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Motivation

Confinement and chiral symmetry breaking are two of the eéfgatures of QCD. At
the QCD finite temperature transition chiral symmetry isae=d and the theory decon-
fines. Numerical simulations in lattice QCD indicate that tmitical temperaturé.. Is
the same for both transitions. Thus it is widely believed thare must be a mechanism
linking the two phenomena. However, so far there iIs no gdilyesacepted picture for
such a link. For chiral symmetry breaking an important catioa between the order
parameter, the chiral condensate, and spectral propeftiae Dirac operator is known.
The Banks-Casher formula [1] links the chiral condensataéadensity of Dirac eigen-
values at the origin. Concerning confinement, so far no siggan spectral properties
of the Dirac operator is known. On the other hand it is obviias$ such signatures must
exist. The inverse Dirac operator, I.e., the quark propagatearly knows about con-
finement properties. In this poster we present an attemutetatify spectral signatures
of the Dirac operator which are related to confinement.

Theoretical framework

Our starting point are Polyakov loops on an euclidean ti#cPolyakov loop is defined
as the ordered product of temporal link variables at a fixediglpositionz.
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where theN denotes the number of lattice points in time direction andisthe trace
over color indices. Working in the lattice regularizatiove express the Polyakov loop
and its correlators as a spectral sum of eigenvalues anadveig®rs of the Dirac operator
with different boundary conditions [2]. Here, we use th@gered Dirac operator,
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The hopping terms of the Dirac operator connect neareshherg. When powers ab
are considered, these terms combine to chains of hops oattiee! Taking then-th
power will give rise to chains with a maximal length wf steps. Furthermore, we set
the two space-time arguments bfto the same value; = z, such that we pick up only
closed loops. Among these are the loops where only hops edinection occur, such
that they close around the compact time.

Tr, [DN(f,t\f, t)} — 2 VL7 — 27NVL*(#) + otherloops

We now explore the fact that the Polyakov loops respond raiffety to a change of the
boundary conditions compared to other, non—winding lodjs.can change the tempo-
ral boundary condition of the Dirac operator by multiplyialy temporal link variables
att = N with some phase factare C, |z| = 1, Uy(Z, N) — z Uy(x, N) for all £. Now
using the Dirac operator in the transformed field, denotef asve obtain:

Tr, [Df(f,t\f, t)} — 227V L(Z) — 2*27" L*(Z) + other loops (unchanged!)

Only the two Polyakov loops which wind non-trivially areeaktd when changing the
boundary condition. We consider the Polyakov loop averayed all of space
1

Combining the spectral representation/af D. and D..- and writing Tt [DN } as>; \Y
one gets the spectral representation of the Polyakov Loop
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whereVV = L3N is the total number of lattice points. The Polyakov loop Pstimi

represented as a linear combination of spectral sums fa¥Vthepower of the eigenval-
ues computed with three different fermionic boundary cbods in time direction. The
boundary conditions for the gauge fields are always kepbgexi This formula relates
the vacuum expectation value of the Polyakov loop, whicgioally is a purely gluonic
guantity, to spectral sums of the Dirac eigenvalues.
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Numerical analysis

Having derived the spectral representation of the Polyakop, we can analyze numer-
ically various aspects of our formulas. These numericaliegiare done on quenched
SU@B) ensembles generated with thadcher—\Weisz action [3]. We use various lattices

ranging froms?® x 4 to 12° x 8 with several values of the inverse gauge couplimjving
rise to configurations on both sides of the QCD phase transifihe lattice spacing was
determined with the Sommer parameter in [5]. In our Montel&Cprogram also the
center symmetry Is updated. For each configuration the catengpectrum of the hop-
ping matrices for the staggered Dirac operators was cordpugmg standard libraries.
On each configuration this was repeated for different teadgmundary conditions. The
statistical errors we quote for the averaged observab&es\aluated with single elimi-
nation Jackknife.

Results

Since the massless staggered Dirac operator is an antifda@rmatrix, it has eigenval-
ues on the imaginary axis (they come in complex conjugatespakor analyzing our
data we divide\| into small bins of size\|\|. Each plot is shown in physical units (left)
as well as in lattice units (right). We use red for = 4, blue for N; = 6 and green lines
for N; = 8. To distinguish the spatial extent solid lines are used\ipe= 12 and dashed
ones forN, = 10.
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c) contribution of eigenvalues d) accumulated sums
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Fig. a shows the distribution of eigenvalues as a functiop\of As a first property of
the eigenvalues we show how they shift due to a change of teahipoundary condition
(Fig. b). For the average shift( \;) defined in [4], it is obvious that the infrared part is
shifted more then the UV—part. Figdepicts the contribution of each bin to the Polyakov
loop. We calculate the contribution for each bin separadaly normalize them with the
value of the Polyakov loop. One can easily see that the loswosgly dominated by the
UV-—part for all lattices and temporal extents. As a last diya(Fig. d) we accumulate
the contributions of Figc up to a certain value gl | and plot this versug\|. Also here
the UV-dominance is large.

Summary

We numerically analyze spectral sums for Polyakov Loopg. tkat purpose we com-
puted complete Staggered Dirac spectra with three diftdegmionic boundary condi-
tions, using quenched ensembles below and above the QCI2 paasition. In par-
ticular we study the distribution of the eigenvalues andrtlkift under a change of
boundary conditions. Concerning this shift we establisihedlthe IR modes are shifted
most. For the buildup of the Polyakov loop, we consideredcthr@ribution of an indi-
vidual eigenvalue as well as the accumulated contributigwsth, the individual as well
as the accumulated contributions show that mainly the gajaas in the UV build up
the Polyakov loop. All plots indicate that properties of ghgenvalues are independent
of the spatial volumés.
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