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Outline

M Lecture 1

e Motivation/Background/Overview

M Lecture 2

e Deriving the two-particle quantization condition (QC2)

e Examples of applications

[JLecture 3

e Sketch of the derivation of the three-particle quantization condition (QC3)

JLecture 4

e Applications of QC3

e Summary of topics not discussed and open issues
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Main references for these lectures

Bricefio, Dudek & Young, “Scattering processes & resonances from LQCD," 1706.06223, RMP 2018
Hansen & SS, "LQCD & three-particle decays of resonances,” 1901.00483, to appear in ARNPS

Lectures by Dudek, Hansen & Meyer at HMI Institute on “Scattering from the lattice: applications to
phenomenology and beyond,” May 2018, https://indico.cern.ch/event/690702/

Llscher, Commun.Math.Phys. 105 (1986) 153-188; Nucl.Phys. B354 (1991) 531-578 & B364 (1991) 237-251
(foundational papers)

Kim, Sachrajda & SS [KSSos], hep-lat/o507006, NPB 2015 (direct derivation in QFT of QC2)

Hansen & SS [HS14, HS15], 1408.5933, PRD14 & 1504.04248, PRD15 (derivation of QC3 in QFT)

Bricefio, Hansen & SS [BHS17], 1701.07465, PRD17 (including 2<=3 processes in QC3)

Bricefio, Hansen & SS [BHS18], 1803.04169, PRD18 (numerical study of QC3 in isotropic approximation)

Bricefio, Hansen & SS [BHS19], 1810.01429, PRD19 (allowing resonant subprocesses in QC3)

Blanton, Romero-Lopez & SS [BRS19], 1901.07095, JHEP19 (numerical study of QC3 including d waves)

Blanton, Bricefio, Hansen, Romero-Lopez & SS, in progress, poster at Lattice 2019
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Other references for this lecture

Rubin, R. Sugar & G. Tiktopoulos, PR146 (1966) 1130 (classified divergences in Ms)

Beane, Detmold & Savage, 0707.1670, PRD0o7; Tan, 0709.2530, PRA08 (threshold expansion for energies
of n particles in a box in QM)

Polejaeva & Rusetsky, 1203.1241, EPJA12 (3-particle spectrum is determined by M,and M,)
Bricefio & Davoudi, 1212.3398, PRD12 (dimer+particle-based 3-particle formalism)

Bricefio, Hansen, SS & Szczepaniak, 1905.11188 (demonstrated unitarity of HS expression for M)

Jackura, SS, et al., 1905.12007 (relation of HS Kaf; to B-matrix parametrization of M;)
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Outline for Lecture 3

Overview
Final result
Sketch derivation of QC3 in presence of G-parity-like Z, symmetry

Relating the three-particle K matrix (Kaf;) to M,
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Overview
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Recall motivations

® Understanding resonances with three-particle decay channels
® Some only decay to three particles, e.g. W—TITITT in an isospin symmetric world

® Some decay to both two- and three-particle channels:

N(1440) - Nr,Nznr Z.(3900) - nJ/w, DDxn

® Predicting electroweak decays to three particles, e.g. K= TITTTT

® Need generalization of Lellouch-Luscher factors

® Determining three-particle interactions, e.g. NNN
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Status of theory?

® Understanding resonances with three-particle decay channels
® Some only decay to three particles, e.g. W — TITTTT in an isospin-symmetric world

® Some decay to both two- and three-particle channels:

N(1440) - Nr,Nznr Z.(3900) - nJ/w, DDxn

® Predicting electroweak decays to three particles, e.g. K= TITTTT

® Need generalization of Lellouch-Luscher factors

® Determining three-particle interactions, e.g. NNN
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Sta t u S Of t h e O ry ? Formalism developed,

implementation begun.
This is what | will focus on

® Understanding resonances with three-particle decay channels /

® Some only decay to three particle@w—'ﬂﬂﬂ in an isospin-symmetric worD

® Some decay to both two- and three-particle channels:

N(1440) - Nr,Nznr Z.(3900) - nJ/w, DDxn

® Predicting electroweak decays to three particles, e.g. K= TITTTT

® Need generalization of Lellouch-Luscher factors

® Determining three-particle interactions, e.g. NNN
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Sta t u S Of t h e O ry ? Formalism developed,

implementation begun.
This is what | will focus on

® Understanding resonances with three-particle decay channels /
® Some only decay to three particle@—'ﬂﬂﬂ in an isospin-symmetric worD
® decay to both two- and three-particle channels:
N(1440) - Nr,Nznr Z.(3900) —» = J/yw,DD
L . Formalism developed
® Predicting electroweak decays to three particles, e.g. K= TITTTT for degenerate particles;
not yet implemented.
® Need generalization of Lellouch-Luscher factors | will mention briefly

® Determining three-particle interactions, e.g. NNN
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Formalism not yet developed

® Determining three-particle interactions, e.g. NNN

S. Sharpe,“Resonances from LQCD?”, Lecture 3,7/11/2019, Peking U. Summer School 8 /68



Sta t u S Of t h e O ry ? Formalism developed,

implementation begun.
This is what | will focus on

® Understanding resonances with three-particle decay channels /
® Some only decay to three particle@—'ﬂﬂﬂ in an isospin-symmetric worD
® decay to both two- and three-particle channels:
N(1440) - Nr,Nznr Z.(3900) —» = J/yw,DD
L . Formalism developed
® Predicting electroweak decays to three particles, e.g. K= TITTTT for degenerate particles;
not yet implemented.
< *® Need generalization of Lellouch-Liischer factors | will mention briefly

Formalism not yet developed

(Determining three-particle interactions, e.g. NND

Spin not yet included in formalism
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LQCD spectrum already includes 3+-particle states

3000 |
— —
(] —
2500 | - Fom - -
.' - 4 47"
. ‘ - =
F e
2000 - . [— | — f—
s . - S g - —
< BN S g+
han Y A
E 1500} =
1000 | 5 s p— 3
o o (7=
2
—
L ’,_
500 |
P
0—+

[ =
— — ™ = |
- .
g++ A
1 o
.
2++ T
6:392M3V

£z
isoscalar I

isovector |

[Dudek, Edwards, Guo & C.Thomas [HadSpec], arXiv:1309.2608]
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LQCD spectrum already includes 3+-particle states

5.0 1 mEM single-hadron dominated
BN two-hadron dominated
B significant mixing
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Slide from seminar by Colin Morningstar, Munich, 10/18
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LQCD spectrum already includes 3+-particle states

Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD
Bon Fiing® [arXiv:1905.04277]

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon'

Helmholtz-Institut Mainz, Johannes Gutenberg-Universitat, 55099 Mainz, Germany
(Dated: May 13, 2019)

We present tlfé three-pion spectrum Yyith maximum isospin in a finite volume determined from
lattice QCD, inclu;m;—for-trhe-ﬁrs;, ;1me, excited states across various irreducible representations at
zero and nonzero total momentum, in addition to the ground states in these channels. The required
correlation functions, from which the spectrum is extracted, are computed using a newly imple-
mented algorithm which reduces the number of operations, and hence speeds up the computation
by more than an order of magnitude The results for the I = 3 three-pion and the I = 2 two-pion
spectru ¢ including all correlatlons and can be used to test the available
three-particlée
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Problem in finite-volume QFT
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E* <3m No £, symmetry
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E* < 3m NO Z, symmetry

AN

‘ Part of single spectrum!
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3m < E* < 4m
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E* < 4m 2 Sy ,

‘ Different spectra‘

E* < 5m
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‘ Different spectra‘
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Complication: 2-step method

2 & 3 particle
spectrum from LQCD

---------------
-
-

...............

Quantization conditions

............. / > oo det |[F~'+ %,| =0

QC3: det |[F;'+ Hye5| =0

/ Intermediate, unphysical

scattering quantity

Integral equations in
infinite volume

— Scattering amplitudes

Moz, My, Mi_s
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Final result for QC3
(assuming Z2 symwmetry)



==
!
{!
{

ll det [FPV(E, P.L)y" + %2(E*)]

® Total momentum (E, P)

® Matrix indices are [, m

® [py is a finite-volume geometric function

® K, is a physical infinite-volume amplitude,
which is real and has no threshold cusps

® ), is algebraically related to M>

1 1

MY~ HY

—ip
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® Total momentum (E, P)

® Matrix indices are [, m

® [py is a finite-volume geometric function

® K, is a physical infinite-volume amplitude,
which is real and has no threshold cusps

® ), is algebraically related to M>

1 1

MY~ HY

—ip

det [F3(E, P.L)! + %df3(E*)] —0 }!
’ |
® Total momentum (E, P)

® Matrix indices are k, [, m

® /'3 depends on geometric functions (Fpy and
G) and also on K3

® [;is known if first solve QC2

® Kurs is a physical infinite-volume 3-particle

amplitude, which is real and has no
threshold cusps

® |t is cutoff dependent and thus unphysical

® |t is related to /M3 via integral equations
[HSI5]
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Matrix indices

® All quantities are (infinite-dimensional) matrices, e.g. (F3)kim;prm’, with indices

[finite volume “spectator” momentum: k=2TTn/L] x [2-particle CM angular momentum: ,m]

o
/. (E—wk,ﬁ—lg) .//?RA
\\4). gﬁ a* — E’ m
i) BOOST .

Describes three on-shell particles with total energy-momentum (E, P)

® For large k (at fixed E, L), the other two particles are below threshold

® Must include such configurations, by analytic continuation, up to a cut-off at k~m
[Polejaeva & Rusetsky, " |2]
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F; collects 2-particle interactions

1
wL

S. Sharpe,“Resonances from LQCD?”, Lecture 3,7/11/2019, Peking U. Summer School
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F; collects 2-particle interactions

e L |F_
2wl |3 H3'+F+G
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F; collects 2-particle interactions

1
2L

F

3

® F & G are known geometrical functions,

containing cutoff function H
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F; collects 2-particle interactions

F; = : l F : F
> 2wl |3 AV +F+G

® F & G are known geometrical functions,
containing cutoff function H

—

pr’m’;kfm — 5pk H(k) FPV,f’m’;fm(E — Wy P—k,L)

Relativistic form

A A — 4
k*\  4nY,, (kK H(P)IH(k)Y}, (D*) [ p* 1
Gotmgem =\ —5
introduced in [BHS17]

g a; (P —k—p)*—m? gt ) 2aL?

Relativistic form

2r)3 | 2w 2wp_1(E — 0, — wp_y) equivalent up to
/ exponentially-

suppressed terms

FPV;f/m/;fm(E’ P’L) = 5

( \ —_— —_— —_—
1] 1 &k | Yp(KYE (k*)h(k)
R
\ k

*

., \S .
%m<k*>=\/ﬂ(q—*> Y, (k%)
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Divergence-free K matrix

What is this? A quasi-local divergence-free 3-particle interaction
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Divergence-free K matrix

— e

| det [F3(E, P,L)! + %df,3(E*)] =0 ];4

— — —— e ——— =

. Three-to-three amplitude has kinematic singularities |

i M _ fully connected correlator with |
373 = six external legs amputated and projected on shell |

T =—_ Certain external momenta l
put this on-shell! |

[Artwork from Hansen, HMI lectures]

B e —— e —— e — — = —— =

® To have a nonsingular (divergence-free) quantity, need to subtract pole
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Divergence-free K matrix

® K43 has the same symmetries as /Ms: relativistic invariance, particle interchange, T-reversal

- - \
M3, K3 |

| jvlz, .7<2
a7 ® 12 momentum e % 18 momentum |
| 2 o2 e t |
el N Components | \ ) components |
\J

. , () : 7 |
-10 Poincaré generators | “# -10 Poincaré generators |

8 degrees of freedom :
s=E*2 + 7 “angles” |

| 2 degrees of freedom

o Need more parameters to describe K4f3 than XK (will be discussed in lecture 4)

e Why K3 and Kgt3 appear in QC3, rather than M and M3, will be explained shortly
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Sketch of derivation
of QC3
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Set-up

® Work in continuum (assume that LQCD
can control discretization errors) 5 /\/\/ 1L
® Cubic box of size L with periodic BC, —= L """"" :
and infinite (Minkowski) time
® Spatial loops are sums: % ZE k = Q%ﬁ

® Consider identical particles with physical mass m, interacting arbitrarily except
for a Z; (G-parity-like) symmetry

® Only vertices are 2—2,2—4,3—3,3— 1,325,527, etc.
® Even & odd particle-number sectors decouple

./\. ./\;‘
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Methodology

~_ CMenergy is
® Calculate (for some P=2TTnp/L) - E'=/(E2-P?)
C,(E,P) = J d*x e BT T(Q| T { 0§(x)03(0)} Q),
L

® Poles in CL occur at energies of finite-volume spectrum

® Here 05~ TT3
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Key step 1

® Replace loop sums with integrals where possible

® Drop exponentially suppressed terms (~eM., e-ML"2 etc.) while keeping power-law dependence

Exp. suppressed if g(k) is smooth
and scale of derivatives of g is ~I/M
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Key step 3

® Use time-order PT to identify potential singularities

® Example

T
03
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Key step 3

® 2 out of 6 time orderings:

5’

1 1 1

/ / / /
E_wl_w2_w3_w4_w5 E—wi—wy—ws E—wl—wg—W3—W4—Wé

\

On-shell energy w; =

N

1

Zj:1,6 Wi

\/E§+M2
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Key step 3

® 2 out of 6 time orderings:

5 05!

E—wl—wg—W3—W4—wé Zj:1,6 Wy

® If restrict M < E'< 5M then only 3-particle “cuts” have singularities, and these
occur only when all three particles to go on-shell
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Combining key steps1 & 3

® For each diagram, determine which momenta must be summed, and which can

be integrated

® |n our 3-particle example, find:

Can integrate

Must sum momenta
passing through box
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Combining key steps 1 & 3

® This leads to the “skeleton expansion”
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Skeleton expansion

analog of bubble sum
«— i 2-particle correlator

\ new feature: diagrams

with spectator

matrix elements

lines are here
of 03 and h.c.

fully-dressed propagators

Bethe-Salpeter
kernels, with all
loops integrated,
so infinite-volume
quantities B3

— x( + @( + Q + .- as in derivation of QC2
new B-S kernel,
>+ + @ -+ ... 3-particle irreducible
in s channel
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Skeleton expansion

interacting pair
switches

= %+a—e+a@e+---
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Skeleton expansion

4. - combined B; and B3

. R diagrams

= %+a—e+a@e+---
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Skeleton expansion

combined B, and B3
diagrams

= %+a—e+s@e+---
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Key step 2A

® Recall key step 2 in derivation of QC2 (using PV prescription)

OMONONONO==0

Fpy(E, P, L)

® Essentially unchanged here, except have additional label k for spectator

Upper loop integrated
with PV prescription on-shell

first set on-shell. -
Has finite-volume
momentum

pr’m’;kfm — 5pk H(k) FPV,f’ (E — W P — k’L)

m'fm
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Key issue 4: dealing with cusps
® Want to replace sums with integrals + F-cuts for each 3-particle int. state

® Presence of cusps forces us to use the PV prescription

® Only an issue where cuts adjacent to Bas
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Cusp analysis (1)
® Aim: replace sums with integrals + finite-volume residue

® Eg | R SRR /

—

(E'vf))H ﬁ>: : .

' ’ | k\ \
2Pl Bethe-Salpeter dressed

propagators

interpolating
operator

kernel

® Can replace sums with integrals for smooth, non-singular parts of summand

® Singular part of left-hand 3-particle intermediate state smooth

. . / functions
L6 = = E — W — Wqg — Wka « vai?fh‘l??ffﬁeu
k a / \

7.9 2 D _ L 7)2 2
VE +m JE L \/(P k—a)?+m
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Cusp analysis (2)

d gl | A(k,@) B(F,a)
m L6 ZIZ a E—wka—wa—zka
KoL | /Step |: treat sum over a
25 2a — Jat(zs X — J2)

Difference gives zeta-function F with
A & B projected on shell [Luscher,...]

* Want to replace sum over k with integral for faj term \

* Only possible if integral over a gives smooth function F has multiple singularities,
* i€ prescription leads to cusps at threshold so leave K summed

* = sum-integral ~|/L* [Polejaeva & Rusetsky] for F-term

Step 2: treat sum over k

e Requires use of a PV prescription

Result: % ZE Za _ fE fg,j i ZE ch term”
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* Want to replace sum over k with integral for faj term

Cusp analysis (2)

i s A(k,a)B(k,d)
— . L6 k a E—wk—wa_wka
K ' /Step |: treat sum over a

15 2 — Ja (s g — J3)

Difference gives zeta-function F with
A & B projected on shell [Luscher,...]

\

Step 2: treat sum over k

Only possible if integral over a gives smooth function F has multiple singularities,
i€ prescription leads to cusps at threshold so leave k summed

= sum-integral ~1/L4 [Polejaeva & Rusetsky] for F-term
Requires use of a PV prescription This is the origin

Result;

of the extra index

75 p2a = Jp Jo+ g “F term”
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Cusp analysis (3) v~ (0%)?

—

a F—wr—w,—Wkg

C—X

k,@)B(k,d ()
® Simple example: f A(k,a)B(k,a) — f(C) — fOOO dr Ve

Re f(c)
= C
i€
‘,,"I;’V af T s {1
(including
analyticity
requirement)  threshold threshold

® Far below threshold, our PV smoothly turns back into i€ due to cutoff function H
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Cusp analysis (4)

® Bottom line: must use PV prescription for all loops
® This is why JK; appears in QC3, rather than M,
® |t is also why QC3 contains a three-particle K matrix (which is real)

® K, is standard above threshold, and is given below by analytic continuation
(so there is no cusp)

® Far below threshold (k~m), our K, turns smoothly into M,
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I<ey issue s5: dealing with “switches”
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I<ey issue 5: dealing with “switches”

® With cusps removed, no-switch diagrams can be summed as for 2-particle case

® “Switches” present a new challenge
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One-switch diagrams

i + . :
Number of switches + | Can treat similarly to 2-particle case

leading to a series of Fs and K3s

® End up with L-dependent part of CL(Z) having at its core:

On-shell

® This is our first contribution to the infinite-volume 3 particle scattering amplitude
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One-switch problem

® Amplitude is singular for some choices of K, p in physical regime

® Propagator goes on shell if top two (and thus bottom two) scatter elastically

® Not a problem per se, but leads to difficulties when amplitude is symmetrized
® Occurs when include three-switch contributions

l, m'_q

P

ﬂ_ 0 m/

® Singularity implies that decomposition in Y}, will not converge uniformly

® Cannot usefully truncate angular momentum expansion
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One-switch solution

® Define divergence-free amplitude by subtracting singular part

® Utility of subtraction noted in [Rubin, Sugar & Tiktopoulos,’66]

Always on-shell;
can be below

at pole threshold

Off-shell except ZICQ ’LG ZICQ

Cutoff dependence
enters here

Gy

£ A — 4
(1 4at, CHHEHE Y () 1
rmkem T\ g (P -k —p)? —m? qf | 2w L3

® Key point: K3 is local and its expansion in harmonics can be truncated
® Subtracted term must be added back---leads to G contributions to F3
® Can extend divergence-free definition to any number of switches

® Higher-order terms involve loops for which cutoff is essential
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Key issue 6: symmetry breaking

® Our analysis breaks particle interchange symmetry

® Top two particles treated differently from spectator

® Leads to very complicated definition for K3, e.g.

9,0

amputated

ZlCdf)g D external

legs /

propagator with
divergence subtracted

divergent part Integrate with PV prescription;
of propagator need to specify order of integrals
diagram by diagram
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Key issue 6: symmetry breaking

® Definition of JK4f3 is constructive:

® Sum all Feynman diagrams contributing to /M
® Use PV prescription, plus a (well-defined) set of rules for ordering integrals
® Subtract leading divergent parts

® Apply a set of (completely specified) extra factors (“decorations”) to ensure
external symmetrization @
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Key issue 6: symmetry breaking

® Definition of JK4s3 is constructive:

® Sum all Feynman diagrams contributing to M,
® Use PV prescription, plus a (well-defined) set of rules for ordering integrals
® Subtract leading divergent parts

® Apply a set of (completely specified) extra factors (“decorations”) to ensure
external symmetrization @

® Kqi3 is a real, divergence-free infinite-volume quantity, smooth aside from
possible dynamical poles arising from 3-particle resonances (just like /K;) &

® But it is cut-off dependent, and has an ugly construction &
® |t can, however, be related (in infinite volume) to Msz—our next topic! &
® This relation shows that K43 is not as ugly as we first thought, as it has the same

symmetries as M3 @

S. Sharpe,“Resonances from LQCD”, Lecture 3,7/11/2019, Peking U. Summer School

45/68



Now do a lot of manipulations...

MAXWELL T. HANSEN AND STEPHEN R. SHARPE

our derivation. For this reason the three-particle case is
fundamentally different. After much investigation, we
found it most convenient to require that iB; only contain
connected diagrams and thus display all pairwise scatter-
ings explicitly.

Finally, in our skeleton expansion all kernels and
interpolating functions are connected by fully dressed
propagators,

Alg) = / Lt (OTHRH0)0).  (51)

Here ¢(x) is a one-particle interpolating field defined with
on shell renormalization such that

lim A(q)[(q* = m?)/i] = 1. (52)

0
"=,

Since we are working with fully dressed propagators, we do
not include self-energy contributions explicitly in our
skeleton expansion. We use infinite-volume fully dressed
propagators throughout, which is justified because the self-
energy graphs do not contain on shell intermediate states.

In summary, the skeleton expansion of Fig. 4 displays
explicitly all the intermediate states that can go on shell and
give rise to power-law corrections. All intermediate states
which cannot go on shell are included in the infinite-
volume two-to-two and three-to-three Bethe-Salpeter
kernels.

In the remaining subsections, we work through the
different classes of diagrams appearing in this expansion.
First, in Sec. IVA, we sum diagrams containing only iB,
kernels on the same pair of propagators (second line of
Fig. 4). Then, in Secs. IV B and IV C, we sum diagrams
with, respectively, one or two changes in the pair that is
being scattered (third and fourth lines of Fig. 4). At this
stage, we can extend the pattern and sum all diagrams built
from iB, kernels with any number of changes in the
scattered pair. This is done in Sec. IV D. Incorporating
three-to-three insertions at this point is relatively easy, and
is done in Sec. IV E, leading to the final result for C; given
in Eq. (42).

As we proceed we identify the diagrams contributing to
K, and Ky 3, as well as A,A" and C,. The precise
definitions of these infinite-volume quantities will thus
emerge step by step.

PHYSICAL REVIEW D 90, 116003 (2014)

FIG. 6. Finite-volume correlator diagram with no kernel
insertions.

A. Two-to-two insertions: no switches

In this section we sum the diagrams of Figs. 6-7. Each
diagram contains only B, insertions, all of which scatter
the same pair of propagators. We separate the diagram

with no B, insertions, labeled C(LO) (Fig. 6), from the sum of

diagrams with one or more insertions, denoted C L) (Fig. 7).
We refer to these diagrams as having no switches, meaning
that the pair that is scattered does not change. This desig-
nation anticipates subsequent sections in which we sum
diagrams with one or more switches in the scattered pair.

An important check on the calculation of this subsection
is obtained by noting that the no-switch diagrams are the
complete set appearing in a theory of two different particle
types, with one of the types noninteracting. This is the case
provided that the correlator is constructed with fields that
interpolate one free particle and two interacting particles.
Thus the result for C(LO) + C(Ll) must be that for the full
finite-volume correlator in the two-plus-spectator theory.
This check is discussed below.

We begin our detailed calculation by determining the
finite-volume residue of the no-insertion diagram of
Fig. 6. This diagram represents the expression2

cy —'gzj;jzz /" /ﬂ (k.a)A(k)A(a)

X A(P—k—a)(r’f(k, a), (53)

where [,0 = [ dk®/(27), etc., and the 1/6 is the symmetry
factor. We stress that the As are fully dressed propagators,
with the normalization given in Eq. (52).

We first evaluate the a” and k° integrals using contour
integration, wrapping both contours in the lower half of the
respective complex planes. Each contour encircles a one-
particle pole (a° = w, — ie and k* = w; — i€) as well as
three-particle (and higher) poles from excited-state con-
tributions to the propagators. The result of integration may
thus be written

([0 k. [0g.3) | -

= liz {6([% K. (04, @))A(P - k= a)o

202w,

+ R(k,a)|, (54)

In the remainder of this article we drop tildes on the Fourier-transformed interpolating operators, 5(k,a) and 67 (k, a), since we no

longer use the position-space forms.
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FIG. 7.

where R(z, @) is the contribution from excited-state poles.
Here k and a appearing in A(P — k — a) are now under-
stood as on shell four vectors, a fact that we have made
explicit in the arguments of ¢ and o'. We next note that
A(P — k — a) can be split into its one-particle pole plus a
remainder:

i -

+ r(k,a).

AP —k-a)= 204 (E — 0 — 0y — 0pq)
(55)

Substituting Eq. (55) into Eq. (54) gives

co Z{w [, K], [0, @) (4. K], [0 @])

202w, 201, (E — o) — 0, — w1y)
+R!(k, a)} , (56)

where R’ is the sum of R and the term containing r. This
grouping is convenient because R’'(k,a) is a smooth

function of % and a for our range of E, since we have
explicitly pulled out the three-particle singularity. Indeed,
we are free to further adjust the separation between first and
second terms, as long as the latter remains smooth. For the
following development we need to include the damping
function H(k) in the singular term. We recall that H (7<'),
defined in Egs. (27)-(28), is a smooth function which
equals unity when the other two particles (those with
momenta a and P — k — a) are kinematically allowed to
be on shell (for the given values of E, i’, and k). In
particular, if we multiply the singular term by 1 = H (7<')+
[1 — H(k)], then the 1 — H(k) term cancels the singularity,
leading to a smooth function that can be added to R’ to
obtain a new residue R":

io([wy. K]. [0, )0 (4. k). [, @) H (k)
0 Z |: 26’:)](26002601(“ (E wl’i @Dy — wka)
+ R (k, a)] . (57)

At this stage we want to rewrite C(LO) as an infinite-

volume (L-independent) quantity plus a remainder.
Infinite-volume quantities differ only in that loop momenta
are integrated rather than summed. We can thus pull out the
infinite-volume object by replacing each sum with an

Finite-volume correlator diagrams containing only two-to-two insertions with no change in the scattered pair.

integral plus a sum-integral difference. We stress that
integrals, unlike sums, require a pole prescription. We
are free to use any prescription we like, and it turns out to
be most convenient to make a nonstandard choice which
we call the PV prescription. This is defined in the present
context as follows”':

1~ io([wi. K]. [0,. )0 (4. K], [, @) H (k)
/ 20,201, (E — 0 — 0, — Orq)
_1 /ia([wk, k). [, d))o" ([wy. K], [, a)) H (k)

) 20,201, (E — wp — 04 — 0y + i€)

2
— 6% (K)iper e m(K)5 (K, (59)

where p was introduced in Eq. (25) above.
To complete the definition we need to explain the

meanings of the on shell quantities a;,m,(z) and o-}*m(ic')
Similar quantities will appear many times below so we
give here a detailed description. First recall that (@}, a*) is
the four vector obtained by boosting (@,, a) with velocity
Br = —(P—k)/(E — ). This boost is only physical if
E3 . > 0, aconstraint which is guaranteed to be satisfied by
the presence of H (%) in Eq. (59). We now change variables
from a to a* and define

o (k.a*) = ooy K]. [0, @)). (60)

and similarly for ¢'. The left-hand side exemplifies our
general notation that, if the momentum argument is a three

vector, e.g. %, then the momentum is on shell, e.g. K = w,.
If the argument is a four momentum, e.g. k, then it is, in
general, off shell. Here we include a superscript * on ¢ to
indicate that it is strictly a different function from that
appearing in say Eq. (57), since it depends on different
coordinates (in particular on momenta defined in different
frames). Next we decompose ¢* and ¢ into spherical
harmonics in the CM frame

2'In the definition of PV we are using ¢ and ¢° which are
continuous functions of @ and k. Since these were originally
defined only for discrete finite-volume momenta, this requires a
continuation of the original functions. We require only that the
continuation is smooth and slowly varying. More precisely we
demand

B2 [Jeten i =0 6y

116003-13
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Now do a lot of manipulations...

MAXWELL T. HANSEN AND STEPHEN R. SHARPE

o (k@) = VaxY,,,(a")o} (k. a*) (61)
o"*(k,a*) = VaxY;, (@)o), (k.a*), (62)

where there is an implicit sum over ¢ and m. Our
convention, used throughout, is that the quantities to the
left of the three-particle cut are decomposed using Y, ,,s
while those to the right use the complex conjugate
harmonics. Finally, with the starred quantities in hand
we can define on shell restrictions. As explained in the
introduction, P — k — a is only on shell if a* = ¢gj, so we
define

orn®) =0, (keq)). ol () =0l (kap).  (63)
These are the quantities appearing in the p term in Eq. (59).
If E5, <2m, then the a, I;,m pair is below threshold, and
oy, and 6;_*m must be obtained by analytic continuation
from above threshold.

The reason for using this rather elaborate pole prescrip-
tion is that we want the integral over a to produce a smooth
function of k. This allows the sum over k to be replaced by
an integral. If we were to instead use the ie prescription,
then the resulting function of k would have a unitary cusp at
E5 , = 2m. This observation leads us to consider a princi-
pal-value pole prescription instead. We note that p is
defined so that, for E5, > 2m, Eq. (59) simply gives the
standard principal-value prescription. It turns out that this
choice gives a smooth function of %, provided that one
uses analytic continuation to extend from E3, > 2m to
E5, <2m. This is accomplished by our subthreshold
definition of p, which is then smoothly turned off by the
function H (%) A derivation of the smoothness property is
given in Appendix B. We stress that the PV prescription is

PHYSICAL REVIEW D 90, 116003 (2014)

always defined relative to a spectator momentum, here k.

A slightly more general form of the PV prescription is
instructive and will be useful below. For any two-particle
four momentum P, for which the only kinematically
allowed cut involves two particles, we can write

ﬁ/lA(Pz,a)B(Pz,a)A(a)A(PZ —a)

- / A(Py, a)B(Py, a)A(a)A(Py — a)

a

— 2iJ(P3/[4m?])p(P,)

« U A*(Py,@")B"(P,, a*)} .
a a*=y/P3/4—m?

Here A and B are smooth, nonsingular functions of their
arguments. The quantities A* and B* are defined in a similar
way to ¢* above, e.g. A*(P,,a*) = A(Ps, [w,, d]), where
the boost to the two-particle CM has velocity —f’z/Pg.
The function J, defined in Eq. (29), ensures that this boost is
well defined.” Finally, the angular integral is normalized
such that [, 1 =1. The form (64) makes clear that the
prescription can be defined for four-momentum integrals
(and not just three-momentum integrals) and that its depend-
ence on external momenta enters entirely through P,.
We have also used the angular independence of p to rewrite
the subtraction term as an angular average in the CM frame.
The two functions A and B could be combined into one, but
are left separate since in our applications we always have
separate functions to the left and right of the cut.
Returning to the main argument, we now substitute

%Zﬁ//+[%2—ﬁf” (©5)

into Eq. (57) to reach

(64)

o io([wy. K]. [0, @))o" ([, K]. [w,. a)) H (k)
s [[

2012w, 2w, (E — 0 — 0, — wpy)

+ R (k, a)}

], [,. d))o" (4. K], [wa,aDH(fc)

Z[LSZ / } w([;);’kzwazwka(zs 0 =0, — o) (66)

Note that the sum-integral-difference operator annihilates R” (k, a) up to exponentially suppressed terms. As already noted,

we can replace the sum over k with an integral in the first term, resulting in the infinite-volume quantity

/ /{m a)k,k] wa,a])GT([wkvk] [wa’aDH( )+R//(%’a) ) (67)

2a)k2wa2a)ka(E Wy — a)ku)

Note that no pole prescription is required for the k integral.

ZHere J is playing the role of H (Z)

= J(P%/[4m?]) in Eq. (59).
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The second term in Eq. (66) is then the finite-volume
residue. First we note that we can multiply the summand/

integrand by H(a)H (Zka), since the remainder cancels the
pole and thus has vanishing sum-integral difference. Next
we use the identity for sum-integral differences presented in
Eq. (A1) of Appendix A. This is based on an extension of
the work of Ref. [17] to include the effects of subthreshold
momenta and the PV prescription. The essence of the
identity is that the sum-integral difference picks out the on
shell residue of the singularity multiplied by a kinematic
function. In more detail the identity makes use of the
analytic properties of a}_m(l; a*) and o} (k a*), the
functions defined in Eqgs. (60)—(62) above. The result is that

0 0 1 | N T
Y =8+ 53" 65 (R)iF g (K)5 ), (K).
L - 6wy,

(68)

_ A0 I i
=Co +61€.f’,m/mlF K.l Ok (69)

where the finite-volume kinematical function F' is defined
in Egs. (22)-(24), and

T

= O-}.m(%)’ gl‘c*fm =0pm (z) for % € (277'-/[‘)23

(70)

"
Okt.m

are the restrictions of the on shell functions to finite-volume
momenta. All indices in Eq. (69) are understood to be
summed, including k and k¥’ which are summed over the
allowed values of finite-volume momenta. This index
structure appears repeatedly in our derivation, and from
now on we leave indices implicit. Indeed, using the matrix
notation introduced in Sec. II, we can write the final result
compactly as
iF
V' =c+o e 50 (71)

This is the main result of this subsection.

Our treatment of the three-particle cut will be reused
repeatedly in the following, except that ¢ and 6" will be
replaced by other smooth functions of the momenta. Since
no properties of ¢ and o' other than smoothness were used
in the derivation of Eq. (71), the result generalizes
immediately. It is useful to have a diagrammatic version,
and this is given in Fig. 8. The key feature of the result is
that the finite-volume residue depends only on on shell
restrictions of the quantities appearing on either side of the
cut (analytically continued below threshold as needed).

Before considering diagrams containing two-to-two
insertions, we take stock of the impact of using the

nonstandard PV pole prescription. First we relate Cf,g)

[HS 4]

PHYSICAL REVIEW D 90, 116003 (2014)
C=0-C=0+ QEO

off-shell on-shell

FIG. 8. Diagrammatic representation of Eq. (71).

[defined in Eq. (67)] to the conventional infinite-volume
form which uses the ie prescription. The latter is

e _ 1 [ Jio([wy. k. [0, @)o" ([or. K]. [0, @) H (k)
Coo _6415{ 20120, 2014 (E — 0 — 0, — @y, + ie€)

+R"(, a)} , (72)

I
-1 l ok AKA@AP k= a)o'(k.a),
(73)

where [, = [ d*k/(2x)*, etc., indicate integrals over four-
momenta. To obtain the second line, which is the standard
expression for the Feynman diagram, we have reversed the
steps leading from Eq. (53) to (57). It then follows from the

definition of the PV prescription, Eq. (59), that

N - ip(k) . -
c = cﬁ,‘i)’“—/ BB @y (4
Lo, e (. (4
This relation is similar in form to Eq. (71), with the “F cut”
being replaced by a “p cut”” The key point for present
purposes is that the p-cut term in Eq. (74) does not
introduce poles as a function of E. This follows from

noting that p is a finite function of (E, P) and k, which has a
finite range of support in the latter.

We can also determine the form of the finite-volume
correction if we use the ie prescription throughout, includ-
ing in F [see Eq. (24) above]. This connects our result to
earlier work on two-particle quantization conditions, e.g.
Ref. [17], where F¢ was used. Defining

Fis

K. k6 m = 6k’ka?;,m’;f.m(k)’ (75)

it follows from Eq. (22) that
Foomwem =F& o ppom+ O0ipemem®).  (76)

Combining the results above we then find
i e

66 L36

+ e flee Dy )

O = (i
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Now do a lot of manipulations...
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(4.00,1)

FIG. 18. Decomposition of IC;L" "), All external propagators are dropped, and the notation of Figs. 12 and 16 is used. (a) IC3 I ) itself
[see Eq. (171)]; (b) the most singular term (with three singular propagators); (c) and (d): terms with two singular propagators and their
decompositions; (e), (f), and (g): terms with one singular propagator and their decompositions; (h), (i), and (j): nonsingular terms. Terms
in the decompositions are always ordered from most to least singular. The treatment of loop momenta is indicated explicitly: they are
either summed (dashed box), integrated (integral sign) or the sum-minus-integral identity is used (factor of F). Where the order of
integrals matters it is shown explicitly.

obtain the usual F term plus integral. The former gives rise ; Kﬁj;“”), (205)

0 IF
f) [singly singular] = 2ikC2%")
, while the latter M1 } a3 2L’

s.u)

to another contrlbutlon to ilC,iF ZzICdf 3

contributes to lICdH

reflection of Fig. 18(e).
The diagram of Fig. 18(f) leads to a new effect. Here we

can use the sum-integral identity either on ¢, or g,. e

Our convention (as above) is to work from left to right  definite (left to right) ordering of the PV integrals.

when there is such a choice. This gives the singly singular Another new feature of the n =4 analysis is the

term appearance of singular contributions in which one of the

- Analogous results hold for the where our convention has led to the (s) being on the left

side of the F, rather than on the right. The nonsingular term

(4u,u)

contributes to l/Cdf3 Here our convention leads to a
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q(} integrals does not circle the particle pole. The corre-
sponding diagrams are Fig. 18(g) and its reflection. The

decomposition exactly follows that of Fig. 18(e).
Finally, we reach the completely nonsingular contribu-
tions, where sums can be immediately converted to
|

l’C_(; i)

+ l’CQlF4lICdf§S iFilC, + 21/Cd3f: ViFilC, + llCleZI’Cde;u +2i ICd% g )

where we have ordered terms in decreasing strength of
divergence. The only aspect of this result not explained
above is that contributions combine properly to give the
quantities IC‘(ff‘g's) and IC((;’é"”) in the fifth and sixth terms,

(3,u.s)

respectively. For example, the Kdm term receives the
required four contributions (see Fig. 16) from diagrams
(c), (d), and the reflections of (e) and (g). One can
demonstrate that the correct contributions occur in all
cases by observing that (i) the result (206) provides a
complete classification of possible divergence structures
and (ii) that expanding out each term in (206) leads to a
unique set of contributions each of Which is necessarily

present in the decomposition of IC3 5 Flnally, we note

(4,u,u)

that the nonsingular term in Eq. (206), ’Cdf’i is simply
defined as the sum of contributions from all the diagrams
in Fig. 18 (plus appropriate reflections) that contain only
loop integrals.

We are now ready to explain the result for general
ingf'i”‘"). What arises are sequences alternating between
one of the Ks,

iy, iKY 20Ky 20y and  4ikySY,
(207)

and one of

iF

ﬁ and iG. (208)
0]

All possible combinations should be included, subject to
the following rules:

(i) The number of switches must add up to n. This
number is given by the total number of Fs and Gs
plus the number of switches in the g 3s.

(i) There must be a /C; or K43 on both ends.

(iii) Each 43 must have F on both sides unless
external. This is because the loop momenta next
to a K43 have only one singular propagator in
their summands and so the sum-integral identity
can be used. This implies, given the rules above,

= iK,iGiK,iGilC,[iG2wL3)ikC, + lICzlG[ZwL3]lIC2

[HS 4]

PHYSICAL REVIEW D 90, 116003 (2014)

integrals. There are four such diagrams, Fig. 18(h), its

reflection, Fig. 18(i), and Fig. 18(j). These all contribute
o~ (4uu)
o i3

Adding all contributions we find the total result

2”Cd2; 3+ 2iKG 5 iK2iG2wL*iK,

20L3
iF (2.u,u) (4u,u)
L’ G + ik, (206)

that each G must have a C; (and not a Ky 3) on
both sides.

(iv) Fs must have a K43 on at least one side, or,
equivalently, F's always appear on one side or other
of a [C4 3. This is because one cannot use the sum-
integral identity in the middle of a sequence of
singular propagators, since each loop sum runs over
two singularities. The identity can only be used at
the end of the sequence, and only then if it
terminates with the nonsingular part of a propagator.
An example of this rule is that Fig. 18(b) cannot be
decomposed using the sum-integral identity,
whereas Fig. 18(c) can at the left-hand end. A con-
sequence of this rule is that the only long sequences
involving K, have the form ...ilC,iGilC,iGilC,....
These correspond to diagrams with sequences of
singular propagators.

(v) In a sequence of the form ...i)C,iGiK,iGilC,...
the rightmost G is multiplied on the right by
[2wL?]. This arises from keeping track of on shell
propagators.

(vi) The right-hand superscript of each Cyy 5 is () unless
itis external, when it is a (#). Examples are the third,
fifth, and seventh terms in the expression (206)
for IC?'L"'”).

(vil) The middle superscript of each Ky 3 is (s) unless it
is either external or it appears to the right of
another Ky 3, separated by a single F, in which
cases it is a (u). The difference from the previous
rule arises due to our left-to-right convention of
dealing with loop momenta. An example of the
new exception is given by the penultimate term in
Eq. (206).

A simple consequence of these rules is that the most

(n.u.u)

divergent contribution to iK3; " is

ik, (iGikC, )" 2iG 2w L3ilC,. (209)
Similarly, sequences having this form (but with smaller
values of 1) can appear both connecting the ends to factors
of Kgr 3, or between such factors.
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. 1
CL,Z = Ceo,Z + lA,szAz. (252)

The subscripts “2” on A, A’, and C indicate that these are
the two-particle end caps and correlator, while F' is defined
in Eq. (22) (although here we drop the spectator-momen-
tum argument).

What we now show is that there are poles in A,, A}, and
Cy., but these cancel in C;,. To see this we use the
freedom to arbitrarily choose the interpolating functions ¢
and of without affecting the position of poles in Cy ,.
Specifically, we set both ¢ and ¢ equal to the two-particle
Bethe-Salpeter kernel iB,, which, we recall, is a smooth
nonsingular function. One then finds that

Coo,Z = llCz - lB2 and A2 = A,2 = l’Cz (253)

Inserting these results into Eq. (252) we find that (for this
choice of end caps)
. . . 1 .
Cva = —1B2 + l’Cz + l’CZ TF‘[’CZ lFlICz
i

——iBy
! 2+IC5‘+F

(254)

From Egs. (253) and (254) we draw two conclusions.
First, A, A}, and C,, , have poles whenever K, diverges.
Such poles occur, for a given angular momentum, when

6, = n/2 mod z. Thus, using the PV prescription, there
are, in general, poles in A,, A’Z, and C,. Second, these
poles cancel in C;,, as shown by the second form in
Eq. (254), which is clearly finite when C, diverges.

We suspect that a similar result holds for the three-
particle analysis, but have not yet been able to demonstrate
this. Thus, in the three-particle case we must rely for now
on the intuitive argument given above.

V. CONCLUSIONS AND OUTLOOK

In this work we have presented and derived a three-
particle quantization condition relating the finite-volume
spectrum to two-to-two and three-to-three infinite-volume
scattering quantities. This condition separates the depend-
ence on the volume into kinematic quantities, as was
achieved previously for two particles.

There are two new features of the result compared to the
two-particle case. First, the three-particle scattering quan-
tity entering the quantization condition has the physical on
shell divergences removed. The resulting divergence-free
quantity is thus spatially localized. This is crucial for any
practical application of the formalism since it allows for
the partial-wave expansion to be truncated. Indeed, it is
difficult to imagine a quantization condition involving the
three-particle scattering amplitude itself, given that the
latter is divergent for certain physical momenta.

Now do a lot of manipulations...

PHYSICAL REVIEW D 90, 116003 (2014)

The second feature is that the three-particle scattering
quantity is nonstandard—it is not simply related to the
(divergence-free part) of the physical scattering amplitude.
This is because it is defined using the PV pole prescription,
and also because of the decorations explained in Sec. IV E.
We strongly suspect, however, that a relation to the physical
amplitude exists. In particular, we know from Ref. [13] that
the finite-volume spectrum in a nonrelativistic theory can
be determined solely in terms of physical amplitudes, and
the same is true in the approximations adopted in Ref. [14].
We are actively investigating this issue.

The three-particle quantization condition involves a
determinant over a larger space than that required for
two particles. Nevertheless, as explained in Secs. III,
because the three-particle quantity that enters has a uni-
formly convergent partial-wave expansion, one can make a
consistent truncation of the quantization condition so that it
involves only a finite number of parameters. This opens the
way to practical application of the formalism.

We have provided in this paper two mild consistency
checks on the formalism—that it correctly reproduces
the known results if one particle is noninteracting (see
Sec. IVA), and that the number of solutions to the
quantization condition in the isotropic approximation is
as expected (see Appendix C). We have also worked out a
more detailed check by comparing our result close to the
three-particle threshold E* = 3m to those obtained using
nonrelativistic quantum mechanics [27,28]. Here one has
an expansion in powers of 1/L, and we have checked
that the results agree for the first four nontrivial orders.
This provides, in particular, a nontrivial check of the form
of F3, Eq. (19), and allows us to relate Ky 3 to physical
quantities in the nonrelativistic limit. We will present
this analysis separately [29].

Two other issues are deferred to future work. First,
we would like to understand in detail the relation of our
formalism and quantization condition to those obtained in
Refs. [13,14]. Second, we plan to test the formalism using
simple models for the scattering amplitudes, in order to
ascertain how best to use it in practice.
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APPENDIX A: SUM-MINUS-INTEGRAL
IDENTITY

In this appendix we derive the sum-minus-integral identity
that plays a central role in the main text. This identity is
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...and obtain the final answer

RELATIVISTIC, MODEL-INDEPENDENT, THREE- ...
C‘[gz-l’] = O.Dggz-l’]o.’r
AllB2r] = aDEf,”' I and
Al2s) = plPrlgt, (241)
These are infinite-volume integral operators defined implic-

itly by the work of previous subsections. This allows us to
write Eq. (239) as

C[LBZ] — G{D[gz,ﬂ] + DgB,z»ﬂ]Zsz-ﬂ]}G%. (242)
|

PHYSICAL REVIEW D 90, 116003 (2014)

The reason for using this notation is that it works also for
segments of diagrams involving Bjs at the ends. Thus, for
example, a segment of the finite-volume correlator between
two Bss can be written

.By{DE 4 DA zp g (243)

The key point is that the same decoration operators appear
as in (242).

We can now write down the result for the full finite-
volume correlator

C, = O_{D[gzv['] + DLB,Z‘/’]ZDI[ABZ‘P]}GT + O_{D[gzﬁ] + DEgzvl’]ZD[ABzv/’]}l-B3{D[CI?2=/’] + DI[“B/Z'F]ZDE‘BZW]}O'T
+ (T{D[g%p] + Dgl?zv/‘]ZDngv/‘]}l-B3{D[é32v/’] + Dglfzv/’]Zszvﬂ]}l-B3{D[é?z.ﬂ] + Dgfzv/’]ZDK;zv/’]}o.T + .. (244)

As in the previous subsection, this can be reorganized into
the form

CL _ Coo + ZA,[ZIB:[;BZ/I]YLZA (245)
n=0
where
l.Bng.p] _ Z Dggz-ﬂ] [iBSD?z-P]]n l.B3D£52»ﬂ] , (246)
n=0
I o
n=0
A= DI[ABZvP] [I.B:;D[gzwp]]ngt (248)
n=0
Coo _ Z O_D[gz-/’] [iB3D[é32-/’]]”O-T (249)
n=0

The latter three equations give the final forms of the end
caps and the infinite-volume correlator, now including all
factors of Bj.

We can now sum the geometric series in Eq. (245) and
perform some simple algebraic manipulations to bring the
result to its final form,

is the full divergence-free three-to-three amplitude. Thus
we have obtained our claimed result, Eq. (42), from which
follows the quantization condition Eq. (18).

We close our derivation by returning to an issue raised in
the introduction to this section, namely the possibility of
poles in A, A’, and C,,. We argue that, while such poles can
be present, they cannot contribute to the finite-volume
spectrum, i.e. they do not lead to poles in C; . Only solutions
to the quantization condition (18) lead to poles in C;.

The intuitive argument for this result is that A, A’, and
C,, are infinite-volume quantities. While they are non-

standard, being defined with the PV prescription and
involving the decoration described above, they have no
dependence on L. Thus, if they did lead to poles in C;, this
would imply states in the finite-volume spectrum whose
energies were independent of L [up to corrections of the
form exp(—mL)]. The only plausible state with this
property is a single particle, but this is excluded by our
choice of energy range (m < E* < 5m). Three-particle
bound states will have finite-volume corrections that are
exponentially suppressed by exp(—yL), with y < m being
the binding momentum, but these should be captured by
our analysis, just as is the case for two-particle bound states
[23]. Finally, above-threshold scattering states should have
energies with power-law dependence on L. This is true in
the two-particle case, and we expect it to continue to hold
for three particles. This is confirmed, for example, by the
analysis of three (and more) particles using nonrelativistic
quantum mechanics [27,28].

CL=Cx+A T ko iF3A, (250) For the two-particle analysis this argument can be made
33 more rigorous, and it is informative to see how this works.
where ‘We have recalled the two-particle quantization condition in
Byl (Boyl Sec. IVA, and give here the form of the corresponding
Kars = ’Cdf,3 + B (251) two-particle finite-volume correlator:
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...and obtain the

RELATIVISTIC, MODEL-INDEPENDENT, THREE- ...
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AllB2r] = aDEf,M I and
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|
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[B
Al
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The reason for using this notation is that it works also for
segments of diagrams involving Bjs at the ends. Thus, for
example, a segment of the finite-volume correlator between
two Bss can be written

.By{DE 4 DA zp g (243)

The key point is that the same decoration operators appear
as in (242).

We can now write down the result for the full finite-
volume correlator

240 ZD[ABZ’/,]}Z'B3{D[CI?Z’/I] + DLB/ZW] ZDE‘BZJ’]}O-T

+ (T{D[g%p] + Dgl?zv/‘]ZDngv/‘]}l-B3{D[é32v/’] + Dglfzv/’]Zszvﬂ]}l-B3{D[é?z-ﬂ] + Dgfzv/’]ZDK;zﬁ]}o-T R

As in the previous subsection, this can be reorganized into
the form

G- Satzz o)
n=0
where
l.Bng.p] _ Z Dggz-ﬂ] [iB3D?z-P]]n l.B3D£52»ﬂ] , (246)
n=0
Al = ZG[DEM]I‘BJ"DE?Z#]* (247)
n=0
A DLBZYP] [l'B3D[é;2'p]]nGT, (248)
n=0
Coo _ Z O_D[gz-/’] [iB3D[é32-/’]]”O-T (249)
n=0

The latter three equations give the final forms of th¢’end
caps and the infinite-volume correlator, now inclyding all
factors of Bj.

We can now sum the geometric series in E4. (245) and
perform some simple algebraic manipulatigfis to bring the
result to its final fomaa

We close our derivation by returnjfg to an issue raised in
the introduction to this section, ely the possibility of
poles in A, A’, and C,,. We ar; that, while such poles can
be present, they cannot cgdtribute to the finite-volume
spectrum, i.e. they do not lgad to poles in C; . Only solutions
to the quantization congftion (18) lead to poles in C;.

The intuitive argupent for this result is that A, A’, and
C,, are infinite-vgfume quantities. While they are non-

standard, being/defined with the PV prescription and
involving thg/decoration described above, they have no
dependencg/on L. Thus, if they did lead to poles in Cy, this
would ipAply states in the finite-volume spectrum whose
energifs were independent of L [up to corrections of the
forpf exp(—mL)]. The only plausible state with this

perty is a single particle, but this is excluded by our
choice of energy range (m < E* < 5m). Three-particle
bound states will have finite-volume corrections that are
exponentially suppressed by exp(—yL), with y < m being
the binding momentum, but these should be captured by
our analysis, just as is the case for two-particle bound states
[23]. Finally, above-threshold scattering states should have
energies with power-law dependence on L. This is true in
the two-particle case, and we expect it to continue to hold
for three particles. This is confirmed, for example, by the
analysis of three (and more) particles using nonrelativistic

1 quantum mechanics [27,28].
CL=Cx+A T ko iF3A, (250) For the two-particle analysis this argument can be made
33 more rigorous, and it is informative to see how this works.
where ‘We have recalled the two-particle quantization condition in
Byl (Boyl Sec. IVA, and give here the form of the corresponding
Kars = ’Cdf,3 + B (251) two-particle finite-volume correlator:
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...and obtain the final answer

RELATIVISTIC, MODEL-INDEPENDENT, THREE- ...
C‘[gz-l’] = O.Dgz-l’]o.’r
A0l = D7 and
Al2s) = plPrlgt, (241)
These are infinite-volume integral operators defined implic-

itly by the work of previous subsections. This allows us to
write Eq. (239) as
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The reason for using this notation is that it works also for
segments of diagrams involving Bjs at the ends. Thus, for
example, a segment of the finite-volume correlator between
two Bss can be written

.By{DE 4 DA zp g (243)

The key point is that the same decoration operators appear
as in (242).

We can now write down the result for the full finite-
volume correlator

240 ZD[ABZ’/;]}Z'B3{D[CI?2#] + DLB/M] ZDE‘BZJ’]}O-T

+ (T{D[gz'p] + Dl[gzv/‘]ZDngv/‘]}l-B3{D[é32v/’] + Dglfzv/’]Zszv/’]}l-B3{D[é?z-/’] + Dgfzv/’]ZDE;zﬁ]}o-T R

As in the previous subsection, this can be reorganized into
the form
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n=0
where
l.Bng.p] _ Z Dggz-ﬂ] [iB3D?z-P]]n l.B3D1[52»ﬂ] , (246)
n=0
Al = ZG[DEMI‘Bs]nDEM]* (247)
n=0
A DLBN)] [iB3D[CB”)]]"6T, (248)
n=0
Co = Y oD [iBsDE")"o" (249)
n=0

The latter three equations give the final forms of th¢’end
caps and the infinite-volume correlator, now inclyding all
factors of Bj.

We can now sum the geometric series in E4. (245) and
perform some simple algebraic manipulatigfis to bring the
result to its final fomaa

We close our derivation by returnjfg to an issue raised in
the introduction to this section, ely the possibility of
poles in A, A’, and C,,. We ar; that, while such poles can
be present, they cannot cgdtribute to the finite-volume
spectrum, i.e. they do not lgad to poles in C; . Only solutions
to the quantization congftion (18) lead to poles in C;.

The intuitive argupent for this result is that A, A’, and
C,, are infinite-vgfume quantities. While they are non-

standard, being/defined with the PV prescription and
involving thg/decoration described above, they have no
dependencg/on L. Thus, if they did lead to poles in Cy, this
would ipAply states in the finite-volume spectrum whose
energifs were independent of L [up to corrections of the
forpf exp(—mL)]. The only plausible state with this

perty is a single particle, but this is excluded by our
choice of energy range (m < E* < 5m). Three-particle
bound states will have finite-volume corrections that are
exponentially suppressed by exp(—yL), with y < m being
the binding momentum, but these should be captured by
our analysis, just as is the case for two-particle bound states
[23]. Finally, above-threshold scattering states should have
energies with power-law dependence on L. This is true in
the two-particle case, and we expect it to continue to hold
for three particles. This is confirmed, for example, by the
analysis of three (and more) particles using nonrelativistic

1 quantum mechanics [27,28].
CL=Cx+A T ko iF3A, (250) For the two-particle analysis this argument can be made
s more rigorous, and it is informative to see how this works.
where ‘We have recalled the two-particle quantization condition in
Byl (Boyl Sec. IVA, and give here the form of the corresponding
Kars = ’Cdf,3 + B (251) two-particle finite-volume correlator:
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Thus QC3 is as stated earlier:

Simpler derivation in recent review:
[Hansen & SS, 1901.00483]
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Understanding the result

C,— Cy =145 (F3 — F3 K gp3F5 + F3 K 45 3F3 K 46315 — ---)A3

/ N S \

Smooth, symmetric, . Smooth, symmetric,
o Smooth, symmetric, P
real infinite-volume o : real infinite-volume
real, infinite-volume amplitude:

endcap ) : endcap
. quasi-local 3-particle _
(details irrelevant) , , (details irrelevant)
interaction

All volume-dependence enters through F3
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Understanding the result

C,— Cy =145 (F3 — F3 K gp3F5 + F3 K 45 3F3 K 46315 — ---)A3

/ N S \

Smooth, symmetric, . Smooth, symmetric,
o Smooth, symmetric, P
real infinite-volume o : real infinite-volume
real, infinite-volume amplitude:

endcap ) : endcap
. quasi-local 3-particle _
(details irrelevant) , . (details irrelevant)
interaction

All volume-dependence enters through F3

1 F 1
F, = — _F F
2wl3 | 3 HV+F+G
| F 1
20)L3 _3 1 + (F T G):%z |

Another geometric series with alternating Kjs and (F+G)s
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Role of F;

1 F
2wl3 |3 1+ (F+G)%,

® Always lies between symmetric, infinite-volume objects, e.g.
. F/3 - F T, - F

Hatz T3 F a3 = 2 wl.3

® Sums up effects of 2—2 scattering with potentially on shell cuts between
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An old restriction & a new solution

® Original derivation of [HS14] requires that /K, be nonsingular, because
singularities lead to additional (uncontrolled) finite-volume effects

® This rules out two-particle bound states (dimers) & resonances

® Physical /K, does not have dimer poles, but our modified version does

® Major restriction on the application of the formalism, since most resonances
with 3-particle decays have two-particle subchannel resonances, e.g.

e a,(1320) - pr — 3x, N(1440) > Axr - Nzz, Z.3900) - DD* — DDn
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An old restriction & a new solution

® Original derivation of [HS14] requires that /K, be nonsingular, because
singularities lead to additional (uncontrolled) finite-volume effects

® This rules out two-particle bound states (dimers) & resonances

® Physical K, does not have dimer poles, but our modified version does

® Major restriction on the application of the formalism, since most resonances
with 3-particle decays have two-particle subchannel resonances, e.g.

e a,(1320) - pr — 3x, N(1440) > Axr - Nzz, Z.3900) - DD* — DDn

® First solution: extend formalism by taking account of such singularities explicitly
[Briceno, Hansen & SS, 2018]

® Complicated, and yet to be implemented
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An old restriction & a new solution

® Original derivation of [HS14] requires that /K, be nonsingular, because
singularities lead to additional (uncontrolled) finite-volume effects

® This rules out two-particle bound states (dimers) & resonances

® Physical K, does not have dimer poles, but our modified version does

® Major restriction on the application of the formalism, since most resonances
with 3-particle decays have two-particle subchannel resonances, e.g.

e a,(1320) - pr — 3x, N(1440) > Axr - Nzz, Z.3900) - DD* — DDn

® First solution: extend formalism by taking account of such singularities explicitly
[Briceno, Hansen & SS, 2018]

® Complicated, and yet to be implemented

® New solution: modify PV prescription so that modified /K, entering QC3 does
not have singularities [Blanton, Briceno, Hansen, Romero-Lopez & SS, in progress]

® Simple to implement; will show first results in final lecture
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The issue

® Three particle quantization condition depends on K¢ 3 rather than the three
particle scattering amplitude M3

® K4 3is an infinite-volume quasi-local 3-particle amplitude, but is unphysical

® Has a very complicated, unwieldy definition
® Depends on the cut-off function H

® |t was forced on us by the analysis

® To complete the formalism we must relate K3 to M3
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The method

® Define a “finite volume scattering amplitude” /My 3 which goes over to /M3 in
an (appropriately taken) L— oo limit

® Relate M| 3to Kar3 at finite volume—which turns out to require only a small
generalization of the methods used to derive the quantization condition

® Take L— o0, obtaining nested integral equations
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I\/\odlfylng CL to obtain ML,},

..............................................................
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I\/\odlfylng CL to obtain ML,},
e P)- 0"'0‘"0‘"0

..............................................................

Step |: “amputate”
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Modifying C_ to obtain M,

_______________

Step |: “amputate”
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Modifying C_ to obtain M,
— + {3 + .. -

_______________

Step 2: Drop disconnected diagrams
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Modifying C_ to obtain M,
G + .. Fee

Step 2: Drop disconnected diagrams
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Modifying C_ to obtain M,
O + Fee

________________________

Step 3: Symmetrize
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Modifying C_ to obtain M,

_______________________

________________________

Step 3: Symmetrize
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Modifying C_ to obtain M,

iML,3 ES{ O + .. + ...
r g + S8 g i @ gig +-

Allows one to obtain /My 3 from expression from C|
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M, 5in terms of Kyf;,
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M 3

M ;in terms of Kqf;

s{@ -

C, = C +iA}

=2

- &

F3A3
1 + F3‘%df,3

I+ G

My Gy H20L)

: '%L,:S:@L_I_&

Ly K
L% df 37 Fo g1
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M, 5in terms of Kyf;,

———————————————

i 1 i
C, =C, +iA} F A, Mir=D+S8 | L H P
1+ F3.% 4¢3 = L3 L Lomdbig FsxH 453 -
P, = 05’_ M, G M (2L3)_ 7 =s_ 1
L= I+l G~ U3 14,6
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M, 5in terms of Kyf;,

! _ 1 _
C, = C,, + iA] F3A, Mi=D+S | L H 4l
1 + F3<%df,3 $ L3 L L dt,3 1 + F3‘%df,3 L
D &_ : /%G%(2L3)_ & : : M, F
= — Q) — — —
L 4l G 22 P34 G
1 Finite-volume 2-particle
%L2 — %2 < scattering amplitude:
’ 1+ F#, appears in 2-particle Ci
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M, 5in terms of Kyf;,

1 _ I _
C, = C, +iA} F1A, My=D+S | L H 4l
1 + F3.% 43 = L3 L Lordtd FxH 45 -
9, S _ : M, G, 2wl _ <, = : : M F
ET U i, L2(20L) U3 14, G
Y 1
L2 Y P,

® Key point: the same (ugly) Kas3 appears in M3 as in CL

® Indeed, can use M, 3 to derive QC3
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Final step: taking L= o

1
M, =D, +S8 | L H A
My GM; (20L) 1 1
1+ﬂL,2G L, L, ‘gL _— %L,zF 1
- - 3 1+, ,G My, =Ky
1+ F#,
o _F B L F_
T 2wL3 |3 14+l GO

® All equations involve matrices with indices k, [, m

N

Spectator momentum
k=2nn/L
Summed over n

[, m already infinite-
volume variables
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Final step: taking L= o

%L,:S — @L‘I‘C‘S)

My GM L,2(2a)L3)

I+ G

F
wlL

1
L K F
I B a3 -

1
3 14+, ,G "

® | = 00: Sums over momenta — integrals (+ now irrelevant I/L terms!)

® Must introduce pole prescription for sums to avoid singularities

L—o0 lie
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Final result: nested integral equations
(1) Obtain L— o0 limit of DL D = S{Ppw)
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N.B. i€ prescription

® Quantities are still matrices in [,m space

® Presence of cut-off function means that integrals have finite range

® Dy sums geometric series which gives physical divergences in /M3
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Final result: nested integral equations

(2) Sum geometric series involving K3

z'T(p, k) z’Cdf 3(p,k) + //Z’Cdf 3(ﬁ,§) ( ) C(u u)(§ F)ZT(’I" k)

S

£ ) = (5 +1MalFYin) ) (2n6* G~ F) + D9 B,

® p(k) is a phase space factor (analytically continued when below threshold)
® Requires Dwuv) and M,

® Corresponds to summing the core geometric series, i.e.

1
1 + F3‘%df,3

’%df,fi
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Final result: nested integral equations

(3) Add in effects of external 2—2 scattering:

® Sums geometric series on “outside” of Kqt3's

® Can also formally invert and determine K43 given M3 and M,

® This is how one demonstrates the symmetry properties of Kat3
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Comments on “"K to M” relation

® |ntegral equations are similar to those arising when solving Dyson-Schwinger egs

® Easy to solve for E* =< 3m, where no pole prescription is needed

® Result provides a parametrization of /M3 in terms of a real K matrix

® May be useful for amplitude analyses of experimental data (e.g. from JLab)

® Very recently we checked explicitly that the parametrization leads to a unitary
M3, as expected [Briceno, Hansen, SS & Szczepaniak, 2019]

® Also determined the relation between K43 and the corresponding quantity

(“B matrix”) appearing in another parametrization of /M3 used by JPAC (Joint
Physics Analysis Center @ JLab/Indiana) [Jackursa, ...,SS, et al., 2019]
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Sumwary of Lecture 2
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Summary

® QCS3 for identical scalars with G-parity-like Z, symmetry [HS14,HS15]

® Subchannel resonances allowed by modifying PV prescription [BBHRS, in progress]

det |F;' + H g5 =0
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Thank you!
Questions?

S. Sharpe,“Resonances from LQCD”, Lecture 3,7/11/2019, Peking U. Summer School 69 /68



