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Background & Motivation:

The magnetic dipole moment of muon is one of the most precisely measured and calculated quantities in
elementary particle physics. It has been measured to a precision of 0.54 parts per million (ppm) at
Brookhaven National Lab (BNL) [1–6]. The measured quantity has reached a comparable level to the
Standard Model prediction. The sensitivity between the theoretical and measured quantities can be
attributed to possible new physics such as Super-Symmetry (SUSY).

           The magnetic dipole moment of muon of mass m and charge e is given by

where g and    are the gyromagnetic ratio and muon spin respectively. Quantum Electro-Dynamics
(QED) predicts g = 2 at the tree level for an elementary spin-1/2-particle such as muon. Quantum
corrections from QED loops diagrams, from strong or weak interactions, or from possible new physics
lead to a contribution of

which is called the anomalous magnetic dipole moment. The theoretical prediction of one-loop QED
contribution to the anomalous magnetic moment of a lepton is given by the well-known Schwinger term
α/2π [7]. This dominant contribution is then also further subjected to higher-order QED and QCD
(Quantum Chromo-Dynamics) corrections. The loop contributions from heavier particles with mass
               are suppressed by                    , where       and                are muon and SUSY particle masses.
Therefore, the anomalous magnetic dipole moment of muon is                  ≈ 40000 times more sensitive
to new physics than that of electron. The anomalous magnetic dipole moment has been measured by
g － 2 experiment E821 with a great accuracy at BNL [1–6]

           The Standard Model Theory prediction given in [8] based on             cross-section of hadronic
contributions is

where superscripts correspond to error contributions due to vacuum polarization, light-by-light scattering,
Quantum Electro-Dynamics and Weak interactions respectively. The difference between the SM
prediction and experimental result is given by

 
There is 2.4 standard deviation between theory and experimental results, which certainly demand the
reduction of uncertainty attributed to QCD contribution. The hadronic light-by-light contribution is very
difficult to evaluate. The current estimate varies between model calculations                               [9] to
                              [10]. Evaluating the light-by-light contribution with greater accuracy might help
reducing the discrepancy currently evident between the SM prediction and experimental result, which
may give a hint to the underlying structures of possible new physics. In the next section, the outlines of
our proposed research have been elaborated.
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Outlook:
We are hoping to rectify the obstacles to produce the Schwinger term (α/2π) successfully non-
perturbatively in the near future. As soon as we are confident about our results, we will get into
calculating our target diagram in Fig. 1. Our aim is to first insert fermionic loop (i.e. pure QED
calculation) for the injected photon at the vertex before incorporating more harder and tedious
hadronic loop. Hopefully, we will be able to successfully determine the h-lbl contribution in the
future to investigate whether any underlying new physics such as Super-Symmetry can be
revealed. Even if there is no SUSY, it is still very intriguing and challenging task to shrink the gap
between existing theoretical (SM) prediction and observed experimental result.

Proposed Research:

Our proposal here based on [11] is to evaluate one type of QCD contribution, the hadronic light-by-light
scattering (h-lbl) contribution to the muon anomalous magnetic dipole moment depicted in Fig. 1, which
gives rise to an                 contribution to muon g － 2. The diagram can be computed using the following
naive approach; the four electro-magnetic currents are calculated repeatedly using lattice QCD
techniques for two independent momenta    ,      of two off-shell photons, and are then integrated over
   ,     .

The direct lattice calculations of the above diagram are notoriously difficult. Hence, the following
approach is being proposed to calculate the light-by-light contribution through the use of combined (QED
+ QCD) lattice simulation. The red line in Eq. (6) is the free photon propagator                    in the non-
compact lattice QED solved in an appropriate gauge fixing condition. The black line corresponds to the
full quark propagator                   for a given set of                gauge configuration               and
gauge configuration            . The sum over relevant flavors f is implicitly assumed. The blue line denotes
the full muon propagator s(x, y; u). The average <, > means the one over the unquenched
and/or the quenched               gauge configurations, which are specified by the corresponding
subscripts. Eqs. (6) and (7) describe our proposed methodology in order to successfully extract the
desired observables.

Let us look at the first term of Eq. (6) perturbatively with respect to QED in order to explain the
underlying mechanism regarding the proposed method. Its magnetic components up to
consist of Feynmann diagrams depicted in Eq. (7). The left diagram in the first line gives the                -
contribution. The                 -corrections to its muon part and to its quark part induce                -
contributions shown in the right diagram on the first line as well as on the second line respectively. We
recall that the QED gauge configurations in the first term of Eq. (6) are commonly shared by the quark
part and the muon part. Hence, the photons can be exchanged between the two parts. As a
consequence, the left diagram in the second line of Eq. (7) is induced at                , which takes the form
of our target, Fig. 1. Alternatively, the quark and muon parts in the first and third diagrams in Eq. (7) are
connected only by a single photon attached a priori. The second term in Eq. (6) also contains those
extra diagrams. Thus, by subtracting the second term from the first term, we may extract the h-lbl
contribution.

           The quantities evaluated in our method (6) are constructed from two currents for both terms,
which are surely less noisy than the case of four currents encountered in the naive approach. The
extremely high degree of correlation between first and second terms of (6) makes sure that the
proposed method may work. In next section, the progress in our research in calculating these
observables has been discussed.

Research in Progress:

Our goal at the moment is to successfully reproduce the Schwinger term (α/2π) non-perturbatively. In
order to accomplish this objective, we have been doing several calculations of the muon two and three
point correlation functions to extract the form factors, F1 and F2. Domain Wall Fermions (DWF) are
used in these simulations.

            Our numerical studies are carried out at QCDOC (Quantum Chromo-Dynamics On-a-Chip)
supercomputers at Columbia University and Brookhaven National Lab. The QCDOC architecture has
been designed to provide a highly cost-effective, massively parallel computing resources for extremely
demanding problems.

           Our initial efforts centered on just obtaining a statistically significant signal. We realized that we
had to extend the time size of the lattice to 64 from 32 so that a suitable plateau could be observed.
That was successful in the context that we had been able to observe suitable plateaus (see Fig. 2), at
least for the first five or six non-zero momenta of the injected photon at QED vertex.
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Finally, let me briefly elaborate on the issue of lattice artifacts. It is clear from [12] that at tree
level, the three point functions suffer order (am)^2 and (a^2mp) corrections which can be read off
the equations for the electromagnetic form factors of [12]. Solving those equations for F1 and F2,
it was found that F2 becomes negative and roughly momentum independent. It was also realized
that F2 tends to zero as m → 0. This is consistent with our data. After running the job with
smaller m = 0.1, an increase in F2 was found in the positive direction. We also need to do more
careful tree level analysis to be positive about this notion. In any case, it seems clear that there is
a lattice artifact that needs to be controlled to get the continuum limit since these effects are on
the same order as the term we are looking for (               ), or even larger (m = 0.1 or 0.2) in our
simulations. Note, we can’t take m too small because then we run into finite volume effects. One
option to remove these artifacts is to add the clover term to the DWF action as described in [12].
Since we are looking for order alpha effects, such a complication may be unavoidable.

Results:

Figure 1

(7)

In Fig. 3 and Fig. 4, F1 and F2 have been plotted as a function of q^2/m^2 for 16^3x64 lattices,
and it shows that F1 is in the order of 1 as expected though it is slowly increasing as q^2/m^2
increases. On the other hand F2 increases rather faster especially for smaller momentum region.
F1 & F2 have been fitted into a constant linear fit with the off-diagonal elements of the covariance
matrix set to zeros.

           In Fig. 5 and Fig. 6, F1 and F2 have again been plotted as a function of q^2/m^2 for
24^3x64 lattices, and it shows that F1 is in the order of 1 as expected, but is slowly increasing as
q^2/m^2 increases. F2 also increases as q^2/m^2 decreases. It is quite evident from the results
that with increasing volume, F2 is approaching to the Schwinger expectation (i.e. α/2π).
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Figure 3

Figure 4

Figure 2
Figure 6

Figure 5

In order to explore the small momentum region, we implemented twisted boundary conditions with a
small additive momentum (p = θ/L) where theta is the twist. We tried the simulations with θ = 0.5, 3 and
5. It does seem that the twist is working properly in the context that the measured momentum from the
two point function is consistent with the input value of theta.

           All the above discussions are basically centered on extracting F2 since F1 is very trivial to
calculate. The signal for F2 at the lowest value of transferred momentum, q = θ/L, where θ is 0.5, is
seen to be roughly approaching the right order of magnitude compared to expectation from the known
continuum value, α/2π with the increasing lattice volume. All of our calculations have been carried out
with un-physical charge, e = 1. Since we are not at q^2 = 0, our results may differ due to momentum
dependence of the form factor. In reality, F2 is extrapolated to q^2 = 0 limit.

          We showed the results coded up with local current in the next section. Since the Ward identity is
not satisfied for the local current, it became important for us to use conserved current to eliminate the
contaminations of extra terms arising from non-conserved local current. Right now, our results from
conserved current are in progress.
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