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Introduction

At high temperature, QCD matter undergoes a deconfinement transition, where or-
dinary hadronic matter transforms into strongly interacting quark-gluon plasma. In
the absence of quarks, Nf = 0, the transition is a symmetry-breaking first order
transition, where the order parameter is the thermal Wilson line. The non-zero ex-
pectation value of the Wilson line signals the breaking of the Z(3) center symmetry
of quarkless QCD at high temperatures.
The transition has been studied extensively using lattice simulations, but becomes
computationally exceedingly expensive at high temperatures T ∼ 5Tc. At high T ,
the complementary approach has been to construct perturbatively effective theories,
such as EQCD, using the method of dimensional reduction. In the dimensional re-
duction procedure, however, one expands the temporal gauge fields around one of
the Z(3) vacua and thus explicitly violates the center symmetry and the models fail
for T below 5Tc.
As a unification of these strategies, a 3D effective theory of hot QCD respecting the
Z(3) symmetry has been constructed in [2]. At high temperatures, the effective theory
is matched to EQCD and still preserves the center symmetry. The effective theory is
further connected to full QCD by matching the domain wall profile separating two
different Z(3) minima.
The new theory relies on the scale separation between the inverse correlation length
and the lowest non-zero Matsubara mode, which is still modest at Tc. Thus, one
hopes that the range of validity of this theory would extend down to Tc.
In order to perform lattice simulations the theory must be formulated

on a lattice and the lattice theory needs to be matched to the contin-

uum theory. The effective theory is super-renormalizable, and thus the connection
between the continuum MS and lattice regulated theories can be obtained exactly to
the desired order in the lattice spacing a via two-loop lattice perturbation theory.
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Theory

Continuum:

S =
∫

d3−2ǫx

{

1

2
TrF 2

ij + Tr
(

DiZ
†DiZ

)

+ c1Tr[Z†Z] + 2c2Re(Det[Z]) + c3Tr[(Z†Z)2]

+ d1Tr[M †M ] + 2d2Re(Tr[M 3]) + d3Tr[(M †M)2]
}

,

Fij = ∂iAj − ∂jAi + ig3[Ai, Aj]

Di = ∂i − ig3[Ai, ]

Z is a 3 × 3 complex matrix and M = Z − 1
3Tr[Z]1 is the traceless part of Z.

Scale dependence of the mass terms:
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Lattice: S = SW + SZ, where SW is the Wilson action and

SZ = 2

(

2Nc

β
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ReTr
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Ẑ†Ẑ − Ẑ†(x)Ui(x)Ẑ(x + î)U
†
i (x)

]

+
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β

)3
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(

ĉ1Tr[Ẑ†Ẑ] + 2ĉ2ReDetẐ + ĉ3Tr[(Ẑ†Ẑ)2]
)
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(

d̂1Tr[M̂†M̂ ] + 2d̂2ReTrM̂3 + d̂3Tr[(M̂†M̂)2]
)

,

β = 6
g2

3
a

with, via Two-Loop Lattice Perturbation Theory Calculation[1],

ĉ1 =
c1

g4
3

−
1

4π
6.3518228ĉ3β −
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+ O(β−1).

Other terms are matched to order O(a0) on tree-level by scaling with g3:

Z = g3Ẑ M = g3M̂

c2 = g3
3ĉ2 d2 = g3

3d̂2

c3 = g2
3ĉ3 d3 = g2

3d̂3

Also various condensates have been renormalized in order to convert their expectation
values to MS.

Phase diagram of the Theory at ci = 0

Two distinct phases separated by a first order transition:
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Figure 1: Discontinuity in the quadratic condensate in continuum regularization 〈TrM†M〉MS
for d3 = 0.1, 1, 3. The phase transition gets weaker as the coupling d3 grows. The metastable
regions shrink and the discontinuity diminishes
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Figure 2: (LEFT) The phase diagram as a function of d1, d2 and d3. First order critical line
separates two phases. Dashed lines are one-loop perturbative predictions. The symmetric phase
refers to the phase where 〈TrM†M〉 is smaller. (RIGHT) Volume dependence of the pseudo-
critical point with d3 = 2 and d2 = 0.1. The pseudo-critical point was determined by requiring
equal probability weight for TrM†M in both phases.

Conclusions

The exact relations between the lattice and continuum MS regulated formulations
of the Z(3)-symmetric 3D effective theory of hot QCD have been calculated. The
Lagrangians and the operators up to cubic ones have been matched to O(a0). These
results make the non-perturbative lattice study of the theory possible.
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