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1 Light-Cone Quantization

◮A motivation for, and interpretation of, Light-Cone
Distribution Amplitudes is provided by the formalism
of Light-Cone Quantization (LCQ) [1].

◮ In LCQ, we introducelight-cone coordinates:

x± ≡ x0 ± x3 x⊥ = (x1, x2).

Canonical commutation relations are then definedon
a null-plane x+ = 0, contrary to the usual Equal-Time
Quantization (ETQ):

x0

x
3

x2x1,

Σ : x+ = 0

◮Of the few sensible choices for a time parameter in
Hamiltonian dynamics, this choicemaximises the
number of Lorentz Group generators (7/10) that
are kinematical (don’t involve interactions).

◮Creation and annihilation operators obtained by pro-
jection onto a null-plane create and destroy different
states than their ETQ counterparts - so LCQ implies a
differentchoice of Fock basis for the QFTs Hilbert
space. The relation between the LCQ and ETQ bases
involves the full dynamics of the QFT=⇒ compli-
cated enough to be useful.

Light-Cone Quantization allows us to formulate QCD
such that it looks as much as possible like the quark-
parton model.

2 Light-Cone Wavefunctions

◮ The LCQFock vacuumis the physical vacuum state
=⇒ Fock-state expansion now tractable.

◮ LCQ hadronic wavefunctions can be interpreted un-
ambiguously: all quanta in a hadron’s wavefunction
aredirectly connected to that hadronrather than to
vacuum fluctuations.

◮As some boosts are kinematical, once the wavefunc-
tion is known in one inertial frame it is easily obtained
in any other. Wavefunctions depend only on‘inter-
nal’ longitudinal momentum fractions xi ≡

k+i
p+.

◮Defining theinvariant massoperator:

HLC = P−P+ − P2
⊥

in light-cone gaugeA+ = 0, for a hadron H we can
write:

HLC|H〉 = M2
H|H〉

◮As P+, P⊥ are conserved, we can construct the matrix
elements〈n|HLC|m〉 on a complete set{|n〉} of eigen-
states of the free HamiltonianH0

LC = HLC(g = 0).

◮Hadronic wavefunctionsare then defined by:

〈n; xi, k⊥i, λi|ψH〉 = ψn/H(xi, k⊥i, λi)

for example, for the proton:

|p〉 =
∑

n

〈n|p〉|n〉

= ψ
(Λ)
3q/p(xi, k⊥i, λi)|uud〉

+ψ
(Λ)
3qg/p(xi, k⊥i, λi)|uudg〉 + ...

Light-Cone Wavefunctions are universal, process-
independent, frame-independent amplitudes encoding
all possible quark and gluon correlations.

3 Light-Cone Distribution Amplitudes

◮ The Light-Cone Wavefunctionsunify the description
of inclusive and exclusive reactionsand provide a
physical factorization scheme. Other non-perturbative
QCD quantities can be related to them, e.g., the parton
distribution functions (pdfs) of Deep-Inelastic Scat-
tering:

q(x,Q2) =
∑

n

∫

d2k⊥
∑

λ

|ψn(xi, k⊥i, λi)|
2

◮Another non-perturbative quantity is theDistribution
Amplitude (DA). For the pion,φπ is defined by the
hadronic light-cone matrix element:

〈0|q̄(z)γργ5P(z,−z)q(−z)|π(p)〉|z2=0 ≡

fπ(ipρ)
∫ 1

0
du ei(u−ū)p.zφπ(u, µ)

◮DAs arise in hard-exclusive processesto which
collinear factorization theorems apply. For exam-
ple, at largeQ2 the pion’s electromagnetic form-factor
Fπ(Q2) separates into a hard-scattering kernelTH, and
the distribution amplitudeφπ[2]:

Fπ(Q
2) =
∫ 1

0
dx
∫ 1

0
dy φπ(y,Q

2)TH(x, y,Q2)φπ(x,Q2)

◮ The process is dominated by thelowest (valence)
Fock state, as all partons must be turned to the final
direction.

◮ The relation to the light-cone wavefunction is then
quite intuitive:

φπ(x,Q2) ≡
∫ Q2

d2k⊥ψqq̄/π(xi, k⊥i, λ)

◮DAs are useful in flavour physics too, since collinear
factorization has been shown to apply (to leading or-
der in 1/mb) to 2-bodynonleptonic B decays.
◮DAs also play a crucial role in theSoft Collinear Ef-

fective Theory (SCET)

Pdfs tell us about the partonic content of hadrons, but as
single-particle probabilities they say nothing about cor-
relations between quarks and gluons and are insensitive
to the roles of different Fock states. Distribution ampli-
tudes, however, really tell us about hadronic structure at
the amplitude level.

4 Moments and the Lattice

◮ The main tool for studying DAs has beenQCD Light-
Cone Sum Rules. In the past, themomentsof DAs
were studied:

〈ξn〉 =

∫

dξξnφ(ξ,Q2)

◮ Today, it is theGegenbauer moments (based on the
conformal expansion) that are of interest:

φ(x,Q2) = φas(x)

















1+
∑

n

an(Q
2)C3/2

n (2x − 1)

















where the asymptotic DAφas is known:

φas(x)
Q2→∞
= 6x(1− x)

◮ For the lower moments, the two are simply related,
e.g.:a1 = 5

3〈ξ
1〉

◮We can obtain momentson the latticevia the follow-
ing hadronic matrix elements (for the pseudoscalar
mesons), which can be evaluated using only 2-point
functions:

〈0|q̄γργ5

↔

Dµq|π(p)〉 = fπ〈ξ〉pρpµ

〈0|q̄γργ5

↔

Dµ

↔

Dνq|π(p)〉 = fπ〈ξ
2〉pρpµpν

◮Until quite recently, there were just a few exploratory
studies on the lattice for the pseudoscalar mesons.

5 Domain-Wall Fermions and QCDOC

◮By introducing a fifth-dimension we can separate
the right- and left-handed fermions, which become ex-
ponentially bound to separate domain walls [3].

◮With the fifth-dimension infinite, theGinsparg-
Wilson relation is satisfied: chiral symmetry is pre-
served exactly at finite lattice spacing and the fermion
action isO(a)-improved.

◮With a finite fifth-dimension, the chiral properties are
tunable, with the symmetry-breaking parameterized
by theresidual massmres [4].
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s = 0

modes
left-handed

x

s
s = L

modes
right-handed

◮DWF are still costly to simulate. The UKQCD/RBC
Collaborations use the custom-designedQCDOC su-
percomputer with theRHMC algorithm .

6 Results

◮Recently, results have been obtained for〈ξ1〉 and〈ξ2〉

for the pseudoscalar mesons[5, 6], including〈ξ1〉K
which is an SU(3)-breaking effect.

◮ The UKQCD results used lattices with the Iwasaki
gauge action and 2+1 flavours of DWF. There are two
volumes, 163×32(×16) and 243×64(×16), witha−1 =

1.6GeV. The quark masses are:ams = 0.04, amu/d =

0.01, 0.02, 0.03. Renormalization has so far been car-
ried out perturbatively, but non-perturbative renormal-
ization using the RI/MOM method is in progress.

◮Results on the larger lattices for the pseudoscalars and
results for the longitudinal DAs of thelight vector
mesonsare forthcoming.
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