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Motivation

■ Current challenge in lattice QCD: Compute low energy
hadronic observables with controlled errors.

■ Algorithmic difficulties: Difficult to study realistic quark
masses.
Calculations at unphysically large pion masses followed by
extrapolations to realistic quark masses with χPT .

■ Extrapolations: Are they reliable? Need to know the range
over which χPT is applicable.

⇒ Take a model simpler than QCD and study χPT as an
effective field theory describing lattice field theory.

Goals:
■ To construct lattice field theory to model pions of QCD.
■ To understand how χPT emerges in such a theory.
■ To understand effects of quark masses on pion scattering.
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Model

Nf = 2 Strongly coupled lattice QED with staggered fermions.

■ Why Nf = 2?
To study a simple model with two light quarks.

■ Why staggered fermions?
To have chiral symmetry and study the chiral limit.

■ Why the strong coupling limit?

Develop efficient Directed Loop Algorithms to study the
chiral limit while retaining the qualitative physics (namely
chiral symmetry breaking and confinement) of full QCD.

■ Why Strong Coupling QED?
U(1) simpler than SU(3).
confinement and chiral symmetry breaking also present in
U(1) at strong coupling.
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Continuum Limit

■ Without a way to fine tune lattice artifacts will dominate since
at strong coupling Fπ ∼ a

■ New idea to overcome this:

Work in d+ 1 dimensions where d = 4 space time
dimensions

Extra dimension is fictitious temperature which allows fine
tuning to a critical point

Near critical point, where Fπ ≪ a.

As we will see, Fπ ∼ 100MeV and a ∼ 1GeV .

⇒ Thus, we can still explore physics of continuum limit even
in strong coupling limit.
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Euclidean Space Action

S = −
∑

x,µ

ηµ,x

[

eiφµ,xψxψx+µ̂ − e−iφµ,xψx+µ̂ψx

]

−
∑

x

[

mψxψx +
c̃

2

(

ψxψx

)2]

1. x: lattice site on d+ 1 dimensional hypercubic lattice Lt ×Ld

2. µ runs over the temporal and spatial directions 0, 1, 2, ..., d

3. ψx,ψx: 2 component Grassman fields for 2 flavors mass m
4. φµ,x: U(1) gauge field through which the fields interact

5. staggered fermion phases: η2
0,x = T , η2

i,x = 1 i = 1, 2, ..., d

6. T : fictitious temperature.
7. c̃: strength of the anomaly
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Symmetries

■ Same symmetries as full QCD.
■ Sum over lattice sites decomposed into sum over even and

odd sites.
■ c̃, m = 0 , action has global SUL(2) × SUR(2) × UA(1)

symmetry.
■ Action invariant under UA(1) and SUL(2) transformations:

ψo → ψo exp(iθ) ψo → exp(iθ)ψo

ψe → ψe exp(−iθ) ψe → exp(−iθ)ψe

ψo → ψoV
†
L ψo → ψo

ψe → ψe ψe → VLψe

SUR(2) obtained by VL ⇔ VR and o⇔ e.
VL, VR SU(2) matrices: exp(i~θ · ~σ)
σi Pauli matrix acting on flavor space.
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Symmetries

■ c̃ 6= 0,m = 0
UA(1) explicitly broken
SUL(2) × SUR(2) × UA(1) → SUL(2) × SUR(2) × Z2.

⇒ Thus, coupling c̃ induces the effects of the anomaly.

■ c,m 6= 0
UA(1) explicitly broken
SUL(2) × SUR(2)explicitly broken
SUL(2) × SUR(2) × UA(1) → SUV (2).

⇒ Thus, to mimic real world with u,d quarks: c̃ 6= 0 and
m 6= 0.

■ Based on mean field strong coupling calculations, expect the
symmetry breaking pattern to be similar to that of full QCD.
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MDPI Model

Need algorithm to study the partition function:
1. Integrate over the gauge fields exactly.
2. Use Grassman algebra to simplify the partition function.
3. Interpret the remaining terms as gauge invariant objects:

monomers, dimers, and pion loops, and instantons.
4. Express partition function in terms of MDPI configurations.

Z =
∑

[I,nd,nu,πd
µ,πu

µ,π1
µ]

∏

x,µ

mnd(x)mnu(x)cI(x)

■ [I, nd, nu, πd
µ, π

u
µ, π

1
µ] : a MDPI configuration

■ I(x) = 0, 2: instantons nu,d(x) = 0, 1: u, dmonomers

■ πu,d
µ = 0, 1: u, ddimers π1

µ = −1, 0, 1: udor du dimers.

Z is sum over positive definite weights
=⇒ Directed Path Algorithm in MDPI space.
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MDPI Configuration Space

An example of an MDPI configuration on the lattice.

uu(x)

dd(x)
monomers uu(x)dd(x) instanton

uu(x)uu(y)

dd(x)dd(y)

ud(x)du(y)
dimers
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Directed Loop Algorithm

Need algorithm to study the partition function:
1. Integrate over the gauge fields exactly.
2. Interpret the remaining terms as gauge invariant objects:

monomers, dimers, and pion loops, and instantons.
3. Express partition function in terms of MDPI configurations.

Z is sum over positive definite weights

=⇒ Directed Path Algorithm in MDPI space.

■ DPA very efficient in studying chiral limit.
■ Have tested algorithm in simple case of 2 × 2 where exact

hand calculation of partition function is possible.
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Directed Loop Algorithm

Three update routines:

The u↔ d flip update:
■ Changes uquark to dquark and vice-versa on pion loop or

string.
■ uuuudimer becomes dddddimer and vice versa
■ uddudimer becomes duuddimer and vice versa
■ uumonomer becomes ddmonomer.
■ Satisfies detailed balance.

Loop swap update
■ Swaps neutral pion-loopinto a charged pion-loopand vice

versa.
■ Satisfies detailed balance.
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Directed Loop Algorithm

Directed-path mass update
■ Can create and destroy monomers and instantons.
■ Can change shape of pion loops.
■ Two types of update differ on sites touched.

charged-pion directed path update can only touch sites
containing either charged pion-loops (including double
dimers) and instantons

neutral-pion directed path update can only touch sites
containing neutral pion-loops (including double dimers),
instantons and monomers.

■ Satisfies detailed balance.

All three updates needed for ergodicity .
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Directed Loop Algorithm

Directed path fixed monomer update
■ Allows the monomers to change positions while keeping the

total monomer fixed.
■ Satisfies detailed balance.
■ Not required for ergodicity but allows us to test additional ǫ

regime predictions (as we will see)

Algorithm very efficient and as we will see can be used to
study the chiral limit. (Note most current algorithms too
inefficient to approach m = 0.)
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Observables

■ Numerous observables can be measured with this algorithm.
■ Simplest are three helicity moduli (current susceptibilities).

For a conserved current J i
µ(x), the helicity modulus (current

susceptibility) is defined as:

Y i
w =

1

dLd

〈 d
∑

µ=1

(

∑

x

J i
µ(x)

)2〉

on a Lt × Ld lattice.
There are three conserved currents in our model: axial,
chiral, and vector:

JA
µ (x) = (−1)x

[

πu
µ(x) + πd

µ(x) + |π1
µ(x)|

]

JC
µ (x) = (−1)x

[

πu
µ(x) − πd

µ(x)
]

JV
µ (x) = π1

µ(x)
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Observables

■ Can measure correlation functions defined as:

Ga
π(x, y) =

1

2
〈ψxiσ

a(−1)xψx ψyiσ
a(−1)yψy〉

Gσ(x, y) =
1

2
〈ψxψx ψyψy〉

Gη(x, y) =
1

2
〈ψxi(−1)xψx ψyi(−1)yψy〉

Ga
δ (x, y) =

1

2
〈ψxσ

aψx ψyσ
aψy〉

■ The corresponding susceptibilities, χπand χη are:

χ =
1

LtLd

∑

x,y

G(x, y)

■ The directed path algorithm allows a straightforward
measurement of G(x, y)and χ.
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Chiral Lagrangian

In the phase with broken chiral symmetry and large anomaly,
low energy physics of our model described by:

L =
F 2

4
tr

(

∂µU
†∂µU

)

−mΣtr
(

U + U †
)

F : pion decay constant in the chiral limit

Σ: chiral condenstate
U ∈ SU(2): pion field.

ǫ regime: limit where L (size of 4d hypercube) is large such
that FL≪ 1 but mΣL4 is held fixed

=⇒ To apply χPT to our model in the ǫ regime choose c = 0.3
and m = 0 to be in the broken phase. Tuned T to near critical
point at T = 1.733.
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χPT ǫ regime

Dependence of Yc and Yv(Hansen):

Yc =
F 2

2

(

{

1 +
β1

(FL)2
+

a′

(FL)4
+ ...

}

+

u2

24

{

1 +
3β1

(FL)2
+

bc
(FL)4

+ ...
}

+ O(u4)
)

Yv =
F 2

2

(

{

1 +
β1

(FL)2
+

a′

(FL)4
+ ...

}

−

u2

24

{

1 +
3β1

(FL)2
+

bv
(FL)4

+ ...
}

+ O(u4)
)

for small u = ΣmL4[1 + 3β1/(2(FL)2)].

β1 = 0.14046(4d shape coefficient)

a′ bc,bvdepend on higher order low energy constants.
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Chiral current susceptibility Yc

8 16 32 48 64
L

0.005

0.01

0.015

Yc

20 24 32 40 48 64
L

0.005

0.0055

0.006

Yc

Yc as function of L at c = 0.3,T = 1.733,m = 0. Solid line shows
the fit with F = 0.0992(1),a′ = 2.7(1),χ2/DOF = 0.8.Dotted
line shows same curve but with a′ = 0.
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Fixed monomer number

20 24 32 4840
L

0

0.002

0.004

0.006

0.008

0.01

0.012
Y

(2)
c

Y
(2)

v

Plot of Y (2)
c and Y (2)

v , evaluated in two monomer sector as
function of L at T = 1.733, c = 0.3,m = 0. Solid lines are fits to
same formulas as before but with m 6= 0.
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χPT ǫ regime

■ Behavior of χπ as a function of L at m = 0 for O(N) model
(Hasenfratz et al) N = 4 result:

χπ = Σ2L
4

4

(

1 +
3β1

(FL)2
+

a

(FL)4
+ ...

)

■ logL corrections (Gockeler et al)

χπ = Σ2L
4

4

[

1 +
3β1

F 2L2
+

1

F 4L4

{

α+
3

16π2
(logF 2L2)

}

+ ...

]

where α = −3(β2
1 − 3β1 − 4β2)/4 + 3 log

(

ΛMΛΣ/F
2
)

β2 = −0.020305another shape coefficient

mass scales ΛM ,ΛΣ encode non-universal information
⇒ logarithmic dependence of Mπ,Σ on quark mass m
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Chiral condensate susceptibility χσ

18 24 32 40 48 64
L

0.008

0.009
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0.012

χ σ/L
4

16 32 48 648
L

0.008
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0.024

0.032

χ σ/L
4

Chiral condensate susceptibility χσ,χπ as function of lattice
size L at T = 1.733, c = 0.3,m = 0 [χσ = χπ]. Solid line shows
fit with Σ = 0.1866(2), F = 0.0992, a = 3.0(2), χ2/DOF = 1.3.
Dotted line shows the same curve but with a = 0.
⇒ Not sensitive to logL corrections
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Critical point

At c = 0.3,T = 1.733 F ∼ 0.1. MFT ⇒ 2nd order transition.

F ∼ AF (Tc − T )
1

2 |ln(Tc − T )|
1

4 Σ ∼ AΣ(Tc − T )
1

2 |ln(Tc − T )|
1

4

1.68 1.7 1.72 1.74
T

0 0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5
Σ
F

T ≥ 1.73,
AF = 0.943(4),AΣ = 1.769(4),TC = 1.73779(4),χ2/DOF = 0.7.
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Conclusions

1. Developed a strong coupling lattice QED model of pions in
Nf = 2 QCD.

2. Have shown that mapping to a dimer model leads to very
efficient algorithms that can be used to study the chiral limit
and close to it.

3. Able to confirm the low energy predictions of χPT in the ǫ
regime.

4. Have found F ≪ 1 by tuning fictitious temperature to a 2nd
order phase transition and approached continuum limit.
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Future Work

With an efficient algorithm now available to study the
SUL(2) × SUR(2) lattice QED model at strong coupling and
having established consistency with the ǫ regime of χPT we
plan:

1. To complete a study of chiral perturbation theory in the p
regime.

2. To compute the effects of quark mass on pion scattering by
measuring two and four point correlation functions and
extracting scattering phase shifts and lengths via Lüscher’s
method.
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