Making sense of staggered light-quark baryons:
 Insights from the quark model

Jon A. Bailey

August 23, 2007

Challenge of staggered baryon spectroscopy

- Extract the masses of the lightest octet and decuplet baryons using rooted staggered QCD
- Success would provide valuable evidence for
- rooted staggered QCD
- rooted $\mathrm{S} \chi \mathrm{PT}$
- Taste quantum numbers complicate analysis
- Deducing the lightest staggered baryon multiplets involved but straightforward

Taste quantum numbers

- Four tastes for each physical quark flavor

$$
M=\left(\begin{array}{ccc}
\hat{m} I_{4} & 0 & 0 \\
0 & \hat{m} I_{4} & 0 \\
0 & 0 & m_{s} I_{4}
\end{array}\right)
$$

- Larger flavor symmetry group

$$
S U(3)_{F} \rightarrow S U(12)_{f}
$$

Consider the quark model

- Lightest octet and decuplet embedded in symmetric irrep of $S U(6)$

$$
\begin{array}{rll}
S U(6) & \supset S U(2)_{S} \times S U(3)_{F} \\
\mathbf{5 6} \mathbf{6}_{\mathbf{S}} & \rightarrow\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}_{\mathbf{M}}\right) \oplus\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{1 0 _ { \mathbf { S } }}\right)
\end{array}
$$

- Success of non-relativistic quark model rests on underlying dynamics
- If rooted staggered QCD is correct, then quark model must describe lightest baryon multiplets

Staggered quark model

- Lightest baryon multiplets embedded in symmetric irrep of $S U(24)$

$$
\begin{array}{rll}
S U(24) & \supset S U(2)_{S} \times S U(12)_{f} \\
\mathbf{2 6 0 0} & \rightarrow\left(\frac{1}{\mathbf{2}}, \mathbf{5 7 2}_{\mathbf{M}}\right) \oplus\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{3 6 4}_{\mathbf{S}}\right)
\end{array}
$$

Where are the physical octet and decuplet?

- Need to know for operator selection and chiral extrapolation

Identifying physical baryons: Single-taste baryons

- If rooted staggered QCD is correct, then taste $S U(4)_{T}$ is restored in the continuum limit
- Tastes are just like extra flavors; all tastes are equivalent
- Consider baryons containing only one taste of quark; to have correct $S U(2)_{S} \times S U(12)_{f}$ symmetry, $S U(3)_{F}$ symmetry must be same as $S U(12)_{f}$ symmetry

$$
\begin{aligned}
S U(24) & \supset S U(2)_{S} \times S U(12)_{f} \\
\mathbf{2 6 0 0}_{\mathbf{S}} & \rightarrow\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{5 7 2}_{\mathbf{M}}\right) \oplus\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{3 6 4}_{\mathbf{S}}\right)
\end{aligned}
$$

Flavor-taste basis

- Disentangle flavor $S U(3)_{F}$ and taste $S U(4)_{T}$ quantum numbers:

$$
\begin{aligned}
S U(12)_{f} \quad \supset & S U(3)_{F} \times S U(4)_{T} \\
\mathbf{5 7 2}_{\mathbf{M}} \rightarrow & \left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{M}}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{2 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{2 0}_{\mathbf{M}}\right) \\
& \oplus\left(\mathbf{8}_{\mathbf{M}}, \overline{\mathbf{4}}_{\mathbf{A}}\right) \oplus\left(\mathbf{1}_{\mathbf{A}}, \mathbf{2 0}_{\mathbf{M}}\right) \\
\mathbf{3 6 4}_{\mathbf{S}} \rightarrow & \left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{2 0}_{\mathbf{M}}\right) \oplus\left(\mathbf{1}_{\mathbf{A}}, \overline{\mathbf{4}}_{\mathbf{A}}\right)
\end{aligned}
$$

- In the continuum limit, all members of a given taste multiplet are degenerate
- All 20s baryons correspond to physical states

Continuum symmetry

- Continuum symmetry is larger than taste alone

$$
\begin{aligned}
M & =\left(\begin{array}{ccc}
\hat{m} I_{4} & 0 & 0 \\
0 & \hat{m} I_{4} & 0 \\
0 & 0 & m_{s} I_{4}
\end{array}\right)=\left(\begin{array}{cc}
\hat{m} I_{8} & 0 \\
0 & m_{s} I_{4}
\end{array}\right) \\
& \Rightarrow S U(8)_{\hat{m}} \times S U(4)_{m_{s}} \supset S U(4)_{T}
\end{aligned}
$$

- Baryons transforming within a given irrep of continuum symmetry are degenerate

Continuum irreps

$$
\begin{gathered}
S U(12)_{f} \supset S U(8)_{\hat{m}} \times S U(4)_{m_{s}} \\
\mathbf{3 6 4}_{\mathbf{S}} \rightarrow\left(\mathbf{1 2 0}_{\mathbf{S}}, \mathbf{1}\right) \oplus\left(\mathbf{3 6}_{\mathbf{S}}, \mathbf{4}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathbf{S}}\right) \\
\mathbf{5 7 2}_{\mathbf{M}} \rightarrow\left(\begin{array}{l}
\mathbf{1 6 8} \\
\mathbf{M}
\end{array}, \mathbf{1}\right) \oplus\left(\mathbf{2 8}_{\mathbf{A}}, \mathbf{4}\right) \oplus\left(\mathbf{3 6}_{\mathbf{S}}, \mathbf{4}\right) \oplus \ldots \\
\\
\\
\left(\mathbf{8}, \mathbf{6}_{\mathbf{A}}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathbf{M}}\right)
\end{gathered}
$$

- Deduce correspondence between continuum irreps and physical states by locating single-taste baryons in each continuum irrep

Correspondence with physical baryons

$$
\begin{aligned}
& S U(12)_{f} \supset S U(8)_{\hat{m}} \times S U(4)_{m_{s}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathbf{8}, \mathbf{6}_{\mathrm{A}}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathbf{M}}\right) \\
& \begin{array}{ccc}
\Lambda_{s} \\
(1400)
\end{array} \quad \Xi \begin{array}{c}
N_{s} \\
(1600)
\end{array}
\end{aligned}
$$

- All irreps but two correspond to physical states
- Exceptions are partially quenched baryons

Wait a minute!

- Does presence of states with unphysical masses invalidate rooted staggered QCD?
\Rightarrow No. Conservation of $S U(8)_{\hat{m}} \times S U(4)_{m_{s}}$ quantum numbers forbids mixing of these states with physical ones. This situation is what one encounters in partially quenched theories.
\Rightarrow Key: Is taste $S U(4)_{T}$ restored in the continuum limit?

Summary

- If rooted staggered QCD is correct, then lightest multiplets of staggered baryons are straightforwardly, accurately described by quark model
- Testing resulting picture means testing rooted staggered QCD
- Analysis can immediately be extended to excited states, heavy-light-light baryons, . . .
hep-lat/0611023

No. of lattice irreps per continuum irrep

$$
\begin{gathered}
m_{x}=m_{y}=\hat{m} \quad \text { and } \quad m_{z}=m_{s} \\
S U(12)_{f} \supset S U(8)_{x, y} \times S U(4)_{z}
\end{gathered}
$$

$$
\begin{gathered}
N 12 \\
\mathbf{5 7 2}_{\mathbf{M}} \rightarrow\left(\mathbf{1 6 8}_{\mathbf{M}}, \mathbf{1}\right) \oplus\left(\mathbf{2 8}_{\mathbf{A}}, \mathbf{4}\right) \oplus\left(\mathbf{3 6} \mathbf{c}_{\mathbf{s}}, \mathbf{4} \mathbf{4}\right) \oplus \ldots
\end{gathered}
$$

$$
\left(\mathbf{8}, \mathbf{6}_{\mathrm{A}}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathrm{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathrm{M}}\right)
$$

$$
\begin{array}{lll}
\Lambda_{s} 5 & \Xi_{7} & N_{s} 4
\end{array}
$$

Mixing

- States with the same conserved quantum numbers-i.e., corresponding members of the same type of irrep-mix

$$
\begin{aligned}
& \Sigma^{*} \\
&\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{3} \mathbf{6}_{\mathbf{S}}, \mathbf{4}\right) \rightarrow 3(\mathbf{1}, \mathbf{8})_{-1} \oplus 3\left(\mathbf{1}, \mathbf{8}^{\prime}\right)_{-1} \oplus 7(\mathbf{1}, \mathbf{1 6})_{-1} \oplus \ldots \\
&(\mathbf{0}, \mathbf{8})_{-1} \oplus\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1} \oplus 5(\mathbf{0}, \mathbf{1 6})_{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda \\
&\left(\frac{1}{2}, \mathbf{2 8}\right. \\
&\mathbf{A}, 4) \rightarrow 4(\mathbf{1}, \mathbf{8})_{-1} \oplus(\mathbf{1}, \mathbf{1 6})_{-1} \oplus 4(\mathbf{0}, \mathbf{8})_{-1} \oplus 3(\mathbf{0}, \mathbf{1 6})_{-1} \\
&\left(\frac{\mathbf{1}}{2}, \underset{\mathbf{3 6}}{\mathbf{S}}, \mathbf{4}\right) \rightarrow 4(\mathbf{1}, \mathbf{8})_{-1} \oplus 3(\mathbf{1}, \mathbf{1 6})_{-1} \oplus 4(\mathbf{0}, \mathbf{8})_{-1} \oplus(\mathbf{0}, \mathbf{1 6})_{-1} \\
& \Sigma
\end{aligned}
$$

\Rightarrow For each member of the $(\mathbf{0}, \mathbf{1 6})_{-\mathbf{1}}$ there is a $9-\mathrm{d}$ mixing matrix

Swapping degeneracies with physical states

$$
\begin{aligned}
& m_{x}=m_{y}=\hat{m}, m_{z}=m_{s} \\
& \hat{m} \longleftrightarrow m_{s} \\
& m_{x}=m_{y}=m_{s}, m_{z}=\hat{m} \\
& S U(8)_{x, y} \times U(1)_{z} \times S U(4)_{z} \\
& \\
& N U(2)_{I} \times U(1)_{z} \times \mathrm{GTS} \\
& N \longleftrightarrow N_{s} \\
& \Lambda \longleftrightarrow \Lambda_{s} \\
& \Sigma \longleftrightarrow \Xi \\
& \Delta \longleftrightarrow \Omega^{-} \\
& \Sigma^{*} \longleftrightarrow \Xi^{*}
\end{aligned}
$$

