A Numerical QCD "Hello World"

Bálint Joó

Thomas Jefferson National Accelerator Facility Newport News, VA, USA

INT Summer School On Lattice QCD, 2007

くロト (過) (目) (日)

æ

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Lattice Calculation Basics What is involved in a Lattice Calculation

What is a lattice simulation/calculation ?

• Goal: evaluate path integral

$$\langle \mathcal{O}
angle = \int \mathcal{D} U \ \mathcal{O}(U) \ P_{\mathrm{eq}}(U)$$

- \mathcal{O} is/are the observable(s) of interest
- $\mathcal{D}U$ is the measure over the gauge fields
- *P*_{eq} is the path integral propability distribution

Joó

$$P_{ ext{eq}} = rac{1}{\mathcal{Z}} e^{-\mathcal{S}(U)}$$

• S(U) is the action of the theory

Lattice Calculation Basics Where is the Physics? Where is the Computing?

"Theoretical" Lattice Recipe

- Move to a Lattice with lattice spacing a
 - coordinates x become discrete i.e: $x = (n_1, n_2, n_3, n_4)$ in 4D.
 - Gauge fields get bound to lattice links
 - Denote as $U_{x,\mu}$, μ specifies link direction.
 - Latticize Measure: $\mathcal{D}U \rightarrow \prod_{x,\mu} dU_{x,\mu}$
 - Latticize Action: $S \rightarrow S_{latt}$
 - Latticize Observables: $\mathcal{O} \rightarrow \mathcal{O}_{latt}$

So

$$\langle \mathcal{O}_{\text{latt}} \rangle_{a} = \int \prod_{x,\mu} dU_{x,\mu} \mathcal{O}_{\text{latt}}(U_{x,\mu}) P_{\text{eq}}^{\text{latt}}(U_{x,\mu})$$

with

$$\mathcal{P}_{\mathrm{eq}}^{\mathrm{latt}}(U_{x,\mu}) = \frac{1}{\mathcal{Z}_{\mathrm{latt}}} e^{-S_{\mathrm{latt}}(U_{x,\mu})} \quad \mathcal{Z}_{\mathrm{latt}} = \int dU_{x,\mu} \prod_{x,\mu} e^{-S_{\mathrm{latt}}(U_{x,\mu})}$$

• For $\langle \mathcal{O} \rangle$ we need limit as $a \to 0$: continuum extrapolation

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Practialities to the Recipe

First:

$$\langle \mathcal{O}_{\text{latt}} \rangle_{a} = \int \prod_{x,\mu} dU_{x,\mu} \mathcal{O}_{\text{latt}}(U_{x,\mu}) P_{\text{eq}}^{\text{latt}}(U_{x,\mu})$$

is still infinite dimensional (infinite lattice). Move to finite volume to fit on a computer:

$$\langle \mathcal{O}_{\text{latt}} \rangle_{a,V} = \int \prod_{x,\mu}^{V} dU_{x,\mu} \ \mathcal{O}_{\text{latt}}(U_{x,\mu}) \ \mathcal{P}_{\text{eq}}^{\text{latt}}(U_{x,\mu})$$

- Need infinite volume limit
- Need to beware of finite volume effects

프 🖌 🛪 프 🕨

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Practialities to the Recipe

- Secondly: $\langle \mathcal{O} \rangle_{a,V}$ is still very high dimensional
- Turn to "Monte Carlo" methods:

$$\int \prod_{x,\mu}^{V} dU_{x,\mu} \, \mathcal{O}_{\text{latt}}(U_{x,\mu}) \, \mathcal{P}_{\text{eq}}^{\text{latt}}(U_{x,\mu}) \rightarrow \sum_{\left\{U^{i}\right\}} \, \mathcal{O}_{\text{latt}}(U_{x,\mu}^{i}) \, \mathcal{P}_{\text{eq}}^{\text{latt}}(U_{x,\mu}^{i})$$

- Uⁱ is called a *configuration*
- $\{U^i\}$ is called an *ensemble*
- Monte Carlo integral has a statistical error
- The statistical error typically decreases as:

Joó

$$\epsilon \approx \frac{1}{\sqrt{N_U}}$$

where N_U is the number of *independent* configurations in an ensemble

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Annoyances to the Recipe

- Some lattice formulations don't preserve desired symmetries
 - e.g: Chiral Symmetry in Wilson like fermions
- It is often not possible to work at the desired physical parameters: eg: at the physical quark masses
- Thus we may need to evaluate \mathcal{O}_{latt} in
 - several ensembles at various physical couplings

Joó

Take appropriate limits (e.g: chiral limit)

· < 프 > < 프 >

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Complete Programme

- Generate ensembles of configurations $\{U^i\}_{a_i, V_i, c_i}$
 - various physical couplings c_i, volumes V_i, latt. spacings a_i
 - This step is numerically most costly and needs supercomputers
- Compute \mathcal{O}_{latt} on the configurations in the ensembles.
 - Typically this phase involves computing correlation functions.
 - Depending on what \mathcal{O}_{latt} is, this can be moderately numerically costly to numerically cheap. This step needs *supercomputers or clusters*
- Analysis I: Evaluate the path integrals:
 - This involves fitting \mathcal{O} to phenomenological forms.
 - Typically this step needs *workstations* but times are changing...
- Analysis II: Take all the appropriate limits, quantify all errors.

Joó

Errors

- Statistical : from the evaluation of path integrals
- Systematic : from the method
 - Discretization : from the finite lattice spacing a
 - Finite Volume : from the finite box
 - Numerical : Precision of code, subjectivity of fit
- Try to control / quantify these. Eg:
 - Use a formulation which reduces discretization error
 - Work in a big enough box
 - Have lots of configurations
 - Try to get same answer with different methods

Joó

▲ □ ▶ ▲ □ ▶ ▲

Lattice Calculation Basics

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Where is the Physics

The physics goes into 3 main places:

- How we construct the lattice action
- How we construct the observables (probes)
- How we extract the result (phenomenological forms)

Each one has computational ramifications.

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Example: The Wilson Gauge action

Our continuum action with a bare coupling g₀

$$\mathcal{S}_{ ext{gauge}} = rac{1}{4g_0^2} \mathcal{F}_{\mu,
u} \mathcal{F}_{\mu,
u}$$

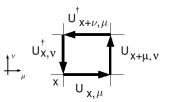
- This can be expressed through Wilson loops
- One the lattice Wilson Loops can be constructed by taking the trace of the products of gauge fields over closed paths
- In particular, the Wilson Gauge Action is:

$$S^{\text{latt}} = \beta \sum_{x} \sum_{\mu \neq \nu} \frac{1}{2N_c} \left(\text{Tr} U_{\mu\nu}(x) - U^{\dagger}_{\mu\nu}(x) \right)$$

• $U_{\mu\nu}(x)$ is the product around an elementary "plaquette" at site *x* in the $\mu\nu$ plane

Joó

Lattice Calculation Basics Where is the Physics? Where is the Computing?



• The plaquette is:

$$\begin{array}{lcl} U_{\mu\nu}(x) & = & U_{x,\mu}U_{x+\hat{\mu},\nu}U_{x+\hat{\mu}+\hat{\nu},-\mu}U_{x+\hat{\nu},-\nu}\\ & = & U_{x,\mu}U_{x+\hat{\mu},\nu}U_{x+\hat{\nu},\mu}^{\dagger}U_{x,\nu}^{\dagger}(x) \end{array}$$

where we use that $U_{x,\mu}$ are unitary so

$$U_{x+\hat{mu},-\mu} = U_{x,\mu}^{-1} = U_{x,\mu}^{\dagger}$$

- $\beta = \frac{2N_c}{a^2}$ is lattice version of the coupling
- This action is has discretisation errors of O(a²)
- More elaborate formulations involving bigger loops have smaller discretisation errors

Lattice Calculation Basics Where is the Physics? Where is the Computing?

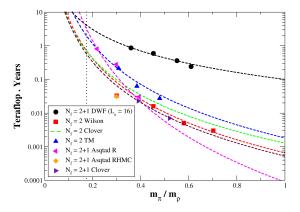
Fermions

- A subject of its own. Different formulations sacrifice different properties:
 - Wilsonesque Fermions (Wilson, Clover, Twisted Mass)
 - sacrifice chiral symmetry, possible flavor symmetry (TM)
 - O(a) (Wilson), O(a²) (Clover, TM) errors
 - AsqTAD Fermions (and other Improved Staggered)
 - Sacrifice flavour symmetry, retain U(1) symmetry
 - O(a²) errors
 - Chiral Fermions (eg: Domain Wall, Overlap)
 - maintain chiral symmetry arbitrarily accurately
 - Sacrifice 4D transfer matrix
 - $O(a^2)$ discretisation errors
- Common Feature:
 - Computational cost explodes as quark mass approaches physical value

(4回) (日) (日)

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Computational Cost of Fermions



Cost to generate 1000 independent gauge configurations in Teraflop Years

(from Mike Clark, Lattice 2006 proceedings, arXiv:hep-lat/0610048)

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Currently only parallel computers can deliver Teraflop scale computing

A Parallel Computer: The (currently) 110Tflop Cray XT3 at Oak Ridge National Laboratory, Oak Ridge, Tennesee

Lattice Calculation Basics Where is the Physics? Where is the Computing?

Complete Big Picture

- A credible lattice calculation is a formidable undertaking
 - Requires:
 - Large amount (Teraflops) of computer time (Politics)
 - Effective collaboration at the various levels (Management)
 - Technical Know How at various levels (Physics, Algorithms, Code Development and Porting, Engineering, Analysis)
 - Infrastructure: Hardware, Software, Grids, Tapes, etc
 - Tendencies:
 - Large Collaborations (LHPC, MILC, UKQCD, ETMC etc)
 - Multi-year planned data production runs
 - Inter Collaboration Collaborations are now appearing e.g: USQCD, USQCD-UKQCD collaborations
 - Emergence of "Infrastructure Groups"
 - provide software/hardware for you (eg: USQCD Nat. Fac.)
 - provide services/data for you (eg: ILDG: LDG, DiGS, LDG, CSSM, JLDG)

Basics of Parallel Computing

- Tasks that don't depend on each other can be done simultaneously
- Types of parallelism in problems:
 - Embarassing/Comfortable: Tasks completely independent
 - Can make effective use of a collection of independent PCs
 - Closely coupled: tasks exchange information frequently (eg: share data)
 - Efficient information exchange needed: Shared memory / Network
 - eg: PC Cluster machines (with network), Supercomputers
 - Loosely coupled: tasks exchange information infrequently
 - Speed of information exchange not critical, use internet etc.
 - eg: managing a large collection of jobs on a Grid.
- Lattice QCD is closely coupled

ヘロト 人間 ト ヘヨト ヘヨト

Recent Trends in Hardware

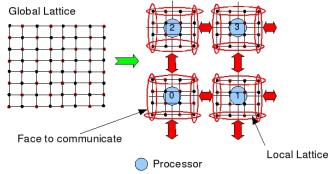
- Massively Parallel Systems (MPP): Contain O(10000) processing elements (PEs)
- Message Passing between PEs
 - Fast Custom Networks (BG/L, QCDOC, Cray XT3/4, APE)
 - Commodity Networks on Clusters (eg infiniband)
- Multi-Socket/Multi-Core PEs
 - QCDOC and BG/L have 2 processors per node card
 - Cray and Clusters employ multi-core chips (Intel, AMD)
- Some amount of vectorization on PEs
 - BG/L has "double hummer" FPU 2 FPUs in one
 - Cray and Clusters have SSE, SSE2, SSE3 instructions

・ 同 ト ・ ヨ ト ・ ヨ ト

Basics of Parallel Computing

A Useful Model Computer

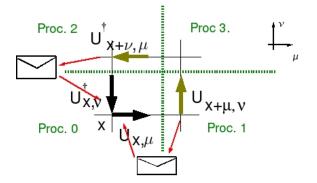
- The processing elements form a grid
- Each processor can communicate with neighbours



- Some machines are built like this (QCDOC, BG/L)
- Can be implemented "virtually" on machines with richer connectivity or shared memory.

Basics of Parallel Computing

Message Passing



For plaquette:

- $U_{x+\hat{\mu}}$ is put in message (proc 1 to 0)
- $U_{x+\hat{\nu}}^{\dagger}$ is put in message (proc 2 to 0)

Collective Operations

- Collective operations are called by all PEs
- There are the following kinds:
 - Local collectives: each node gets own answer
 - Gathers: one (some) gets answer from many
 - Scatters: many gets answer from one (some)
 - Broadcasts: one node sends to all
 - All to all: all get answers from all
 - Reductions: eg global sum, min, max

Joó

- The Message Passing Interface (MPI)
 - The International Message Passing Standard
 - Rich Data Model
 - Many different ways to pass messages
 - Quite complex
 - http://www-unix.mcs.anl.gov/mpi
- The QCD Message Passing (QMP) Interface
 - Designed by USQCD SciDAC software committee
 - Simple data model
 - Asynchronous Sends Only
 - Relatively easy to implement/use:
 - over MPI
 - over custom networks (QCDOC, GigE mesh)
 - http://usqcd.jlab.org/usqcd-docs/qmp

・ 同 ト ・ ヨ ト ・ ヨ ト

Data Parallelism

- Convenient programming model
- Everything is collective
- "Shift Lattice" to get at neighbours
- "Global" fill operations
- Limited by "masks"
- Try not to refer to an individual site
- Doesn't feel really parallel at all (Good!)

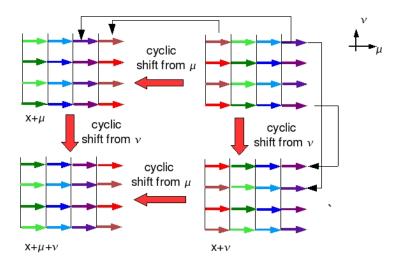
Joó

• Similar to CM-Fortran, HPF, F90

-∢ ≣ →

Basics of Parallel Computing

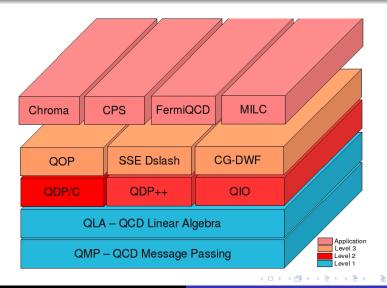
How Shifts Work



코 에 제 코 어

ъ

The SciDAC software stack for Lattice QCD



Rest of tutorial

For the HPC sections

- We will work with a data parallel framework
- We will use a freely available library: QDP++
- For the last lecture (Analysis)
 - We will use some real and recent data
- Sadly I don't have time to cover Chroma
 - But most of the QDP++ examples are taken from chroma
 - After the tutorial you should find chroma code straightforward

Summary Of Lecture

- I discussed the gross details of a lattice calculation
- I discussed aspects of parallelism
- Now: Let's write some code