Heavy Quark Masses in 3-flavor Lattice QCD

Elizabeth Freeland

Fermilab Lattice and MILC Collaborations

August 2007

The Annotated Edition

INT Lattice Summer School 2007

Related Lectures: Shoji Hashimoto: Lectures I & II: pert theory scales & schemes Stefan Sint: Symanzik, other m_Q methods Andreas Kronfeld: Heavy Quarks

Introduction

$m_b m_c$

Goal:

calculate masses of the bottom and charm quarks

Do this by: combining non-perturbative calculations of heavy-light meson masses M

with (lattice) perturbation theory for the quark pole masses ${\ensuremath{\mathcal M}}$

$$\overline{M} = \frac{1}{4} \left(M_{\text{pseudoscalar}} + 3M_{\text{vector}} \right)$$

a distorted energy-momentum relation,

$$E^2(\mathbf{p}) = m_1^2 + \frac{m_1}{m_2}\mathbf{p}^2 + \dots$$

leads to two pole masses which we refer to as the

"rest" mass

$$m_1 = E(\mathbf{0})$$
 "kinetic" mass
 $m_2 = \left(\frac{\partial^2 E}{\partial p_1^2}\right)_{\mathbf{p}=\mathbf{0}}^{-1}$

and similarly for Mesons.

A.X.El-Khadra, A.S. Kronfeld, P. B. Mackenzie, Phys. Rev. D 55, 3933 (1997), hep-lat/9604004

Rest Mass Method

S. Hashimoto Lec 2 Sec 2 slide 21

Calculate the quark mass via the binding energy $\overline{M}_1 - m_1 = \overline{M}_{exp} - m_{pole}$

Uncertainties are from:

light quark and gluon discretization heavy quark discretization truncation of the perturbation theory for m_1

A. S. Kronfeld, Phys. Rev. D 62, 0104505 (2000), hep-lat/0002008.

Kinetic Mass Method

$$m_{\text{pole}} = a \, m_2 \, \frac{\overline{M}_{\text{exp}}}{a \overline{M}_2}$$

 M_2 is obtained by fitting to the dispersion relation.

Same uncertainties as rest-mass method but expected to be less sensitive to heavy-quark tuning.

Statistical error is larger.

Kinetic Mass Method

$$m_{\text{pole}} = a \, m_2 \, \frac{\overline{M}_{\text{exp}}}{a \overline{M}_2}$$

 M_2 is obtained by fitting to the dispersion relation.

Same uncertainties as rest-mass method but expected to be less sensitive to heavy-quark tuning.

Statistical error is larger.

In the continuum, both methods must yield the same result

Non-perturbative Elements

MILC lattices:

- 2+1 flavors of sea quarks (asqtad, staggered) $m_{u,d} \approx 0.1$ to $0.3, 0.4m_s$ improved gluons
- three lattice spacings ~ 0.09, 0.12, 0.15 fm

bottom and charm quarks: Fermilab method S. Sint Lec 1 Sec 2 slides 9-12 - Symanzik Eff Th method(s) A. Kronfeld

valence light quark: staggered

Meson masses

- \overline{M}_1 Rest mass, p =0
 - Fit two-point correlators and spin average

 \overline{M}_2 Kinetic mass, mesons with momentum Fit correlators at each momentum and spin average Then fit to the (lattice) dispersion relation

physical strange mass

To avoid needing a chiral extrapolation, we work with the \overline{B}_s and \overline{D}_s meson masses.

work with the physical strange quark mass because experimental input is needed

> Monte Carlo data is not at the physical strange quark mass

 \Rightarrow linearly interpolate to m_s

Sea Quark Effects

Sea Quark Effects

Perturbation Theory

Lattice Perturbation Theory

We use one-loop results to obtain the (lattice) pole masses m_1, m_2 .

Formulae:

B. P. G. Mertens, A. S. Kronfeld and A. X. El-Khadra, Phys. Rev. D 58, 034505 (1998) hep-lat/9712024.

Automated perturbation theory using an improved gluon action: M. Nobes, H. Trottier, PoS LAT2005:209,2006 hep-lat/0509128; private communication. A. El-Khadra private communication

Need: mass scheme and scale coupling scheme and scale

α_s Schemes & Scales

We use V-scheme for $\alpha_s(q^*)$. S. Hashimoto Lec 1 slides 32 - 25

$\alpha_s(q^*)$ is obtained as described in Q. Mason et al.

Q. Mason et al. [HPQCD Collaboration], S. Hashimoto Lec 1 slides 39 - 42 Phys. Rev. Lett. 95, 052002 (2005) hep-lat/0503005
G.P. Lepage (private communication).

T. van Ritbergen et al., Phys. Lett. B 400, 379 (1997) hep-ph/9701390

The scale, q*, is set via BLM, HLM prescription.

S. J. Brodsky, G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983);
 G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993), hep-lat/9209022
 K. Hornbostel, G. P. Lepage, C. Morningstar, Phys. Rev. D 67, 034023 (2003),
 hep-ph/0208224
 S. Hashimoto Lec 1 slide 36

*q** "BLM"

 q^* = the typical momentum of the gluon in the loop

$$\alpha(q^*) = \int d^4q \ f(q) \ \alpha(q)$$

= $\int d^4q \ f(q) \ \alpha(q^*) \ \left\{ 1 - \alpha(q^*) \frac{\beta_0}{4\pi} \ln \frac{q^2}{q^{*2}} + \dots \right\}$

"BLM": Choose q^* such that the $\alpha^2(q^*)\beta_0$ term is zero. $\ln q^{*2} = \frac{\int d^4q \ f(q)\ln(q^2)}{\int d^4q \ f(q)}$

S. Hashimoto Lec 1 slide 36

"HLM", is in the spirit of LM, BLM.

Designed for cases where the 1-loop coefficient is zero or anomalously small.

Use higher order information (log moments). Zero the $\alpha^3(q^*) \beta_0^2$ term.

Mass Scheme

S. Hashimoto Lec 2 slide 10

Renormalon ambiguity in the pole mass ⇒ need a short-distance mass

In particular, use a "threshold mass." a short distance mass designed to run at low mass scales

Of the several threshold masses available, we've chosen to use the potential subtracted mass

M. Beneke, Phys. Lett. B 434, 115 (1998) hep-ph/9804241

Potential Subtracted Mass

- based on the static quark potential
- introduces a separation scale, μ_f .

$$m_{\rm PS}(\mu_f) = m_{\rm pole} - \frac{C_F \ \mu_f}{\pi} \alpha(q^*) + O(\alpha^2)$$

$$\Lambda_{
m QCD} \, < \, \mu_f \, < \, m_{
m quark}$$

bottom: charm: $\mu_f = 2.0 \text{ GeV}$ $\mu_f = 1.0 \text{ GeV}$

methods for higher orders

Setting the mass-scale is approached in two ways.

Method one (" q^* -method"): Set $\mu_f = 1.0 \text{ GeV}$ for charm $\mu_f = 2.0 \text{ GeV}$ for bottom and use $\alpha_s(q^*)$ for the 1-loop coupling

Method two ("zero and run"):

Set μ_f such that the one-loop term is zero

Run to the conventional value, 1.0 or 2.0 GeV, using the two-loop solution to the renormalization group equations.

and a bit about the lattice perturbation theory....

How do the corrections behave as the lattice spacing decreases? $am_1 = am_1^{[0]} + g^2 am_1^{[1]} + g^4 am_1^{[2]} + \dots$

How do the corrections behave as the lattice spacing decreases? $am_1 = am_1^{[0]} + g^2 am_1^{[1]} + g^4 am_1^{[2]} + \dots$

$$m_1 = m_1^{[0]} \left\{ 1 + \alpha(q^*a) \left[C + \gamma_0 \ln(am_1^{[0]}) \right] \right\}$$

$$+\alpha^{2}(q^{*}a)\left[C'+\gamma_{1}\ln(am_{1}^{[0]})+\gamma_{0}\ln^{2}(am_{1}^{[0]})\right]\right\}$$

keep the kinetic mass fixed while taking the lattice spacing to zero:

keep the kinetic mass fixed while taking the lattice spacing to zero:

Preliminary Results

added a smaller lattice spacing: a = 0.09 fm "fine" lattice

added a smaller lattice spacing: a = 0.09 fm "fine" lattice

improved scale setting for q* (HLM second moments)

added a smaller lattice spacing: a = 0.09 fm "fine" lattice

improved scale setting for q* (HLM second moments)

kinetic mass method

added a smaller lattice spacing: a = 0.09 fm "fine" lattice

improved scale setting for q* (HLM second moments)

kinetic mass method

"zero and run" method of mass-scale setting to test higher order effects

Bottom \mathcal{M}_b $\mu_f = 2.0 \text{ GeV}$

Bottom \mathcal{M}_b $\mu_f = 2.0 \text{ GeV}$

Bottom \mathcal{M}_b $\mu_f = 2.0 \text{ GeV}$

Heavy Quark Masses

Bottom

Uncertainty	% error
statistical	0.1
lattice spacing determination	0.4
heavy-quark tuning	0.4
sea quark effects	0.7
strange mass interpolation	0.4
perturbation theory truncation	3 to 5
heavy quark discretization	0.1 to 0.6
Total	3 to 5

Preliminary potential subtracted mass $m_{b,PS}(\mu_f) = 4.46(22) \text{ GeV}$

 $\mu_f = 2.0 \text{ GeV}$

S. Hashimoto Lec 2 Sec 2 - continuum S. Hashimoto Lec 2 Sec 3 - lattice S. Hashimoto Lec 2 Sec 4 - heavy quarks

Summary

Three lattice spacings: a = 0.09, 0.12, 0.15 fm

 $m_{u,d} = 0.1 \text{ to } 0.4 m_s$

Multiple methods to assess discretization effects and higher order perturbative contributions

Working on bottom: $m_{b,PS}(\mu_f) = 4.46(22) \text{ GeV}$ $\mu_f = 2.0 \text{ GeV}$

Also, working on charm :-)

M. Hildred Blewett Scholarship (APS) for women who have interrupted their physics careers for family reasons

Hildred Blewett

accelerator theorist

as a student, worked with Bethe at Cornell later at Argonne, Fermilab, CERN

> died 2004 created this scholarship