisely cancel all the finite and

infinite radiative contributions.

I The Higgs mass defined as the zero-momentum piece of G−1
ϕϕ is identical to the curvature

U′′eff (v). True physical mass given by the pole of the propagator and the renormalized
masses mH and m can be related in perturbation theory.

I Renormalization conditions (3) and (4) yield

δm2 = 4NFy2
∫

k

k2 + 2y2v2

(k2 + y2v2)2 ,

δλ = −24NFy4
∫

k

1
(k2 + y2v2)2 .

The closed form for δzφ is more complicated and less illuminating.

I To demonstrate triviality , we use some finite cutoff in the momentum integrals and
examine what occurs as this cutoff is removed. We will use a simple hard-momentum
cutoff |k| ≤ Λ. Exactly the same conclusions would be reached using instead
e.g. Pauli-Villars regularization.
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Counterterms: Large NF limit of Top-Higgs model
I The non-zero counterterms are

δm2 =
NFy2

2π2

[
1
2
Λ2 +

y4v4

2(Λ2 + y2v2)
−

1
2

y2v2
]

δλ = −
3NFy4

π2

[
y2v2

2(Λ2 + y2v2)
−

1
2
−

1
2

ln
(

y2v2

Λ2 + y2v2

)]
δzφ = −

NFy2

2π2

[
1
4

ln
(

y2v2 + Λ2

y2v2

)
+
−5Λ4 − 3Λ2y2v2

12(Λ2 + y2v2)2

]
.

I In the large NF limit, the fermion inverse propagator receives no radiative correction,
G−1
ψψ(p) = pµγµ + yv, so we identify the fermion mass as mT = yv.

I Because both δy and δzψ vanish, we can substitutey2 = Zφy2
0

Zφ =

1 + NFy2
0

8π2

ln Λ2

m2
T

 − 5
3

−1

.

For any finite bare Yukawa coupling y0, the Higgs wavefunction renormalization factor Zφ
vanishes logarithmically as the cutoff is removed, mT/Λ→ 0.

This same logarithmic behavior will appear in all of the renormalized couplings, for any
choice of bare couplings. Triviality: a finite cutoff must be kept to maintain non-zero
interactions.
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Triviality: Large NF limit of Top-Higgs model

Explicitly, the renormalized Yukawa coupling is

y2 = y2
0Zφ = y2

0

1 + NFy2
0

8π2

ln Λ2

m2
T

 − 5
3

−1

→

 NF

8π2 ln
Λ2

m2
T

−1

, as
mT

Λ
→ 0.

For the renormalized Higgs coupling, we have

λ = λ0Z2
φ − δλ = λ0Z2

φ +
3NFy4

π2

 m2
T

2(Λ2 + m2
T )
−

1
2
−

1
2

ln

 m2
T

Λ2 + m2
T


→ Z2

φ

λ0 +
3NFy4

0

π2

−1
2
−

1
2

ln
m2

T

Λ2


→ 12

 NF

8π2 ln
Λ2

m2
T

−1

, as
mT

Λ
→ 0.
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Triviality: Large NF limit of Top-Higgs model

The slow logarithmic vanishing of y and λ enables a relatively large separation of cutoff and
physical scales and still maintain significant interactions. Such a theory can in some limited
sense be considered physical, if the cutoff effects are sufficiently small.

The ratio of the Higgs and fermion masses in the large NF is

m2
H

m2
T

=
λv2

3y2v2 =
λ

3y2 → 4, as
mT

Λ
→ 0.

Although completely unphysical, we can also consider the limit mT/Λ � 1, where the cutoff is
much below the physical scale. From Equation , we see this gives

δλ = 0, δzφ = 0,

and hence Zφ → 1. In this limit, the connection between bare and renormalized parameters is
simply

λ = λ0, y = y0.

This result is not surprising: deep in the cutoff regime, we simply have the bare theory, with no
separation into renormalized parameters and their counterterms. This will be relevant when we
discuss the Landau pole and the vacuum instability.
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Renormalization Group flow: Large NF limit of Top-Higgs model

The physical properties of the theory, at finite cutoff Λ are fixed by the choice of a complete set
of bare parameters. Using the explicit cutoff dependence of y and λ, we can calculate the
Callan-Symanzik flow of the renormalized couplings inn the mT/Λ � 1 limit

βy(y, λ) = Λ
dy2

dΛ
= −y2

0Z−2
φ

NFy2
0

4π2 = −
NFy4

4π2

βλ(y, λ) = Λ
dλ
dΛ

=
1

16π2

[
−8NFλy2 + 48NFy4

]

This is exactly the same RG flow one would calculate in the large NF limit using
e.g. dimensional regularization, where the cutoff simply does not appear and the renormalized
couplings flow with the arbitrary renormalization scale µ. The overall signs of the β functions
would be opposite: increasing Λ corresponds to decreasing µ).

We should expect this: when the cutoff is far above the physical scales, the finite cutoff effects
are negligible and we must reproduce the unique cutoff-independent β functions.

However, as the cutoff is reduced and mT/Λ increases, this cannot continue to hold
indefinitely, as the renormalized couplings must eventually flow to the bare ones!
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Renormalization Group flow: Large NF limit of Top-Higgs model

Let us demonstrate an explicit example of the Callan-Symanzik RG flow. In the large NF limit,
mT = yv = y0v0. The bare vev is determined by the minimum of the bare effective potential

Ueff,0 =
1
2

m2
0φ

2
0 +

1
24
λ0φ

4
0 − 2NF

∫
k

ln
[
1 + y2

0φ
2
0/k

2
]
.

Using a hard-momentum cutoff, this gives

m2
0 +

1
6
λ0v2

0 −
NFy2

0

2π2

 1
2
Λ2 +

1
2

y2
0v2

0 ln

 y2
0v2

0

Λ2 + y2
0v2

0

 = 0.

We express all dimensionful quantities in units of the cutoff Λ. We pick some fixed values for
λ0 and y0. Varying the value of m2

0/Λ
2 changes the solution v0/Λ of Equation and hence the

ratio mT/Λ. As we said, choosing the values of the bare parameters completely determines
everything in the theory. For example, to attain a very small value of mT/Λ requires m2

0/Λ to be
precisely fine tuned! This is the origin of the so-called fine-tuning problem.
The critical surface, where v0/Λ = 0, is the transition line

m2
0

Λ2 −
NFy2

0

4π2 = 0 ,

with all counterterms and renormalized parameters expressed in terms of λ0, y0,m2
0 and v0.
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Renormalization Group flow: Large NF limit of Top-Higgs model

running Higgs coupling (Holland,JK)

All of the counterterms and renormalized
parameters can be expressed in terms of
λ0, y0,m2

0 and v0.

We make an arbitrary choice λ0 = 0.1,
y0 = 0.7 and vary the value of m2

0/Λ
2 to

explore the range 10−13 < mT/Λ < 102.

When the cutoff is high, the exact RG flow is
exactly the same as if the cutoff had been
completely removed and follows precisely the
continuum form of Equation.

However, as the cutoff is reduced, the exact
RG flow eventually breaks away from the
continuum form and reaches a plateau at the
value of the bare coupling.
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Higgs Mass Upper Bound: 1-component Higgs field

1-component lattice φ4 model is characterized by two bare parameters κ, λ with lattice action

S =
∑

x

−2κ
4∑
µ=1

φ(x)φ(x + µ̂) + φ(x)2 + λ(φ(x)2 − 1)2

 .
There are two phases separated by a line of critical points κ = κc(λ). For κ > κc(λ) the symmetry
is spontaneously broken and the bare field φ(x) has a non-vanishing expectation value v.
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Higgs Mass Upper Bound: 1-component Higgs field

Study the vacuum expectation value and the connected two-point function

G(x) = 〈φ(x)φ(0)〉c = 〈φ(x)φ(0)〉 − v2 .

A renormalized mass mr and a field wave function renormalization constant Zr are defined
through the behavior of Fourier transform of G(x) for small momenta:

G̃(k)−1 = Z−1
r

{
m2

r + k2 + O(k4)
}
.

We also define the normalization constant associated with the canonical bare field through

Ẑr = 2κZr = 2κm2
rχ .

In the framework of perturbation theory correlation functions of the multiplicatively
renormalized field

φr(x) = Z−1/2
r φ(x) ,

have at all orders finite continuum limits after mass and coupling renormalization are taken into
account. Correspondingly a renormalized vacuum expectation value is defined through
vr = vZ−1/2

r .
Finally a particular renormalized coupling is defined by

gr ≡ 3m2
r /v

2
r = 3m4

rχ/v
2 .
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Higgs Mass Upper Bound: 1-component Higgs field

The renormalization group equations predict that the mass and vacuum expectation value go to
zero according to

mr ≈ τ1/2 |ln(τ)|−1/6 ,

vr ≈ τ1/2 |ln(τ)|1/3 ,

for τ = κ/κc − 1→ 0, and correspondingly the renormalized coupling is predicted to go to zero
logarithmically which is the expression of triviality.
The critical behavior in the broken phase is conveniently expressed in terms of three integration
constants C′i , i = 1, 2, 3 appearing in the critical behaviors:

mr = C′1(β1gr)17/27e−1/β1gr {1 + O(gr)} , β1 =
3

16π2 ,

Zr = C′2

{
1 −

7
36

gr

16π2 + O(g2
r )

}
,

κ − κc =
1
2

C′3m2
r g−1/3

r {1 + O(gr)} .

These constants were estimated by relating them to the corresponding constants Ci in the
symmetric phase. These in turn were computed by integrating the renormalization group
equations with initial data on the line κ = 0.95κc(λ) obtained from high temperature expansions.
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Higgs Mass Upper Bound: 1-component Higgs field

One massive Higgs particle

analytic results: Lüscher, Weisz

lattice simulations: JK,Lin,Shen

mR
v ≈ 3.2 at amR = 0.5

How far can we lower the cutoff?
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Higgs Mass Upper Bound: 4-component O(4) Higgs model

One massive Higgs particle +
3 Goldstone particles

analytic results: Lüscher, Weisz

lattice simulations: JK,Lin,Shen

mR
v ≈ 2.6 at amR = 0.5

How far can we lower the cutoff?
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Higgs Mass Upper Bound: 4-component O(4) Higgs model

δ measures cutoff effects in
Goldstone-Goldstone scattering

Lüscher, Weisz

Ad hoc and connected with lattice
artifacts

But threshold of new physics is in
the continuum!

What do we do when cutoff is low?
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Higgs Physics and the Lattice
Continuum Wilsonian RG

UV Completion
unknon new physics
-

Lattice Wilsonian RG

Regulate with lattice at scale Λ = π/a
Llattice has all higher dimensional operators

a2φ�2φ, a4φ�4φ, a2λ6φ
6, ...

Below new scale M integrated UV completion
is represented by non-local Leff with all
higher dimensional operators,

1
M2 φ�

2φ,
1

M4 φ�
3φ,

λ6

M2 φ
6, ...

Propagator K(p2/M2)
p2+M2 with analytic K thins out

UV completion with exponential damping

-

Scale M missing?
Possible to insert intermediate continuum scale
M with Leff to include

1
M2 φ�

2φ,
1

M4 φ�
3φ,

λ6

M2 φ
6, ...

to represent new degreese of freedom above M
or, Lee-Wick and other UV completions

which exist above scale M (not effective theories!)

At the symmetry breaking scale v = 250 GeV
only relevant and marginal operators survive
Only 1

2 m2
Hφ

2 and λφ4 terms in VHiggs(φ),
in addition to (∇φ)2 operator
Narrow definition of Standard Model: only

relevant and marginal operators at scale M

At the physical Higgs scale v = 250 GeV only
relevant and marginal operators survive
Only 1

2 m2
Hφ

2 and λφ4 terms in VHiggs(φ), in ad-
dition to (∇φ)2 operator
Choice of Llattice is irrelevant unless crossover
phenomenon is required to insert intermidate M
scale Two-scale problem for the lattice
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Example for UV Completion: Higer derivative (Lee-Wick) Higgs sector

Jansen,JK,Liu, Phys. Lett. B309 (1993) p.119 and p.127
(Model was recently reintroduced by Grinstein, O’Connell, Wise in arXiv:0704.1845)

I Represent the Higgs doublet with four real components φa which transform in the vector
representation of O(4) and include new higher derivative terms in the kinetic part of the
O(4) Higgs Lagrangian,

LH =
1
2
∂µφ

a∂µφa −
cos(2Θ)

M2 �φa �φa +
1

2M4 �∂µφ
a �∂µφa − V(φaφa)

I The Higgs potential is V(φaφa) = − 1
2µ

2φaφa + λ(φaφa)2.

I The higher derivative terms of the Lagrangian lead to complex conjugate ghost pairs in the
spectrum of the Hamilton operator

I Complex conjugate pairs of energy eigenvalues and the related complex pole pairs in the
propagator are parametrized byM = Me±iΘ. Choice Θ = π/4 simplifies.

I The absolute value M of the complex ghost massM will be set on the TeV scale

I Unitary S-matrix, macroscopic causality, Lorent invariance?

λ > 0 asymptotically !
Vacuum instability ?
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Example for UV Completion: Gauged Lee-Wick extension

I Higher derivative Yang-Mills gauge Lagrangian for the SU(2)L × U(1) weak gauge fields
Wµ,Bµ follows similar construction with covariant derivative Dab

µ = δ
ab∂µ + gf abcWc

µ,

LW = −
1
4

Ga
µνG

aµν −
1

4M4 D2Ga
µνD

2Gaµν ,

I LW is superrenormalizable but not finite.

I Full gauged Higgs sector is described by the Lagrangian L = LW +LB +LHiggs,

LHiggs = (DµΦ)†DµΦ +
1

2M4 (DµD†DΦ)†(DµD†DΦ) − V(Φ†Φ)

I Gauge-covariant derivative is DµΦ =
(
∂µ + i g

2σ ·Wµ + i g′
2 Bµ

)
Φ.

I Similar fermion construction: Lfermion = iΨ6D Ψ + i
2M4Ψ 6D

2 6D 6D2 Ψ.

SM particle content is doubled
Logarithmic divergences only
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Higher derivative β-function and RG: Lee-Wick UV Completion
Liu’s Thesis (1994)

β function:

I Higher derivative Higgs sector is finite
field theory

I Mass dependent β(t)-function
vanishes asymptotically

I Grows logarithmically in gauged
Higgs sector

running Higgs coupling:
I Running Higgs coupling λ(t) freezes

asymptotically

I The fixed line of allowed Higgs
couplings must be positive!

I Vacuum instability?
Higgs mass lower bound from λ(∞) > 0
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S-matrix, Unitarity, and Causality: Lee-Wick UV Completion

Liu,Jansen,JK
Nucl.Phys. B34 (1994) p.635

cross section phase shift

mH=1 TeV, M = 3.6 TeV

v/M=0.07, mH/M = 0.28

I Equivalence theorem, Goldstone
scattering

I Higgs mass upper bound relaxed

I mH=1 TeV, or higher,
but ρ-parameter and other Electroweak
precision?

I Phase shift reveals ghost, microscopic
time advancement, only π/2 jump in
phase shift

What about the ρ-parameter?
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The ρ-parameter

ρ =
m2

W

m2
Zcos2θW

= 1 +
Z(+)

Z(0)

cosθW is determined independently in high precision lepton processes. The 1-loop vacuum
polarization operator will shift the physical pole locations for the weak gauge bosons:

ρ − 1|Higgs =
ΠH

W

M2
W,tree

−
ΠH

Z

M2
Z,tree

= −
3
4

g′2
∫

k2<Λ2

d4k
(2π)4

ΣH(k2)
(k2 +M2

W,tree)(k2 +M2
Z,tree)(k2 + Σ2

H(k2))

Heavy Higgs with acceptable ρ-parameter would be a broad resonace

How to calculate Higgs resonance on the lattice?
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Higgs resonance: Finite width in finite volume?
I Energy spectrum of two-particle states in a finite box with periodic boundary conditions
=⇒ elastic scattering phase shifts in infinite volume

I Two-particle energy levels are calculable by Monte Carlo techniques =⇒ extract phase
shifts from numerical simulations on finite lattices

I Infinite bare λ limit =⇒ 4-dimensional O(4) non-linear σ-model in broken phase with
unstable Higgs particle

I Small Goldstone mass is required by the method =⇒ add external source term to the lattice
action of the 4-dimensional O(4) non-linear σ-model:

S = −2κ
∑

x

4∑
µ=1

φαx φ
α
x+µ̂ + J

∑
x
φ4

x

The scalar field is represented as a four component vector φαx of unit length: φαx φ
α
x = 1

Two Goldstone bosons (“pions”) of mass mπ with zero total momentum in a cubic box of size
L3 in the elastic region are characterised by centre-of-mass energies W or momenta ~k defined

through W = 2
√

m2
π + ~k 2 , k = |~k | with W and k in the ranges:

2mπ < W < 4mπ ⇔ 0 < k/mπ <
√

3

They are classified according to irreducible representations of the cubic group. Their discrete
energy spectrum Wj, j = 0, 1, 2, . . . , is related to the scattering phase shifts δl with angular
momenta l which are allowed by the cubic symmetry of the states
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Higgs resonance: Finite width in finite volume?
In the subspace of cubically invariant states only angular momenta l = 0, 4, 6, . . . contribute.
Due to the short-range interaction it seems reasonable to neglect all l,0. Then an energy value

Wj belongs to the two-particle spectrum, if the corresponding momentum kj =

√
(Wj/2)2 − m2

π

is a solution of

δ0(kj) = −φ
(

kjL
2π

)
+ jπ

The continuous function φ(q) is given by

tan (−φ(q)) =
qπ3/2

Z00(1, q2)
, φ(0) = 0

withZ00(1, q2) defined by analytic continuation of

Z00(s, q2) =
1
√

4π

∑
~n ∈Z3

(
~n 2 − q2

)−s
.

This result holds only for 0<q2<9, which is fulfilled in our simulations, and provided finite
volume polarisation effects and scaling violations are negligible
In our Monte-Carlo investigation we calculate the momenta kj corresponding to the two-particle
energy spectrum Wj for a given size L, and can then read off the scattering phaseshift δ0(kj)
from its defining equation In order to scan the momentum dependence of the phase shift we
have to vary the spatial extent L of the lattice

Julius Kuti, University of California at San Diego INT Summer School on ”Lattice QCD and its applications” Seattle, August 8-28, 2007, Lecture 2: Triviality and Higgs Mass Upper Bound 32/37



Higgs resonance: Finite width in finite volume?
I The two-particle states in our model are also classified according to the remaining

O(3)-symmetry: They have “isospin” 0, 1, 2. Since we expect the σ-resonance to be in the
isospin-0 channel, we restrict ourselves to that case.

I Operator O0(t) = Φ̃4
~0 ,t
= L−3 ∑

~x Φ
4
~x ,t for σ-field at zero momentum is included

I Two-particle correlation matrix function
Cij(t) =

〈 (
Oi(t) − Oi(t + 1)

)
Oj(0)

〉
i, j = 0, 1, 2, . . .

I Eigenvalues decaying as exp(−Wit)

I The set of states is truncated at finite i=r to keep Wr below inelastic threshold

J

��c

m�=2m� =3m� =4m�

Figure 3: Lines of constant mass ratios m�=m� and m�L in the �-J plane derived with thehelp of the scaling laws of ref. [22]. The solid line represents the ratio m�=m� = 3. Our choiceof parameters (�, J) near that line is symbolized by the thick dots. To the left and to theright, the region where elastic two-particle scattering is expected is bounded by dashed linescorresponding to m�=m� = 2 and m�=m� = 4, respectively. The dotted line corresponds tom�L = 3 for L = 16.
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I Lines of constant ratios mσ/mπ

and mπL (dotted line)

I Reflection multi-cluster algorithm for finite
external source J

I Set of 3 κ, J configurations with middle point
κ = 0.315, J = 0.01 tuned to keep σ-mass in
elastic region

I Cylindrical lattices L3 · T up to sizes of 243 · 32,
323 · 40
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Higgs resonance: Finite width in finite volume?
I The pion mass mπ can be measured by a fit to the inverse propagator in four-dimensional

momentum space:
G−1

aa (p,−p) = Z−1
π {m

2
π + p̂2}, a = 1, 2, 3

I For perturbation theory checks we also want mσ and λR,

λR = 3Zπ
m2
σ − m2

π

Σ2

where Σ is the infinite volume σ field expectation value
I Two-parameter fit to the inverse σ and π propagators in momentum space
I 323 · 40 lattice at κ = 0.315, J = 0.01[G44(p;�p)]�1and[Gaa(p;�p)]�1

bp2Figure 5: The upper (lower) curve shows a two-parameter �t to the inverse � (�) propagatorin momentum space. The data are for the 323 � 40-lattice at (� = 0:315, J = 0:01). Theintercept with the abscissa yields � ~m2� (�m2�).
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I The negative intercept and slope of the
inverse Goldstone propagator G−1

aa (p,−p)
determine the propagator mass mπ

I The negative intercept and slope of the
inverse σ propagator G−1

44 (p,−p)
determine the propagator mass mσ for
the Higgs particle
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Higgs resonance: Two-particle states

Wm�

m�LFigure 8: Comparison of the Monte Carlo results (crosses) with the perturbatively predictedtwo-particle energy spectrum in the isospin-0 channel for the simulation point (� = 0:315,J =0:01). The data are in excellent agreement with the perturbative predictions (solid lines)based on the results of table 11. Dotted lines refer to the free energy spectrum, while thedashed lines show the perturbative spectrum based on the estimates of table 4. The locationof the resonance energy m� is symbolized by the dotted horizontal line at W �3m�. { Errorsare smaller than the symbols.
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I Comparison of simulation results
(crosses) with perturbative prediction in
isospin 0 channel at κ = 0.315, J = 0.01

I Solid lines depict perturbative prediction
(dashed lines perturbative estimates
based on propagator masses)

I Dotted lines represent free pion pairs

I The location of the resonance energy mσ

is indicated by dotted horizontal line at
W ≈ 3mπ
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Higgs resonance: Phase shift in perturbation theory

1. We will use the linear model for the phase shift calculation
• S[φ; j,m2] =

∫
d4x

[
1
2 ∂µφ

α∂µφ
α + − 1

2 m2φαφα + λ
4! (φαφα)2 − jφN

]
• with α = 1, ...,N and N = 4 in our case.
• The mass parameter m2 is negative in broken phase

2. Pions have “isospin” index a=1,...N-1 (single pion state isospin is I=1 for N=4)
• Two-particle state decomposes into I=0,1,2 irreducible representations

• Partial wave decomposition T I = 16πW
k

∞∑
l=0

(2l + 1)Pl(cosϑ)tI
l

• Bose symmetry requires tI
l = 0 if I+l is odd

• tI
l =

1
2i

(
e2iδIl − 1

)
with real phase shifts δI

l in elastic region 2mπ < W < 4mπ

3. Leading perturbative result:

δ0
0 = λR

N − 1
48π

k
W

(
1 −

m2
σ − m2

π

m2
σ −W

)
+ δ2

0

δ2
0 =

λR

96π
m2
σ − m2

π

kW

(
1 +

m2
σ

2k2

)
ln

(
4k2 + m2

σ

m2
σ

)
−

λR

48π
m2
σ − m2

π

kW
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Higgs resonance: Phase shift

�00

k=m�Figure 15: Comparison of the �t with respect to the perturbative ansatz (3.6) (solid curve)and the perturbative prediction based on the estimates ~m� and ~gR of table 4 (dashed curve)in the isospin-0 channel for (�=0:315, J=0:01).

44

Göckeler et al.

amσ = 0.72

mσ = 3.07 mπ

Γσ = 0.18 mσ

Agreement with perturbation theory
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