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Motivation

Confinement and chiral symmetry breaking are two of the central features of QCD. At
the QCD finite temperature transition chiral symmetry is restored and the theory decon-
fines. Numerical simulations in lattice QCD indicate that the critical temperatureTc is
the same for both transitions. Thus it is widely believed that there must be a mechanism
linking the two phenomena. However, so far there is no generally accepted picture for
such a link. For chiral symmetry breaking an important connection between the order
parameter, the chiral condensate, and spectral propertiesof the Dirac operator is known.
The Banks-Casher formula [1] links the chiral condensate tothe density of Dirac eigen-
values at the origin. Concerning confinement, so far no signature in spectral properties
of the Dirac operator is known. On the other hand it is obviousthat such signatures must
exist. The inverse Dirac operator, i.e., the quark propagator, clearly knows about con-
finement properties. In this poster we present an attempt to identify spectral signatures
of the Dirac operator which are related to confinement.

Theoretical framework

Our starting point are Polyakov loops on an euclidean lattice. A Polyakov loop is defined
as the ordered product of temporal link variables at a fixed spatial position~x.

L(~x) = Trc





N
∏

s=1

U4(~x, s)



 ,

where theN denotes the number of lattice points in time direction and Trc is the trace
over color indices. Working in the lattice regularization,we express the Polyakov loop
and its correlators as a spectral sum of eigenvalues and eigenvectors of the Dirac operator
with different boundary conditions [2]. Here, we use the staggered Dirac operator,

D(~x, ~y) =
1

2

4
∑

µ=1

ηµ(~x)
[

Uµ(~x) δ~x+µ̂,~y − U †
µ(~x − µ̂) δ~x−µ̂,~y

]

.

The hopping terms of the Dirac operator connect nearest neighbors. When powers ofD
are considered, these terms combine to chains of hops on the lattice. Taking them-th
power will give rise to chains with a maximal length ofm steps. Furthermore, we set
the two space-time arguments ofD to the same value,~y = ~x, such that we pick up only
closed loops. Among these are the loops where only hops in time direction occur, such
that they close around the compact time.

Trc
[

DN(~x, t|~x, t)
]

= 2−NL(~x) − 2−NL∗(~x) + other loops

We now explore the fact that the Polyakov loops respond differently to a change of the
boundary conditions compared to other, non–winding loops.We can change the tempo-
ral boundary condition of the Dirac operator by multiplyingall temporal link variables
at t = N with some phase factorz ∈ C, |z| = 1, U4(~x, N) → z U4(~x, N) for all ~x. Now
using the Dirac operator in the transformed field, denoted asDz, we obtain:

Trc
[

DN
z (~x, t|~x, t)

]

= z 2−N L(~x) − z∗ 2−N L∗(~x) + other loops (unchanged!)

Only the two Polyakov loops which wind non–trivially are altered when changing the
boundary condition. We consider the Polyakov loop averagedover all of space

P ≡
1

V3

∑

~x

L(~x).

Combining the spectral representation ofD, Dz andDz∗ and writing Trc
[

DN
]

as
∑

i λ
N
i

one gets the spectral representation of the Polyakov Loop
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V

i
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whereV = L3N is the total number of lattice points. The Polyakov loop P thus is
represented as a linear combination of spectral sums for theN -th power of the eigenval-
ues computed with three different fermionic boundary conditions in time direction. The
boundary conditions for the gauge fields are always kept periodic. This formula relates
the vacuum expectation value of the Polyakov loop, which originally is a purely gluonic
quantity, to spectral sums of the Dirac eigenvalues.

Numerical analysis

Having derived the spectral representation of the Polyakovloop, we can analyze numer-
ically various aspects of our formulas. These numerical studies are done on quenched
SU(3) ensembles generated with the Lüscher–Weisz action [3]. We use various lattices

ranging from83 × 4 to 123 × 8 with several values of the inverse gauge couplingβ giving
rise to configurations on both sides of the QCD phase transition. The lattice spacing was
determined with the Sommer parameter in [5]. In our Monte Carlo program also the
center symmetry is updated. For each configuration the complete spectrum of the hop-
ping matrices for the staggered Dirac operators was computed using standard libraries.
On each configuration this was repeated for different temporal boundary conditions. The
statistical errors we quote for the averaged observables are evaluated with single elimi-
nation Jackknife.

Results

Since the massless staggered Dirac operator is an anti–hermitian matrix, it has eigenval-
ues on the imaginary axis (they come in complex conjugate pairs). For analyzing our
data we divide|λ| into small bins of size∆|λ|. Each plot is shown in physical units (left)
as well as in lattice units (right). We use red forNt = 4, blue forNt = 6 and green lines
for Nt = 8. To distinguish the spatial extent solid lines are used forNs = 12 and dashed
ones forNs = 10.

Fig. a shows the distribution of eigenvalues as a function of|λ|. As a first property of
the eigenvalues we show how they shift due to a change of temporal boundary condition
(Fig. b). For the average shifts(λi) defined in [4], it is obvious that the infrared part is
shifted more then the UV–part. Fig.c depicts the contribution of each bin to the Polyakov
loop. We calculate the contribution for each bin separatelyand normalize them with the
value of the Polyakov loop. One can easily see that the loop isstrongly dominated by the
UV–part for all lattices and temporal extents. As a last quantity (Fig. d) we accumulate
the contributions of Fig.c up to a certain value of|λ| and plot this versus|λ|. Also here
the UV-dominance is large.

Summary

We numerically analyze spectral sums for Polyakov Loops. For that purpose we com-
puted complete Staggered Dirac spectra with three different fermionic boundary condi-
tions, using quenched ensembles below and above the QCD phase transition. In par-
ticular we study the distribution of the eigenvalues and their shift under a change of
boundary conditions. Concerning this shift we establishedthat the IR modes are shifted
most. For the buildup of the Polyakov loop, we considered thecontribution of an indi-
vidual eigenvalue as well as the accumulated contribution.Both, the individual as well
as the accumulated contributions show that mainly the eigenvalues in the UV build up
the Polyakov loop. All plots indicate that properties of theeigenvalues are independent
of the spatial volumeV3.
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