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The Objective

Most of this presentation is based on the series of pa-

pers by Hong and Hsu.

• At non-zero quark number chemical potential, µ, the Det[D/ +

γ0µ] is in general complex which precludes Lattice QCD studies

at finite baryon density

• Conventional wisdom suggests that in the deconfined phase

QCD the low energy degrees of freedom should be light fermionic

excitations with |~k| ' pF ∼ µ (e.g. Schaefer Schwenzer (2006))

Is it possible to see it from the bare Lagrangian?

• The idea is to re-write Det [i γ0D/+µ] in a physically motivated

basis and identify the physically relevant parts of the original

determinant.

• Then one has to either check that they are non-negative or argue

that neglecting operators responsible for the complexity will not

significantly change the theory.

• One does not purport to describe non-analyticities in µ, i.e. to

solve the sign problem. This only aims at the LQCD description

of the low energy properties of the deconfined phase at high

density.
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Quark Determinant in a Different Basis

• Let us start by re-writing a Dirac fermion field as

ψ(x) =

∫

v̂

ei~x·v̂µ(qv + χv) v̂ · v̂ = 1, (1)

where qv = P(v)ψ, χv = P(−v)ψ, where P(v) =
1
2
(1 + γ0~γ · v̂) . The P(±v) are projectors for the posi-

tive/negative energy components of a Dirac spinor with 3 mo-

mentum ~k : v̂ = ~k/|~k|. (cf. HQET)

• The quark Lagrangian becomes then

Lq = ψ† (γ0γ · (i∂ − A) + µ)ψ =
∑

v̂,û

q†vDv,u qu +

+ χ†
v

(

D̃v,u + 2µ
)

χu − q†vA
v,u
⊥ χu + h.c., (2)

where

Dv,u = δv,u

(

i∂t + iv̂ · ~∇
)

− P(v)γ0 γ · AP(u) e−i~x·(v̂−û)µ

D̃v,u = δv,u

(

i∂t − iv̂ · ~∇
)

− P(−v)γ0 γ · AP(−u) e−i~x·(v̂−û)µ

Av,u
⊥ = P(v)γ0 γ · AP(−u) e−i~x·(v̂−û)µ. (3)

Note that the derivative term in A⊥ takes the form

γ⊥ · ∂q(~x · v̂) ≡ 0

with γν⊥ = (0, γi − vi ~γ · v̂).

• Then the determinant is

Det [γ0 iD/ + µ] = Det
(

Dv,u + A†
⊥ v,w

(

D̃w,s + 2µδw,s
)−1

As,u
⊥

)

× Det
(

D̃v,u + 2µδv,u
)

. (4)

The two distinct pieces in (4) are the particle-hole and anti-

particle determinants. Consider them one at a time.
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The Particle-Hole Determinant

• Expand Det
(

Dv,u + A†
⊥ v,w

(

D̃w,s + 2µδw,s
)−1

As,u
⊥

)

in J ≡
(

A†
⊥

(

D̃ + 2µ
)−1

A⊥

)v,u

Det
(

Dv,u + A†
⊥ v,w

(

D̃w,s + 2µδw,s
)−1

As,u
⊥

)

=

Det D exp[Tr D−1J −
1

2
Tr D−1JD−1J +

+
1

3
Tr D−1JD−1JD−1J + ...] (5)
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The Particle-Hole Determinant (cont.)

• One may, in turn, represent non-local operator J by a series

J =





1

2µ
A†

⊥



1 −
D̃

2µ
+

(

D̃

2µ

)2

−

(

D̃

2µ

)3

+ ...



A⊥





v,u

.(6)

Of course, if 1/µ expansions are used, any information about

non-analyticity in µ will be lost.

• Det D contains most of the information about low-energy dy-

namics of fermionic quasiparticle excitations near Fermi surface.

In particular, it contains contributions from exchanges of hard

gluons with 3 momenta ∼ µ which is crucial for the formation

of, e.g., a superconducting ground state.

• It may be shown that in Euclidean space Det D ≥ 0. Using

chiral representation of gamma matrices

γν =

((

0 1

1 0

)

,

(

0 ~σ

−~σ 0

))

≡

(

0 σν

σ̄ν 0

)

we have PR(v) = 1
2
(1 + ~σ · v̂) , PL(v) = 1

2
(1 − ~σ · v̂) and in

Euclidean space

DR
u,v =

(

∂τ + iv̂ · ~∇
)

δu,v − cos2 Θu,v

2

(

i A0 + v̂ · ~A
)

exp[−iµ(v̂ − û) · ~x] ≡ Du,v

DL
u,v = D−u,−v. (7)

then

Det D = Det

(

Du,v

D−u,−v

)

≥ 0. (8)

• Consider higher order terms. Weak coupling analysis suggests

that the ”tadpole” Tr D−1J is cutoff sensitive and, so, not sup-

pressed by 1/µ (e.g. gluon Meissner mass in CFL). The “suscep-

tibility” Tr D−1JD−1J and the higher order terms are suppressed

by inverse powers of µ.

• Note that Hong and Hsu proposed to keep only the Det D term

and mimic effects of the rest by either gluon mass term or Hard

Thermal Loop functional

• Tr D−1J ∝ 〈q†Jq〉A, so in general the ”tadpole” term may be

complex since J is not hermitean.

• The crucial issue is whether keeping only Exp|Tr D−1J| will not

lead to a qualitatively different ground state.

• Recall that dealing with |Det[D/+γ0µ]| instead of Det[D/+γ0µ] in

the 2 flavor case corresponds to changing baryon number chem-

ical potential into isospin chemical potential case, which does

have a qualitatively different phase diagram. Here, however, we

only retain parts of fermion determinant coming from low en-

ergy excitations about what we expect to be the correct ground

state and, so, one may hope that the omitted contribution is not

of crucial importance.
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The Anti Particle Determinant

Det
(

i D̃v,u + 2µδv,u
)

is the main piece responsible for the sign prob-

lem which also contains most of the equation of state. It is not

expected, however, to have significant influence on the low energy

properties. One may

• neglect it, i.e. set it to Det 2µ = const, as Hong and Hsu did

• try including it into the integrand by taking absolute value

etc., again, arguing/hoping that the discarded contributions are

unimportant for the the purposes of getting the right ground

state.
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Summary

• The High Density Effective Theory (Hong 2000) has proven to

be a valuable analytical tool in the description of low-energy

properties of asymptotically dense quark matter. May the same

idea be used to simulate some properties of dense QCD on the

lattice?

• Here one only retains parts of the fermion determinant expected

to be relevant to the low-energy properties of the matter in the

deconfined phase. The ”main” piece, the particle-hole deter-

minant, is non-negative. The higher order contributions may

introduce complexity but most of them are suppressed by pow-

ers of 1/µ.

• It needs to be determined if in this setting neglecting contri-

butions responsible for complexity will not lead to qualitatively

wrong physical conclusions (i.e. if the sign problem is less severe

than in the general case).

• Another issue is whether the approximation may be cast in the

form of an EFT expansion, i.e. if it may be systematically

improved (without use of coupling expansion).
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