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Outline
Lecture 1

• Motivation/Background/Overview

Lecture 2

• Deriving the two-particle quantization condition (QC2)

• Examples of applications

Lecture 3

• Sketch of the derivation of the three-particle quantization condition (QC3)

Lecture 4

• Applications of QC3

• Summary of topics not discussed and open issues
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Main references for these lectures
• Briceño, Dudek & Young, “Scattering processes & resonances from LQCD,” 1706.06223, RMP 2018

• Hansen & SS, “LQCD & three-particle decays of resonances,” 1901.00483, to appear in ARNPS

• Lectures by Dudek, Hansen & Meyer at HMI Institute on “Scattering from the lattice: applications to 
phenomenology and beyond,” May 2018, https://indico.cern.ch/event/690702/

• Lüscher, Commun.Math.Phys. 105 (1986) 153-188; Nucl.Phys. B354 (1991) 531-578 & B364 (1991) 237-251 
(foundational papers)

• Kim, Sachrajda & SS [KSS05], hep-lat/0507006 , NPB 2015 (direct derivation in QFT of QC2)

• Hansen & SS [HS14, HS15], 1408.5933 , PRD14 & 1504.04248 , PRD15 (derivation of QC3 in QFT)

• Briceño, Hansen & SS [BHS17], 1701.07465 , PRD17 (including 2↔3 processes in QC3)

• Briceño, Hansen & SS [BHS18], 1803.04169, PRD18 (numerical study of QC3 in isotropic approximation)

• Briceño, Hansen & SS [BHS19], 1810.01429 , PRD19 (allowing resonant subprocesses in QC3)

• Blanton, Romero-López & SS [BRS19], 1901.07095 , JHEP19 (numerical study of QC3 including d waves)

• Blanton, Briceño, Hansen, Romero-López & SS, in progress, poster at Lattice 2019
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Other references for this lecture

• Rubin, R. Sugar & G. Tiktopoulos, PR146 (1966) 1130 (classified divergences in M3)

• Beane, Detmold & Savage, 0707.1670, PRD07; Tan, 0709.2530, PRA08 (threshold expansion for energies 
of n particles in a box in QM)

• Polejaeva & Rusetsky, 1203.1241, EPJA12 (3-particle spectrum is determined by M2 and  M3)

• Briceño & Davoudi, 1212.3398, PRD12 (dimer+particle-based 3-particle formalism)

• Briceño, Hansen, SS & Szczepaniak, 1905.11188 (demonstrated unitarity of HS expression for M3)

• Jackura, SS, et al., 1905.12007 (relation of HS Kdf,3 to B-matrix parametrization of  M3)
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Outline for Lecture 3

• Overview 

• Final result

• Sketch derivation of QC3 in presence of G-parity-like Z2 symmetry

• Relating the three-particle K matrix (Kdf,3) to M3
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Overview
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Recall motivations
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• Understanding resonances with three-particle decay channels

• Some only decay to three particles, e.g. ω→πππ in an isospin symmetric world

• Some decay to both two- and three-particle channels:

Zc(3900) → π J/ψ, DD̄πN(1440) → Nπ, Nππ

• Predicting electroweak decays to three particles, e.g. K→πππ

• Need generalization of Lellouch-Lüscher factors

• Determining three-particle interactions, e.g. NNN
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Spin not yet included in formalism

• Determining three-particle interactions, e.g. NNN
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• Predicting electroweak decays to three particles, e.g. K→πππ

• Need generalization of Lellouch-Lüscher factors
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LQCD spectrum already includes 3+-particle states
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[Dudek, Edwards, Guo & C.Thomas [HadSpec], arXiv:1309.2608]
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LQCD spectrum already includes 3+-particle states
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Staircase of energy levels

stationary state energies I = 1, S = 0, T+
2u channel on (323 ⇥ 256)

anisotropic lattice

0 5 10 15 20 25 30 35 40 45
Level

2.5

3.0

3.5
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4.5

5.0
E m

K

single-hadron dominated
two-hadron dominated
significant mixing
⇡ (0) ⇡ (2) ⌘ (2)

⇡ (0) ⇡ (0) ⇡ (2) ⇡ (2)

C. Morningstar Multihadron challenges 32

Staircase of energy levels

stationary state energies I = 1, S = 0, T+
2u channel on (323 ⇥ 256)

anisotropic lattice

C. Morningstar Multihadron challenges 32

Slide from seminar by Colin Morningstar, Munich, 10/18

4mπBosonic I = 1
2 , S = 1, T1u channel

finite-volume stationary-state energies: “staircase” plot
323 ⇥ 256 lattice for m⇡ ⇠ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators

C. Morningstar Multihadron challenges 27
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LQCD spectrum already includes 3+-particle states
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Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD

Ben Hörz∗

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon†

Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany
(Dated: May 13, 2019)

We present the three-pion spectrum with maximum isospin in a finite volume determined from
lattice QCD, including, for the first time, excited states across various irreducible representations at
zero and nonzero total momentum, in addition to the ground states in these channels. The required
correlation functions, from which the spectrum is extracted, are computed using a newly imple-
mented algorithm which reduces the number of operations, and hence speeds up the computation
by more than an order of magnitude. The results for the I = 3 three-pion and the I = 2 two-pion
spectrum are publicly available, including all correlations, and can be used to test the available
three-particle finite-volume approaches to extracting three-pion interactions.

INTRODUCTION

Lattice QCD calculations of scattering amplitudes
have matured significantly over the last decade owing to
marked increases in available computational capacity and
improved algorithms. A widely used approach for con-
straining scattering observables from simulations relies
on precise measurements of the interacting energy levels
of QCD in a finite volume, which encode hadron interac-
tions via the shifts from their noninteracting values [1–5]
(see [6] for a survey of extensions of the formalism and
numerical results).
So far, practical calculations in lattice QCD have been

mostly confined to the two-hadron sector. Though a
large abundance of lattice data is currently available for
meson-meson scattering (e.g. ππ scattering in all three
isospin channels [7–24], see also [25, 26] for results using
a potential-based approach), these calculations are for-
mally restricted to energies below thresholds involving
three or more hadrons due to the use of a formalism for
relating finite-volume spectra to scattering amplitudes
that is limited to two-hadron scattering. This limita-
tion has precluded a proper lattice QCD study of sys-
tems involving three or more stable hadrons at light pion
masses, e.g. the Roper resonance which decays to both
two- and three-particle channels, the ω(782) decaying to
three pions, many of the X , Y and Z resonances, and
three-nucleon interactions relevant for nuclear physics.
However, significant progress has been made recently

in developing the necessary formalism to interpret the
three-particle finite-volume spectrum (for a review see
[27]), both by extending the two-particle derivation to
include three-hadron states [28–31], as well as through
alternative approaches [32–36][72]. Thus, although the
three-particle formalism is quite mature—including nu-
merical explorations of the corresponding quantization
conditions [36, 37][73]—data for three-particle finite-
volume QCD spectra is lacking since previous lattice
QCD calculations have been restricted to the extraction

of multi-meson ground states at rest [38–40].

We fill this gap by providing the two-pion and three-
pion spectra with maximum isospin in various irreducible
representations at zero and nonzero total momentum, in-
cluding not only the ground states but the excited states
in the elastic region as well, i.e. for center-of-mass ener-
gies Ecm/mπ below 4 and 5 for isospin I = 2 and I = 3
respectively. This data, which is made public, including
all correlations, will allow for an investigation of the var-
ious three-particle interaction parameters as well as the
effect of higher partial waves, for which the quantization
condition has been worked out recently [41].

A technical challenge concerns the growing number of
Wick contractions required to compute correlation func-
tions of suitable interpolating operators—from which the
spectrum is extracted—as the number of valence quark
fields increases. The continued need for improved algo-
rithms to perform these contractions was pointed out re-
cently [42] and indeed was a limiting factor in a recent
study of meson-baryon scattering in the ∆ channel [43].
While Refs. [44–49] investigated efficient contraction al-
gorithms at the quark level, we employ the stochastic
variant [50] of distillation [51] to treat quark propagation.
In this framework, it is useful to view the correlation
function construction in terms of contractions of tensors
associated with the involved hadrons. Then, to reduce
the operation count required to evaluate all contractions,
we use a method which is well-known in quantum chem-
istry [52–54] and has attracted renewed interest recently
in the context of tensor networks [55]. The proposed opti-
mization achieves an operation-count reduction by more
than an order of magnitude, and its implementation is
made publicly available.

This letter is organized as follows: We first describe
the interpolating operators employed in this work and
the method used to speed up the construction of their
correlation functions. This is followed by a presentation
of the analysis and results.
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FIG. 2: I = 2 two-pion spectrum in various irreps Λ(d2)
with total momentum P = 2π

L
d. Open symbols denote the

measured interacting energies which are shifted from their
noninteracting values shown as dashed lines.

5a, t∗ = 10a), corresponding to roughly 0.32 fm and
0.64 fm in physical units [61], in order to extract not only
the ground state but also excited states in most irreps.
Results from different (t0, t∗) are indistinguishable, pre-
sumably due to the weak interaction in I = 2 and I = 3
pion scattering which results in little mixing of our inter-
polating operators, in which each hadron has been pro-
jected to definite momentum and is hence expected to
overlap predominantly with a single state.
For two-pion states the difference ∆E between inter-

acting and noninteracting energies is determined from
single-exponential fits at sufficiently large time separa-
tions to the ratios

Ri(t) =
Ĉii(t)

Cπp1
(t)Cπp2

(t)
large t
−−−−→ Ae−∆Eit (8)

of diagonal elements of the ‘optimized’ correlation ma-
trix Ĉ (i.e. the matrix formed from rotations by the
eigenvectors of the generalized eigenvalue problem) and
two single-pion correlation functions, and similarly for
the three-pion states [38]. Absolute energies are recon-
structed from those energy differences using the single-
pion dispersion relation.
Two-pion and three-pion spectra: The two- and three-

pion spectra with maximum isospin are extracted across a
number of irreps with zero and nonzero total momentum.
The attainable precision is generally at the few-permille
level for the energies measured in units of the single-
pion mass amπ = 0.06504(33). Figures 2 and 3 show
the extracted two- and three-pion spectra together with
the noninteracting energies, displaying significant energy
shifts in all considered three-pion irreps. In particular,
interacting energy levels from different irreps that con-
tain some degeneracy of the noninteracting spectra (e.g.
A−

1u and E−
u at zero total momentum) differ substantially,

which may suggest sensitivity to different combinations
of low-energy scattering parameters.
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FIG. 3: Same as Fig. 2 but for the I = 3 three-pion spectrum.

Only a dedicated investigation of those spectra in the
framework of one of the available three-particle finite-
volume formalisms can disentangle the effects of two-
particle scattering from genuine three-particle scattering
effects, which necessitates further work along the lines of
[35, 41] to apply to the energies in all irreps presented
here. In order to facilitate further investigation along
these lines, the two-pion and three-pion spectra presented
here are made publicly available, including all correla-
tions. The values and covariance matrix of all extracted
energies, as well as the single-pion mass, are given in
Table VII, and the original bootstrap samples from this
analysis are available as ancillary files with the arXiv
submission.
The two- and three-pion excited state spectrum was

previously predicted in [36], with input from the ground
state energies at rest determined in a lattice calculation
[38, 39]. However, comparison with our results is difficult
due to their use of a much smaller volume making their
results subject to more significant finite-volume effects,
especially at pion masses near mπ ≈ 200MeV where the
exponential volume effects may become non-negligible.

CONCLUSIONS AND OUTLOOK

We have presented the I = 3 three-pion spectrum in fi-
nite volume from lattice QCD in which, for the first time,
the excited states in various irreps at zero and nonzero
total momentum, in addition to the ground states, have
been extracted. These spectra need to be interpreted in
the framework of one of the available three-particle finite-
volume formalisms in order to extract infinite-volume in-
formation on three-pion interactions. In order to facil-
itate those investigations, which will require generaliza-
tions of the formulae currently available in the literature,
all spectra are made public, including their correlations.
We also described a method, applied for the first

time in lattice QCD, to reduce the computational re-

[arXiv:1905.04277]
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Problem in finite-volume QFT

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes
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E0(L)

E1(L)

E2(L)

E* < 3m

QC2 M2→2

E0(L)

E1(L)

E2(L)

3m < E* < 4m

QC3 M2→3

& M3→2

& M3→3

No Z2 symmetry
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Complication: 2-step method

Quantization conditions

2 & 3 particle
spectrum from LQCD

Integral equations in
infinite volume

Intermediate, unphysical 
scattering quantity

QC2: det [F−1 + 𝒦2] = 0
QC3: det [F−1

3 + 𝒦df,3] = 0

Scattering amplitudes
ℳ2→3 , ℳ3→2 , ℳ3→3

L

L

L
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Final result for QC3 
(assuming Z2 symmetry)

�16
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QC2               ⟶              QC3
det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

[HS14]

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

• Total momentum (E, P)

• Matrix indices are l, m 

• FPV is a finite-volume geometric function

• K2 is a physical infinite-volume amplitude, 
which is real and has no threshold cusps

• K2 is algebraically related to M2

• Total momentum (E, P)

• Matrix indices are k, l, m 

• F3 depends on geometric functions (FPV and 
G) and also on K2

• F3 is known if first solve QC2 

• Kdf,3 is a physical infinite-volume 3-particle 
amplitude, which is real and has no 
threshold cusps

• It is cutoff dependent and thus unphysical

• It is related to M3 via integral equations 
[HS15]

1
ℳ(ℓ)

2
≡

1
𝒦(ℓ)

2
− iρ
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Matrix indices

�18

• All quantities are (infinite-dimensional) matrices, e.g. (F3)klm;pl’m’, with indices

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

Describes three on-shell particles with total energy-momentum (E, P)

[finite volume “spectator” momentum: k=2πn/L] x [2-particle CM angular momentum: l,m]

• For large k (at fixed E, L), the other two particles are below threshold

• Must include such configurations, by analytic continuation, up to a cut-off at k~m 
[Polejaeva & Rusetsky, `12]



/68S. Sharpe, “Resonances from LQCD”, Lecture 3, 7/11/2019,  Peking U. Summer School

F3 collects 2-particle interactions

�19

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
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F3 collects 2-particle interactions
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F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
p

k

�
k k
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F3 collects 2-particle interactions

�19

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]

• F & G are known geometrical functions, 
containing cutoff function H

Gpℓ′�m′�;kℓm = ( k*
q*p )

ℓ′ �
4πYℓ′ �m′�( ̂k*)H( ⃗p )H( ⃗k )Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3 Relativistic form 
introduced in [BHS17]

Fpℓ′�m′�;kℓm = δpk H( ⃗k ) FPV,ℓ′�m′�;ℓm(E − ωk, ⃗P − ⃗k , L)

�(E − ωk, ⃗P − ⃗k ) →

p
k

�
k k
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F3 collects 2-particle interactions
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F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
• F & G are known geometrical functions, 

containing cutoff function H

Gpℓ′�m′�;kℓm = ( k*
q*p )

ℓ′ �
4πYℓ′ �m′�( ̂k*)H( ⃗p )H( ⃗k )Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3 Relativistic form 
introduced in [BHS17]

Fpℓ′�m′�;kℓm = δpk H( ⃗k ) FPV,ℓ′�m′�;ℓm(E − ωk, ⃗P − ⃗k , L)

FPV;ℓ′�m′ �;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− PV ∫
d3k

(2π)3

𝒴ℓ′ �m′�( ⃗k *)𝒴*ℓm( ⃗k *) h( ⃗k )
2ωk2ωP−k(E − ωk − ωP−k)

𝒴ℓm( ⃗k *) = 4π ( k*
q* )

ℓ

Yℓm( ̂k*)

Relativistic form 
equivalent up to 
exponentially-

suppressed terms
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Divergence-free K matrix

�21

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

What is this? A quasi-local divergence-free 3-particle interaction
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Divergence-free K matrix

�21

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

What is this? A quasi-local divergence-free 3-particle interaction

iM3!3 ⌘ fully connected correlator with  
six external legs amputated and projected on shell

Three-to-three amplitude has kinematic singularities

[Artwork from Hansen, HMI lectures]

Certain external momenta 
 put this on-shell!

= + · · ·

• To have a nonsingular (divergence-free) quantity, need to subtract pole
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M3, Kdf,3

2 degrees of freedom

12 momentum  
     components

-10 Poincaré generators

8 degrees of freedom

18 momentum  
     components

-10 Poincaré generators

Divergence-free K matrix

�22

• Kdf,3 has the same symmetries as M3: relativistic invariance, particle interchange, T-reversal

M2, K2

s=E*2 + θ s=E*2 + 7 “angles”

•Need more parameters to describe Kdf,3 than K2 (will be discussed in lecture 4)

•Why K2 and Kdf,3 appear in QC3, rather than M2 and Mdf,3, will be explained shortly
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Sketch of derivation 
of QC3

�23
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Set-up

�24

• Work in continuum (assume that LQCD                                                   
can control discretization errors)

• Cubic box of size L with periodic BC,                                                         
and infinite (Minkowski) time

• Spatial loops are sums: 

• Consider identical particles with physical mass m, interacting arbitrarily except 
for a Z2 (G-parity-like) symmetry

• Only vertices are 2→2, 2→4, 3→3, 3→1, 3→5, 5→7, etc.

• Even & odd particle-number sectors decouple

1
L3

P
~k

~k = 2⇡
L ~n

L

L

L
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Methodology

�25

• Calculate (for some P=2πnP/L)

• Poles in CL occur at energies of finite-volume spectrum

• Here σ ~ π3

CM energy is
E*=√(E2-P2)

3

CL(E, ⃗P ) ≡ ∫L
d4x eiEt−i ⃗P ⋅ ⃗x ⟨Ω |T {σ†

3 (x)σ3(0)} |Ω⟩L

σ†
3 σ3

σ†
3

σ3σ†
3

σ3

σ†
3 σ3 σ†

3 σ3

CL(E, ⃗P ) = + +

+

+ +…
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Key step 1

• Replace loop sums with integrals where possible

• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

�26

Exp. suppressed if g(k) is smooth
and scale of derivatives of g is ~1/M
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Key step 3

• Use time-order PT to identify potential singularities

• Example

�27

σ3σ†
3
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Key step 3
• 2 out of 6 time orderings:

�28

1’

2’

3’

4’

2

5

1
1

2
3

4

5’

5

6

E�!1�!2�!3�!4�!0
5

!j =
q
~k2j +M2On-shell energy

E�!0
1�!0

2�!0
3�!0

4�!5

1 1 1 1P
j=1,6 !jE�!1�!2�!5

σ†
3

σ†
3

σ3

σ3
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Key step 3
• 2 out of 6 time orderings:

�28

1’

2’

3’

4’

2

5

1
1

2
3

4

5’

5

6

E�!1�!2�!3�!4�!0
5

E�!0
1�!0

2�!0
3�!0

4�!5

1 1 1 1P
j=1,6 !j

• If restrict M < E*< 5M then only 3-particle “cuts” have singularities, and these 
occur only when all three particles to go on-shell

E�!1�!2�!5

σ†
3

σ†
3

σ3

σ3
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Combining key steps 1 & 3
• For each diagram, determine which momenta must be summed, and which can 

be integrated

• In our 3-particle example, find:

�29

Can integrate

Must sum momenta
passing through box

σ3σ†
3
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Combining key steps 1 & 3 

• This leads to the “skeleton expansion”

�30

σ†
3 σ3

σ†
3

σ3σ†
3

σ3

σ†
3 σ3 σ†

3 σ3

CL(E, ⃗P ) = + +

+

+ +…

Can integrate;
part of B3

Can integrate; part of B2
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Skeleton expansion

�31

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

+

+ +

+ + · · ·

+ · · ·⌘

⌘ as in derivation of QC2

new B-S kernel,
3-particle irreducible

in s channel

analog of bubble sum
in 2-particle correlator

new feature: diagrams
with spectator

Bethe-Salpeter
kernels, with all
loops integrated,
so infinite-volume

quantities

lines are here 
fully-dressed propagators

matrix elements 
of σ3 and h.c.

B2 =

B3 =
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Skeleton expansion

�32

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

+

+ +

+ + · · ·

+ · · ·⌘

⌘

Kernel definitions:

interacting pair
switches

B2 =

B3 =
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Skeleton expansion

�33

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

+

+ +

+ + · · ·

+ · · ·⌘

⌘

combined B2 and B3 
diagrams 

B2 =

B3 =
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Skeleton expansion

�33

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

+

+ +

+ + · · ·

+ · · ·⌘

⌘

combined B2 and B3 
diagrams 

B2 =

B3 =

All th
e complicat

ions co
me fro

m diagr
ams involving B2
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• Essentially unchanged here, except have additional label k for spectator

Key step 2A

�34

F

= +

off-shell on-shell

Bottom propagator is
first set on-shell.
Has finite-volume

momentum

Upper loop integrated
with PV prescription

• Recall key step 2 in derivation of QC2 (using PV prescription)

FPV(E, ⃗P , L)

k k p

Fpℓ′�m′�;kℓm = δpk H( ⃗k ) FPV,ℓ′�m′�;ℓm(E − ωk, ⃗P − ⃗k , L)

F k
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Key issue 4: dealing with cusps
• Want to replace sums with integrals + F-cuts for each 3-particle int. state

• Presence of cusps forces us to use the PV prescription

• Only an issue where cuts adjacent to B2s

�35
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Key issue 4: dealing with cusps
• Want to replace sums with integrals + F-cuts for each 3-particle int. state

• Presence of cusps forces us to use the PV prescription

• Only an issue where cuts adjacent to B2s

�35
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Cusp analysis (1)
• Aim: replace sums with integrals + finite-volume residue

• E.g. 

�36

(E, ~P ) �!
~k

~a

dressed 
propagators

interpolating
operator

2PI Bethe-Salpeter
kernel 

• Can replace sums with integrals for smooth, non-singular parts of summand

• Singular part of left-hand 3-particle intermediate state

p
~k2 +m2 p

~a2 +m2

q
(~P � ~k � ~a)2 +m2

smooth
functions

denominator
vanishes on-shell

1

L6

X

~k

X

~a

A(~k,~a)B(~k,~a)

E � !k � !a � !ka

1

L6

X

~k

X

~a
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Cusp analysis (2)

�37

1
L6

P
~k

P
~a

A(~k,~a)B(~k,~a)
E�!k�!a�!ka

Difference gives zeta-function F with 
A & B projected on shell [Lüscher,...]

~k

~a

F has multiple singularities,
so leave k summed

for F-term

1
L3

P
~a �!

R
~a +( 1

L3

P
~a �

R
~a)

Step 1: treat sum over a

Step 2: treat sum over k

• Want to replace sum over k with integral for       term
• Only possible if integral over a gives smooth function
• iε prescription leads to cusps at threshold 
• ⇒ sum-integral ~1/L4 [Polejaeva & Rusetsky]

• Requires use of a PV prescription

R
~a

Result: 1
L6

P
~k

P
~a =

R
~k

R
~a +

P
~k “F term”
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Cusp analysis (2)

�37

1
L6

P
~k

P
~a

A(~k,~a)B(~k,~a)
E�!k�!a�!ka

Difference gives zeta-function F with 
A & B projected on shell [Lüscher,...]

~k

~a

F has multiple singularities,
so leave k summed

for F-term

1
L3

P
~a �!

R
~a +( 1

L3

P
~a �

R
~a)

Step 1: treat sum over a

Step 2: treat sum over k

• Want to replace sum over k with integral for       term
• Only possible if integral over a gives smooth function
• iε prescription leads to cusps at threshold 
• ⇒ sum-integral ~1/L4 [Polejaeva & Rusetsky]

• Requires use of a PV prescription

R
~a

Result: 1
L6

P
~k

P
~a =

R
~k

R
~a +

P
~k “F term”

This is the origin
of the extra index
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Cusp analysis (3)

�38

• Simple example:
R
~a

A(~k,~a)B(~k,~a)
E�!k�!a�!ka

f(c) =
R1
0 dx

p
xe�(x�c)

c�x

x ⇠ (a⇤)2

c

Re f(c)

iε

threshold

c

Im f(c)

iε

threshold

• Far below threshold, our PV smoothly turns back into iε due to cutoff function H

PV 
(including
analyticity

requirement)
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Cusp analysis (4)

• Bottom line: must use PV prescription for all loops

• This is why K2 appears in QC3, rather than M2 

• It is also why QC3 contains a three-particle K matrix (which is real)

• K2  is standard above threshold, and is given below by analytic continuation 
(so there is no cusp)

• Far below threshold (k~m), our K2 turns smoothly into M2

�39
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Key issue 5: dealing with “switches”

�40
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Key issue 5: dealing with “switches”

�40

0 switches:

2 switches:

1 switch:

“switch state”
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Key issue 5: dealing with “switches”

�40

• With cusps removed, no-switch diagrams can be summed as for 2-particle case

• “Switches” present a new challenge

0 switches:

2 switches:

1 switch:

“switch state”



/68S. Sharpe, “Resonances from LQCD”, Lecture 3, 7/11/2019,  Peking U. Summer School

One-switch diagrams

�41

+ · · ·

+ +

+

C(2)
L =

k0

k Can treat similarly to 2-particle case
leading to a series of Fs and K2s

`,m

~k
`0,m0

iK2 ~p

iK2

• End up with L-dependent part of        having at its core:

On-shell
On-shell

• This is our first contribution to the infinite-volume 3 particle scattering amplitude

Number of switches + 1

C(2)
L
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One-switch problem

�42

`,m

~k

`0,m0

• Amplitude is singular for some choices of k, p in physical regime

• Propagator goes on shell if top two (and thus bottom two) scatter elastically

• Not a problem per se, but leads to difficulties when amplitude is symmetrized

• Occurs when include three-switch contributions

`0,m0
`,m

~k

• Singularity implies that decomposition in Yl,m will not converge uniformly

• Cannot usefully truncate angular momentum expansion

~p

~p
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• Define divergence-free amplitude by subtracting singular part

• Utility of subtraction noted in [Rubin, Sugar & Tiktopoulos, ’66]

One-switch solution

�43

�`0,m0
`,m

~k
`0,m0

`,m

~k

• Key point: Kdf,3 is local and its expansion in harmonics can be truncated

• Subtracted term must be added back---leads to G contributions to F3

• Can extend divergence-free definition to any number of switches

• Higher-order terms involve loops for which cutoff is essential

Always on-shell;
can be below

threshold

Off-shell except 
at pole

iKdf,3 �

iK2 iG iK2

~p ~p

Cutoff dependence
enters here

Gpℓ′�m′�;kℓm = ( k*
q*p )

ℓ′�
4πYℓ′�m′�( ̂k*)H( ⃗p )H( ⃗k )Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3
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Key issue 6: symmetry breaking
• Our analysis breaks particle interchange symmetry

• Top two particles treated differently from spectator

• Leads to very complicated definition for Kdf,3, e.g.

�44

K2

propagator with
divergence subtracted

divergent part
of propagator

Integrate with PV prescription; 
need to specify order of integrals

diagram by diagram

amputated 
external

legs
iKdf,3 �
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Key issue 6: symmetry breaking

�45

• Definition of Kdf,3 is constructive:

• Sum all Feynman diagrams contributing to M3 

• Use PV prescription, plus a (well-defined) set of rules for ordering integrals

• Subtract leading divergent parts 

• Apply a set of (completely specified) extra factors (“decorations”) to ensure 
external symmetrization 😩



/68S. Sharpe, “Resonances from LQCD”, Lecture 3, 7/11/2019,  Peking U. Summer School

Key issue 6: symmetry breaking

�45

• Definition of Kdf,3 is constructive:

• Sum all Feynman diagrams contributing to M3 

• Use PV prescription, plus a (well-defined) set of rules for ordering integrals

• Subtract leading divergent parts 

• Apply a set of (completely specified) extra factors (“decorations”) to ensure 
external symmetrization 😩

• Kdf,3 is a real, divergence-free infinite-volume quantity, smooth aside from 
possible dynamical poles arising from 3-particle resonances (just like K2) ☺

• But it is cut-off dependent, and has an ugly construction 😞

• It can, however, be related (in infinite volume) to M3—our next topic! 😀

• This relation shows that Kdf,3 is not as ugly as we first thought, as it has the same 
symmetries as M3 😃
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Now do a lot of manipulations…

�46

our derivation. For this reason the three-particle case is
fundamentally different. After much investigation, we
found it most convenient to require that iB3 only contain
connected diagrams and thus display all pairwise scatter-
ings explicitly.
Finally, in our skeleton expansion all kernels and

interpolating functions are connected by fully dressed
propagators,

ΔðqÞ≡
Z

d4xeiq·xh0jTϕðxÞϕð0Þj0i: ð51Þ

Here ϕðxÞ is a one-particle interpolating field defined with
on shell renormalization such that

lim
q0→ωq

ΔðqÞ½ðq2 −m2Þ=i$ ¼ 1: ð52Þ

Since we are working with fully dressed propagators, we do
not include self-energy contributions explicitly in our
skeleton expansion. We use infinite-volume fully dressed
propagators throughout, which is justified because the self-
energy graphs do not contain on shell intermediate states.
In summary, the skeleton expansion of Fig. 4 displays

explicitly all the intermediate states that can go on shell and
give rise to power-law corrections. All intermediate states
which cannot go on shell are included in the infinite-
volume two-to-two and three-to-three Bethe-Salpeter
kernels.
In the remaining subsections, we work through the

different classes of diagrams appearing in this expansion.
First, in Sec. IVA, we sum diagrams containing only iB2

kernels on the same pair of propagators (second line of
Fig. 4). Then, in Secs. IV B and IV C, we sum diagrams
with, respectively, one or two changes in the pair that is
being scattered (third and fourth lines of Fig. 4). At this
stage, we can extend the pattern and sum all diagrams built
from iB2 kernels with any number of changes in the
scattered pair. This is done in Sec. IV D. Incorporating
three-to-three insertions at this point is relatively easy, and
is done in Sec. IV E, leading to the final result for CL given
in Eq. (42).
As we proceed we identify the diagrams contributing to

K2 and Kdf;3, as well as A; A0 and C∞. The precise
definitions of these infinite-volume quantities will thus
emerge step by step.

A. Two-to-two insertions: no switches

In this section we sum the diagrams of Figs. 6–7. Each
diagram contains only B2 insertions, all of which scatter
the same pair of propagators. We separate the diagram
with no B2 insertions, labeled Cð0Þ

L (Fig. 6), from the sum of
diagrams with one or more insertions, denoted Cð1Þ

L (Fig. 7).
We refer to these diagrams as having no switches, meaning
that the pair that is scattered does not change. This desig-
nation anticipates subsequent sections in which we sum
diagrams with one or more switches in the scattered pair.
An important check on the calculation of this subsection

is obtained by noting that the no-switch diagrams are the
complete set appearing in a theory of two different particle
types, with one of the types noninteracting. This is the case
provided that the correlator is constructed with fields that
interpolate one free particle and two interacting particles.
Thus the result for Cð0Þ

L þ Cð1Þ
L must be that for the full

finite-volume correlator in the two-plus-spectator theory.
This check is discussed below.
We begin our detailed calculation by determining the

finite-volume residue of the no-insertion diagram of
Fig. 6. This diagram represents the expression20

Cð0Þ
L ≡ 1

6

1

L6

X

~k;~a

Z

a0

Z

k0
σðk; aÞΔðkÞΔðaÞ

× ΔðP − k − aÞσ†ðk; aÞ; ð53Þ

where
R
k0 ≡

R
dk0=ð2πÞ, etc., and the 1=6 is the symmetry

factor. We stress that the Δs are fully dressed propagators,
with the normalization given in Eq. (52).
We first evaluate the a0 and k0 integrals using contour

integration, wrapping both contours in the lower half of the
respective complex planes. Each contour encircles a one-
particle pole (a0 ¼ ωa − iϵ and k0 ¼ ωk − iϵ) as well as
three-particle (and higher) poles from excited-state con-
tributions to the propagators. The result of integration may
thus be written

Cð0Þ
L ¼ 1

6

1

L6

X

~k;~a

!
σð½ωk; ~k$; ½ωa; ~a$ÞΔðP − k − aÞσ†ð½ωk; ~k$; ½ωa; ~a$Þ

2ωk2ωa
þRð~k; ~aÞ

"
; ð54Þ

FIG. 6. Finite-volume correlator diagram with no kernel
insertions.

20In the remainder of this article we drop tildes on the Fourier-transformed interpolating operators, ~σðk; aÞ and ~σ†ðk; aÞ, since we no
longer use the position-space forms.

MAXWELL T. HANSEN AND STEPHEN R. SHARPE PHYSICAL REVIEW D 90, 116003 (2014)

116003-12

where Rð~k; ~aÞ is the contribution from excited-state poles.
Here k and a appearing in ΔðP − k − aÞ are now under-
stood as on shell four vectors, a fact that we have made
explicit in the arguments of σ and σ†. We next note that
ΔðP − k − aÞ can be split into its one-particle pole plus a
remainder:

ΔðP − k − aÞ ¼ i
2ωkaðE − ωk − ωa − ωkaÞ

þ rð~k; ~aÞ:

ð55Þ

Substituting Eq. (55) into Eq. (54) gives

Cð0Þ
L ¼ 1

6

1

L6

X

~k;~a

!
iσð½ωk; ~k&;½ωa; ~a&Þσ†ð½ωk; ~k&;½ωa; ~a&Þ
2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ

þR0ð~k; ~aÞ
"
; ð56Þ

where R0 is the sum of R and the term containing r. This
grouping is convenient because R0ð~k; ~aÞ is a smooth
function of ~k and ~a for our range of E, since we have
explicitly pulled out the three-particle singularity. Indeed,
we are free to further adjust the separation between first and
second terms, as long as the latter remains smooth. For the
following development we need to include the damping
function Hð~kÞ in the singular term. We recall that Hð~kÞ,
defined in Eqs. (27)–(28), is a smooth function which
equals unity when the other two particles (those with
momenta a and P − k − a) are kinematically allowed to
be on shell (for the given values of E, ~P, and ~k). In
particular, if we multiply the singular term by 1 ¼ Hð~kÞþ
½1 −Hð~kÞ&, then the 1 −Hð~kÞ term cancels the singularity,
leading to a smooth function that can be added to R0 to
obtain a new residue R00:

Cð0Þ
L ¼ 1

6

1

L6

X

~k;~a

!
iσð½ωk; ~k&;½ωa; ~a&Þσ†ð½ωk; ~k&;½ωa; ~a&ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ

þR00ð~k; ~aÞ
"
: ð57Þ

At this stage we want to rewrite Cð0Þ
L as an infinite-

volume (L-independent) quantity plus a remainder.
Infinite-volume quantities differ only in that loop momenta
are integrated rather than summed. We can thus pull out the
infinite-volume object by replacing each sum with an

integral plus a sum-integral difference. We stress that
integrals, unlike sums, require a pole prescription. We
are free to use any prescription we like, and it turns out to
be most convenient to make a nonstandard choice which
we call the fPV prescription. This is defined in the present
context as follows21:

1

2
fPV

Z

~a

iσð½ωk; ~k&;½ωa; ~a&Þσ†ð½ωk; ~k&;½ωa; ~a&ÞHð~kÞ
2ωa2ωkaðE − ωk − ωa − ωkaÞ

≡ 1

2

Z

~a

iσð½ωk; ~k&;½ωa; ~a&Þσ†ð½ωk; ~k&;½ωa; ~a&ÞHð~kÞ
2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

− σ'l0;m0ð~kÞiρl0;m0;l;mð~kÞσ†'l;mð~kÞ; ð59Þ

where ρ was introduced in Eq. (25) above.
To complete the definition we need to explain the

meanings of the on shell quantities σ'l0;m0ð~kÞ and σ†'l;mð~kÞ.
Similar quantities will appear many times below so we
give here a detailed description. First recall that ðω'

a; ~a'Þ is
the four vector obtained by boosting ðωa; ~aÞ with velocity
~βk ¼ −ð~P − ~kÞ=ðE − ωkÞ. This boost is only physical if
E'
2;k > 0, a constraint which is guaranteed to be satisfied by

the presence of Hð~kÞ in Eq. (59). We now change variables
from ~a to ~a' and define

σ'ð~k; ~a'Þ≡ σð½ωk; ~k&;½ωa; ~a&Þ; ð60Þ

and similarly for σ†. The left-hand side exemplifies our
general notation that, if the momentum argument is a three
vector, e.g. ~k, then the momentum is on shell, e.g. k0 ¼ ωk.
If the argument is a four momentum, e.g. k, then it is, in
general, off shell. Here we include a superscript ' on σ to
indicate that it is strictly a different function from that
appearing in say Eq. (57), since it depends on different
coordinates (in particular on momenta defined in different
frames). Next we decompose σ' and σ†' into spherical
harmonics in the CM frame

FIG. 7. Finite-volume correlator diagrams containing only two-to-two insertions with no change in the scattered pair.

21In the definition of fPV we are using σ and σ† which are
continuous functions of ~a and ~k. Since these were originally
defined only for discrete finite-volume momenta, this requires a
continuation of the original functions. We require only that the
continuation is smooth and slowly varying. More precisely we
demand

!
1

L3

X

~a

−
Z

~a

"
σð½ωk; ~k&;½ωa; ~a&Þ ¼ Oðe−mLÞ: ð58Þ
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Now do a lot of manipulations…

�46

σ!ð~k; ~a!Þ≡ ffiffiffiffiffiffi
4π

p
Yl;mðâ!Þσ!l;mð~k; a!Þ ð61Þ

σ†!ð~k; ~a!Þ≡ ffiffiffiffiffiffi
4π

p
Y!
l;mðâ!Þσ

†!
l;mð~k; a!Þ; ð62Þ

where there is an implicit sum over l and m. Our
convention, used throughout, is that the quantities to the
left of the three-particle cut are decomposed using Yl;ms
while those to the right use the complex conjugate
harmonics. Finally, with the starred quantities in hand
we can define on shell restrictions. As explained in the
introduction, P − k − a is only on shell if a! ¼ q!k, so we
define

σ!l;mð~kÞ≡ σ!l;mð~k; q!kÞ; σ†!l;mð~kÞ≡ σ†!l;mð~k; q!kÞ: ð63Þ

These are the quantities appearing in the ρ term in Eq. (59).
If E!

2;k < 2m, then the ~a; ~bka pair is below threshold, and
σ!l;m and σ†!l;m must be obtained by analytic continuation
from above threshold.
The reason for using this rather elaborate pole prescrip-

tion is that we want the integral over ~a to produce a smooth
function of ~k. This allows the sum over ~k to be replaced by
an integral. If we were to instead use the iϵ prescription,
then the resulting function of ~kwould have a unitary cusp at
E!
2;k ¼ 2m. This observation leads us to consider a princi-

pal-value pole prescription instead. We note that ρ is
defined so that, for E!

2;k > 2m, Eq. (59) simply gives the
standard principal-value prescription. It turns out that this
choice gives a smooth function of ~k, provided that one
uses analytic continuation to extend from E!

2;k > 2m to
E!
2;k < 2m. This is accomplished by our subthreshold

definition of ρ, which is then smoothly turned off by the
function Hð~kÞ. A derivation of the smoothness property is
given in Appendix B. We stress that the fPV prescription is

always defined relative to a spectator momentum, here ~k.
A slightly more general form of the fPV prescription is

instructive and will be useful below. For any two-particle
four momentum P2 for which the only kinematically
allowed cut involves two particles, we can write

fPV
Z

a
AðP2; aÞBðP2; aÞΔðaÞΔðP2 − aÞ

¼
Z

a
AðP2; aÞBðP2; aÞΔðaÞΔðP2 − aÞ

− 2iJðP2
2=½4m2&Þ~ρðP2Þ

×
"Z

â!
A!ðP2; ~a!ÞB!ðP2; ~a!Þ

#$$$$
a!¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2=4−m

2
p : ð64Þ

Here A and B are smooth, nonsingular functions of their
arguments. The quantities A! and B! are defined in a similar
way to σ! above, e.g. A!ðP2; ~a!Þ ¼ AðP2;½ωa; ~a&Þ, where
the boost to the two-particle CM has velocity −~P2=P0

2.
The functionJ, defined in Eq. (29), ensures that this boost is
well defined.22 Finally, the angular integral is normalized
such that

R
â! 1 ¼ 1. The form (64) makes clear that the

prescription can be defined for four-momentum integrals
(and not just three-momentum integrals) and that its depend-
ence on external momenta enters entirely through P2.
We have also used the angular independence of ρ to rewrite
the subtraction term as an angular average in the CM frame.
The two functions A and B could be combined into one, but
are left separate since in our applications we always have
separate functions to the left and right of the cut.
Returning to the main argument, we now substitute

1

L3

X

~a

¼ fPV
Z

~a
þ
"
1

L3

X

~a

− fPV
Z

~a

#
ð65Þ

into Eq. (57) to reach

Cð0Þ
L ¼ 1

6

1

L3

X

~k

fPV
Z

~a

"
iσð½ωk; ~k&;½ωa; ~a&Þσ†ð½ωk; ~k&;½ωa; ~a&ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
þR00ð~k; ~aÞ

#

þ 1

6

1

L3

X

~k

"
1

L3

X

~a

− fPV
Z

~a

#
iσð½ωk; ~k&;½ωa; ~a&Þσ†ð½ωk; ~k&;½ωa; ~a&ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
: ð66Þ

Note that the sum-integral-difference operator annihilatesR00ð~k; ~aÞ up to exponentially suppressed terms. As already noted,
we can replace the sum over ~k with an integral in the first term, resulting in the infinite-volume quantity

Cð0Þ
∞ ≡ 1

6

Z

~k

fPV
Z

~a

"
iσð½ωk; ~k&;½ωa; ~a&Þσ†ð½ωk; ~k&;½ωa; ~a&ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
þR00ð~k; ~aÞ

#
: ð67Þ

Note that no pole prescription is required for the ~k integral.

22Here J is playing the role of Hð~kÞ ¼ JðP2
2=½4m2&Þ in Eq. (59).
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The second term in Eq. (66) is then the finite-volume
residue. First we note that we can multiply the summand/
integrand by Hð~aÞHð~bkaÞ, since the remainder cancels the
pole and thus has vanishing sum-integral difference. Next
we use the identity for sum-integral differences presented in
Eq. (A1) of Appendix A. This is based on an extension of
the work of Ref. [17] to include the effects of subthreshold
momenta and the fPV prescription. The essence of the
identity is that the sum-integral difference picks out the on
shell residue of the singularity multiplied by a kinematic
function. In more detail the identity makes use of the
analytic properties of σ#l;mð~k; a#Þ and σ†#l;mð~k; a#Þ, the
functions defined in Eqs. (60)–(62) above. The result is that

Cð0Þ
L ¼ Cð0Þ

∞ þ 1

L3

X

~k

1

6ωk
σ#l0;m0ð~kÞiFl0;m0;l;mð~kÞσ†#l;mð~kÞ;

ð68Þ

¼ Cð0Þ
∞ þ σ#k0;l0;m0

1

6ωkL3
iFk0;l0;m0;k;l;mσ

†#
k;l;m; ð69Þ

where the finite-volume kinematical function F is defined
in Eqs. (22)–(24), and

σ#k;l;m ≡ σ#l;mð~kÞ; σ†#k;l;m ≡ σ†#l;mð~kÞ for ~k ∈ð2π=LÞZ3

ð70Þ

are the restrictions of the on shell functions to finite-volume
momenta. All indices in Eq. (69) are understood to be
summed, including k and k0 which are summed over the
allowed values of finite-volume momenta. This index
structure appears repeatedly in our derivation, and from
now on we leave indices implicit. Indeed, using the matrix
notation introduced in Sec. II, we can write the final result
compactly as

Cð0Þ
L ¼ Cð0Þ

∞ þ σ#
iF

6ωL3
σ†#: ð71Þ

This is the main result of this subsection.
Our treatment of the three-particle cut will be reused

repeatedly in the following, except that σ and σ† will be
replaced by other smooth functions of the momenta. Since
no properties of σ and σ† other than smoothness were used
in the derivation of Eq. (71), the result generalizes
immediately. It is useful to have a diagrammatic version,
and this is given in Fig. 8. The key feature of the result is
that the finite-volume residue depends only on on shell
restrictions of the quantities appearing on either side of the
cut (analytically continued below threshold as needed).
Before considering diagrams containing two-to-two

insertions, we take stock of the impact of using the
nonstandard fPV pole prescription. First we relate Cð0Þ

∞

[defined in Eq. (67)] to the conventional infinite-volume
form which uses the iϵ prescription. The latter is

Cð0Þ;iϵ
∞ ≡ 1

6

Z

~k;~a

!
iσð½ωk; ~k';½ωa; ~a'Þσ†ð½ωk; ~k';½ωa; ~a'ÞHð~kÞ
2ωk2ωa2ωkaðE−ωk −ωa −ωka þ iϵÞ

þR00ð~k; ~aÞ
"
; ð72Þ

¼ 1

6

Z

k;a
σðk; aÞΔðkÞΔðaÞΔðP−k−aÞσ†ðk; aÞ;

ð73Þ

where
R
k ≡

R
d4k=ð2πÞ4, etc., indicate integrals over four-

momenta. To obtain the second line, which is the standard
expression for the Feynman diagram, we have reversed the
steps leading from Eq. (53) to (57). It then follows from the
definition of the fPV prescription, Eq. (59), that

Cð0Þ
∞ ¼ Cð0Þ;iϵ

∞ −
Z

~k
σ#ð~kÞ iρð

~kÞ
6ωk

σ†#ð~kÞ: ð74Þ

This relation is similar in form to Eq. (71), with the “F cut”
being replaced by a “ρ cut.” The key point for present
purposes is that the ρ-cut term in Eq. (74) does not
introduce poles as a function of E. This follows from
noting that ρ is a finite function of ðE; ~PÞ and ~k, which has a
finite range of support in the latter.
We can also determine the form of the finite-volume

correction if we use the iϵ prescription throughout, includ-
ing in F [see Eq. (24) above]. This connects our result to
earlier work on two-particle quantization conditions, e.g.
Ref. [17], where Fiϵ was used. Defining

Fiϵ
k0;l0;m0;k;l;m ≡ δk0;kFiϵ

l0;m0;l;mð~kÞ; ð75Þ

it follows from Eq. (22) that

Fk0;l0;m0;k;l;m ¼ Fiϵ
k0;l0;m0;k;l;m þ δk0;kρl0;m0;l;mð~kÞ: ð76Þ

Combining the results above we then find

Cð0Þ
L ¼ Cð0Þ;iϵ

∞ þ σ
iFiϵ

6ωL3
σ†

þ
!
1

L3

X

~k

−
Z

~k

"
σ#ð~kÞ iρð

~kÞ
6ωk

σ†#ð~kÞ: ð77Þ

off-shell

= +

F

on-shell

FIG. 8. Diagrammatic representation of Eq. (71).
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Now do a lot of manipulations…

�46

obtain the usual F term plus integral. The former gives rise
to another contribution to iK2iF2iK

ð3;s;uÞ
df;3 , while the latter

contributes to iKð4;u;uÞ
df;3 . Analogous results hold for the

reflection of Fig. 18(e).
The diagram of Fig. 18(f) leads to a new effect. Here we

can use the sum-integral identity either on ~q1 or ~q2.
Our convention (as above) is to work from left to right
when there is such a choice. This gives the singly singular
term

ðfÞ ½singly singular$ ¼ 2iKð2;u;sÞ
df;3

iF
2ωL3

iKð2;u;uÞ
df;3 ; ð205Þ

where our convention has led to the ðsÞ being on the left
side of the F, rather than on the right. The nonsingular term
contributes to iKð4;u;uÞ

df;3 . Here our convention leads to a

definite (left to right) ordering of the fPV integrals.
Another new feature of the n ¼ 4 analysis is the

appearance of singular contributions in which one of the

FIG. 18. Decomposition ofKð4;u;uÞ
3;L . All external propagators are dropped, and the notation of Figs. 12 and 16 is used. (a) Kð4;u;uÞ

3;L itself
[see Eq. (171)]; (b) the most singular term (with three singular propagators); (c) and (d): terms with two singular propagators and their
decompositions; (e), (f), and (g): terms with one singular propagator and their decompositions; (h), (i), and (j): nonsingular terms. Terms
in the decompositions are always ordered from most to least singular. The treatment of loop momenta is indicated explicitly: they are
either summed (dashed box), integrated (integral sign) or the sum-minus-integral identity is used (factor of F). Where the order of
integrals matters it is shown explicitly.
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q0j integrals does not circle the particle pole. The corre-
sponding diagrams are Fig. 18(g) and its reflection. The
decomposition exactly follows that of Fig. 18(e).
Finally, we reach the completely nonsingular contribu-

tions, where sums can be immediately converted to

integrals. There are four such diagrams, Fig. 18(h), its
reflection, Fig. 18(i), and Fig. 18(j). These all contribute
to iKð4;u;uÞ

df;3 .
Adding all contributions we find the total result

iKð4;u;uÞ
3;L ¼ iK2iGiK2iGiK2½iG2ωL3%iK2 þ iK2iG½2ωL3%iK2

iF
2ωL3

2iKð2;s;uÞ
df;3 þ 2iKð2;u;sÞ

df;3
iF

2ωL3
iK2iG½2ωL3%iK2

þ iK2iF4iK
ð2;s;sÞ
df;3 iFiK2 þ 2iKð3;u;sÞ

df;3 iFiK2 þ iK2iF2iK
ð3;s;uÞ
df;3 þ 2iKð2;u;sÞ

df;3
iF

2ωL3
iKð2;u;uÞ

df;3 þ iKð4;u;uÞ
df;3 ; ð206Þ

where we have ordered terms in decreasing strength of
divergence. The only aspect of this result not explained
above is that contributions combine properly to give the
quantities Kð3;u;sÞ

df;3 and Kð3;s;uÞ
df;3 in the fifth and sixth terms,

respectively. For example, the Kð3;u;sÞ
df;3 term receives the

required four contributions (see Fig. 16) from diagrams
(c), (d), and the reflections of (e) and (g). One can
demonstrate that the correct contributions occur in all
cases by observing that (i) the result (206) provides a
complete classification of possible divergence structures
and (ii) that expanding out each term in (206) leads to a
unique set of contributions each of which is necessarily
present in the decomposition of Kð4;u;uÞ

3;L . Finally, we note

that the nonsingular term in Eq. (206), Kð4;u;uÞ
df;3 , is simply

defined as the sum of contributions from all the diagrams
in Fig. 18 (plus appropriate reflections) that contain only
loop integrals.
We are now ready to explain the result for general

iKðn;u;uÞ
3;L . What arises are sequences alternating between

one of the Ks,

iK2; iK
ðj;u;uÞ
df;3 ; 2iKðj;s;uÞ

df;3 ; 2iKðj;u;sÞ
df;3 and 4iKðj;s;sÞ

df;3 ;

ð207Þ

and one of

iF
2ωL3

and iG: ð208Þ

All possible combinations should be included, subject to
the following rules:

(i) The number of switches must add up to n. This
number is given by the total number of Fs and Gs
plus the number of switches in the Kdf;3s.

(ii) There must be a K2 or Kdf;3 on both ends.
(iii) Each Kdf;3 must have F on both sides unless

external. This is because the loop momenta next
to a Kdf;3 have only one singular propagator in
their summands and so the sum-integral identity
can be used. This implies, given the rules above,

that each G must have a K2 (and not a Kdf;3) on
both sides.

(iv) Fs must have a Kdf;3 on at least one side, or,
equivalently, Fs always appear on one side or other
of a Kdf;3. This is because one cannot use the sum-
integral identity in the middle of a sequence of
singular propagators, since each loop sum runs over
two singularities. The identity can only be used at
the end of the sequence, and only then if it
terminates with the nonsingular part of a propagator.
An example of this rule is that Fig. 18(b) cannot be
decomposed using the sum-integral identity,
whereas Fig. 18(c) can at the left-hand end. A con-
sequence of this rule is that the only long sequences
involving K2 have the form …iK2iGiK2iGiK2….
These correspond to diagrams with sequences of
singular propagators.

(v) In a sequence of the form …iK2iGiK2iGiK2…
the rightmost G is multiplied on the right by
½2ωL3%. This arises from keeping track of on shell
propagators.

(vi) The right-hand superscript of eachKdf;3 is ðsÞ unless
it is external, when it is a ðuÞ. Examples are the third,
fifth, and seventh terms in the expression (206)
for Kð4;u;uÞ

3;L .
(vii) The middle superscript of each Kdf;3 is ðsÞ unless it

is either external or it appears to the right of
another Kdf;3, separated by a single F, in which
cases it is a ðuÞ. The difference from the previous
rule arises due to our left-to-right convention of
dealing with loop momenta. An example of the
new exception is given by the penultimate term in
Eq. (206).

A simple consequence of these rules is that the most
divergent contribution to iKðn;u;uÞ

3;L is

iK2ðiGiK2Þn−2iG½2ωL3%iK2: ð209Þ

Similarly, sequences having this form (but with smaller
values of n) can appear both connecting the ends to factors
of Kdf;3, or between such factors.
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Now do a lot of manipulations…

�46

CL;2 ¼ C∞;2 þ iA0
2

1

1þ FK2

FA2: ð252Þ

The subscripts “2” on A, A0, and C indicate that these are
the two-particle end caps and correlator, while F is defined
in Eq. (22) (although here we drop the spectator-momen-
tum argument).
What we now show is that there are poles in A2, A0

2, and
C∞;2, but these cancel in CL;2. To see this we use the
freedom to arbitrarily choose the interpolating functions σ
and σ† without affecting the position of poles in CL;2.
Specifically, we set both σ and σ† equal to the two-particle
Bethe-Salpeter kernel iB2, which, we recall, is a smooth
nonsingular function. One then finds that

C∞;2 ¼ iK2 −iB2 and A2 ¼ A0
2 ¼ iK2: ð253Þ

Inserting these results into Eq. (252) we find that (for this
choice of end caps)

CL;2 ¼ −iB2 þ iK2 þ iK2

1

1−iFiK2

iFiK2

¼ −iB2 þ
i

K−1
2 þ F

: ð254Þ

From Eqs. (253) and (254) we draw two conclusions.
First, A2, A0

2, and C∞;2 have poles whenever K2 diverges.
Such poles occur, for a given angular momentum, when
δl ¼ π=2 mod π . Thus, using the fPV prescription, there
are, in general, poles in A2, A0

2, and C∞;2. Second, these
poles cancel in CL;2, as shown by the second form in
Eq. (254), which is clearly finite when K2 diverges.
We suspect that a similar result holds for the three-

particle analysis, but have not yet been able to demonstrate
this. Thus, in the three-particle case we must rely for now
on the intuitive argument given above.

V. CONCLUSIONS AND OUTLOOK

In this work we have presented and derived a three-
particle quantization condition relating the finite-volume
spectrum to two-to-two and three-to-three infinite-volume
scattering quantities. This condition separates the depend-
ence on the volume into kinematic quantities, as was
achieved previously for two particles.
There are two new features of the result compared to the

two-particle case. First, the three-particle scattering quan-
tity entering the quantization condition has the physical on
shell divergences removed. The resulting divergence-free
quantity is thus spatially localized. This is crucial for any
practical application of the formalism since it allows for
the partial-wave expansion to be truncated. Indeed, it is
difficult to imagine a quantization condition involving the
three-particle scattering amplitude itself, given that the
latter is divergent for certain physical momenta.

The second feature is that the three-particle scattering
quantity is nonstandard—it is not simply related to the
(divergence-free part) of the physical scattering amplitude.
This is because it is defined using the fPV pole prescription,
and also because of the decorations explained in Sec. IV E.
We strongly suspect, however, that a relation to the physical
amplitude exists. In particular, we know from Ref. [13] that
the finite-volume spectrum in a nonrelativistic theory can
be determined solely in terms of physical amplitudes, and
the same is true in the approximations adopted in Ref. [14].
We are actively investigating this issue.
The three-particle quantization condition involves a

determinant over a larger space than that required for
two particles. Nevertheless, as explained in Secs. III,
because the three-particle quantity that enters has a uni-
formly convergent partial-wave expansion, one can make a
consistent truncation of the quantization condition so that it
involves only a finite number of parameters. This opens the
way to practical application of the formalism.
We have provided in this paper two mild consistency

checks on the formalism—that it correctly reproduces
the known results if one particle is noninteracting (see
Sec. IVA), and that the number of solutions to the
quantization condition in the isotropic approximation is
as expected (see Appendix C). We have also worked out a
more detailed check by comparing our result close to the
three-particle threshold E% ≈3m to those obtained using
nonrelativistic quantum mechanics [27,28]. Here one has
an expansion in powers of 1=L, and we have checked
that the results agree for the first four nontrivial orders.
This provides, in particular, a nontrivial check of the form
of F3, Eq. (19), and allows us to relate Kdf;3 to physical
quantities in the nonrelativistic limit. We will present
this analysis separately [29].
Two other issues are deferred to future work. First,

we would like to understand in detail the relation of our
formalism and quantization condition to those obtained in
Refs. [13,14]. Second, we plan to test the formalism using
simple models for the scattering amplitudes, in order to
ascertain how best to use it in practice.
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APPENDIX A: SUM-MINUS-INTEGRAL
IDENTITY

In this appendix we derive the sum-minus-integral identity
that plays a central role in the main text. This identity is
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…and obtain the final answer

�47

C½B2;ρ"
∞ ≡ σD½B2;ρ"

C σ†;

A0½B2;ρ" ≡ σD½B2;ρ"
A0 ; and

A½B2;ρ" ≡D½B2;ρ"
A σ†: ð241Þ

These are infinite-volume integral operators defined implic-
itly by the work of previous subsections. This allows us to
write Eq. (239) as

C½B2"
L ¼ σfD½B2;ρ"

C þD½B2;ρ"
A0 ZD½B2;ρ"

A gσ†: ð242Þ

The reason for using this notation is that it works also for
segments of diagrams involving B3s at the ends. Thus, for
example, a segment of the finite-volume correlator between
two B3s can be written

…B3fD
½B2;ρ"
C þD½B2;ρ"

A0 ZD½B2;ρ"
A gB3 ' ' ' : ð243Þ

The key point is that the same decoration operators appear
as in (242).
We can now write down the result for the full finite-

volume correlator

CL ¼ σfD½B2;ρ"
C þD½B2;ρ"

A0 ZD½B2;ρ"
A gσ† þ σfD½B2;ρ"

C þD½B2;ρ"
A0 ZD½B2;ρ"

A giB3fD
½B2;ρ"
C þD½B2;ρ"

A0 ZD½B2;ρ"
A gσ†

þ σfD½B2;ρ"
C þD½B2;ρ"

A0 ZD½B2;ρ"
A giB3fD

½B2;ρ"
C þD½B2;ρ"

A0 ZD½B2;ρ"
A giB3fD

½B2;ρ"
C þD½B2;ρ"

A0 ZD½B2;ρ"
A gσ† þ ' ' ' ð244Þ

As in the previous subsection, this can be reorganized into
the form

CL ¼ C∞ þ
X∞

n¼0

A0½ZiB½B2;ρ"
3 "nZA ð245Þ

where

iB½B2;ρ"
3 ¼

X∞

n¼0

D½B2;ρ"
A ½iB3D

½B2;ρ"
C "niB3D

½B2;ρ"
A0 ; ð246Þ

A0 ¼
X∞

n¼0

σ½D½B2;ρ"
C iB3"

nD½B2;ρ"
A0 ; ð247Þ

A ¼
X∞

n¼0

D½B2;ρ"
A ½iB3D

½B2;ρ"
C "nσ†; ð248Þ

C∞ ¼
X∞

n¼0

σD½B2;ρ"
C ½iB3D

½B2;ρ"
C "nσ† :ð249Þ

The latter three equations give the final forms of the end
caps and the infinite-volume correlator, now including all
factors of B3.
We can now sum the geometric series in Eq. (245) and

perform some simple algebraic manipulations to bring the
result to its final form,

CL ¼ C∞ þ A0 1

1þ F3Kdf;3
iF3A; ð250Þ

where

Kdf;3 ≡K½B2;ρ"
df;3 þ B½B2;ρ"

3 ð251Þ

is the full divergence-free three-to-three amplitude. Thus
we have obtained our claimed result, Eq. (42), from which
follows the quantization condition Eq. (18).
We close our derivation by returning to an issue raised in

the introduction to this section, namely the possibility of
poles in A, A0, and C∞. We argue that, while such poles can
be present, they cannot contribute to the finite-volume
spectrum, i.e. they do not lead to poles in CL. Only solutions
to the quantization condition (18) lead to poles in CL.
The intuitive argument for this result is that A, A0, and

C∞ are infinite-volume quantities. While they are non-
standard, being defined with the fPV prescription and
involving the decoration described above, they have no
dependence on L. Thus, if they did lead to poles in CL, this
would imply states in the finite-volume spectrum whose
energies were independent of L [up to corrections of the
form expð−mLÞ]. The only plausible state with this
property is a single particle, but this is excluded by our
choice of energy range (m < E( < 5m). Three-particle
bound states will have finite-volume corrections that are
exponentially suppressed by expð−γLÞ, with γ ≪ m being
the binding momentum, but these should be captured by
our analysis, just as is the case for two-particle bound states
[23]. Finally, above-threshold scattering states should have
energies with power-law dependence on L. This is true in
the two-particle case, and we expect it to continue to hold
for three particles. This is confirmed, for example, by the
analysis of three (and more) particles using nonrelativistic
quantum mechanics [27,28].
For the two-particle analysis this argument can be made

more rigorous, and it is informative to see how this works.
We have recalled the two-particle quantization condition in
Sec. IVA, and give here the form of the corresponding
two-particle finite-volume correlator:

RELATIVISTIC, MODEL-INDEPENDENT, THREE- … PHYSICAL REVIEW D 90, 116003 (2014)
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two B3s can be written

…B3fD
½B2;ρ"
C þD½B2;ρ"
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The key point is that the same decoration operators appear
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The latter three equations give the final forms of the end
caps and the infinite-volume correlator, now including all
factors of B3.
We can now sum the geometric series in Eq. (245) and

perform some simple algebraic manipulations to bring the
result to its final form,

CL ¼ C∞ þ A0 1

1þ F3Kdf;3
iF3A; ð250Þ

where

Kdf;3 ≡K½B2;ρ"
df;3 þ B½B2;ρ"

3 ð251Þ

is the full divergence-free three-to-three amplitude. Thus
we have obtained our claimed result, Eq. (42), from which
follows the quantization condition Eq. (18).
We close our derivation by returning to an issue raised in

the introduction to this section, namely the possibility of
poles in A, A0, and C∞. We argue that, while such poles can
be present, they cannot contribute to the finite-volume
spectrum, i.e. they do not lead to poles in CL. Only solutions
to the quantization condition (18) lead to poles in CL.
The intuitive argument for this result is that A, A0, and

C∞ are infinite-volume quantities. While they are non-
standard, being defined with the fPV prescription and
involving the decoration described above, they have no
dependence on L. Thus, if they did lead to poles in CL, this
would imply states in the finite-volume spectrum whose
energies were independent of L [up to corrections of the
form expð−mLÞ]. The only plausible state with this
property is a single particle, but this is excluded by our
choice of energy range (m < E( < 5m). Three-particle
bound states will have finite-volume corrections that are
exponentially suppressed by expð−γLÞ, with γ ≪ m being
the binding momentum, but these should be captured by
our analysis, just as is the case for two-particle bound states
[23]. Finally, above-threshold scattering states should have
energies with power-law dependence on L. This is true in
the two-particle case, and we expect it to continue to hold
for three particles. This is confirmed, for example, by the
analysis of three (and more) particles using nonrelativistic
quantum mechanics [27,28].
For the two-particle analysis this argument can be made

more rigorous, and it is informative to see how this works.
We have recalled the two-particle quantization condition in
Sec. IVA, and give here the form of the corresponding
two-particle finite-volume correlator:
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CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3
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The reason for using this notation is that it works also for
segments of diagrams involving B3s at the ends. Thus, for
example, a segment of the finite-volume correlator between
two B3s can be written

…B3fD
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The key point is that the same decoration operators appear
as in (242).
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volume correlator
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The latter three equations give the final forms of the end
caps and the infinite-volume correlator, now including all
factors of B3.
We can now sum the geometric series in Eq. (245) and

perform some simple algebraic manipulations to bring the
result to its final form,

CL ¼ C∞ þ A0 1

1þ F3Kdf;3
iF3A; ð250Þ

where

Kdf;3 ≡K½B2;ρ"
df;3 þ B½B2;ρ"

3 ð251Þ

is the full divergence-free three-to-three amplitude. Thus
we have obtained our claimed result, Eq. (42), from which
follows the quantization condition Eq. (18).
We close our derivation by returning to an issue raised in

the introduction to this section, namely the possibility of
poles in A, A0, and C∞. We argue that, while such poles can
be present, they cannot contribute to the finite-volume
spectrum, i.e. they do not lead to poles in CL. Only solutions
to the quantization condition (18) lead to poles in CL.
The intuitive argument for this result is that A, A0, and

C∞ are infinite-volume quantities. While they are non-
standard, being defined with the fPV prescription and
involving the decoration described above, they have no
dependence on L. Thus, if they did lead to poles in CL, this
would imply states in the finite-volume spectrum whose
energies were independent of L [up to corrections of the
form expð−mLÞ]. The only plausible state with this
property is a single particle, but this is excluded by our
choice of energy range (m < E( < 5m). Three-particle
bound states will have finite-volume corrections that are
exponentially suppressed by expð−γLÞ, with γ ≪ m being
the binding momentum, but these should be captured by
our analysis, just as is the case for two-particle bound states
[23]. Finally, above-threshold scattering states should have
energies with power-law dependence on L. This is true in
the two-particle case, and we expect it to continue to hold
for three particles. This is confirmed, for example, by the
analysis of three (and more) particles using nonrelativistic
quantum mechanics [27,28].
For the two-particle analysis this argument can be made

more rigorous, and it is informative to see how this works.
We have recalled the two-particle quantization condition in
Sec. IVA, and give here the form of the corresponding
two-particle finite-volume correlator:
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CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3

Infinite-volume 
quantities—cannot

contain finite-volume
poles

Thus QC3 is as stated earlier:

Simpler derivation in recent review:
[Hansen & SS, 1901.00483]

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0
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Understanding the result

�48

CL − C∞ = iA′�3 (F3 − F3𝒦df,3F3 + F3𝒦df,3F3𝒦df,3F3 − …) A3

Smooth, symmetric,
real infinite-volume

endcap
(details irrelevant)

Smooth, symmetric,
real infinite-volume

endcap 
(details irrelevant)

Smooth, symmetric,
real, infinite-volume amplitude:

quasi-local 3-particle 
interaction

All volume-dependence enters through F3
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Understanding the result

�48

CL − C∞ = iA′�3 (F3 − F3𝒦df,3F3 + F3𝒦df,3F3𝒦df,3F3 − …) A3

Smooth, symmetric,
real infinite-volume

endcap
(details irrelevant)

Smooth, symmetric,
real infinite-volume

endcap 
(details irrelevant)

Smooth, symmetric,
real, infinite-volume amplitude:

quasi-local 3-particle 
interaction

All volume-dependence enters through F3

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
=

1
2ωL3 [ F

3
− F𝒦2

1
1 + (F + G)𝒦2

F]
Another geometric series with alternating K2s and (F+G)s
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Role of F3

�49

• Always lies between symmetric, infinite-volume objects, e.g. 

F3 =
1

2ωL3 [ F
3

− F𝒦2
1

1 + (F + G)𝒦2
F]

𝒦df,3 F3 𝒦df,3 =
1

2ωL3 {

]+

−

+… }

+ [

F/3 F F

F F F

F FG

𝒦2

𝒦2 𝒦2

𝒦2 𝒦2

• Sums up effects of 2→2 scattering with potentially on shell cuts between
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Phew!

�50



/68S. Sharpe, “Resonances from LQCD”, Lecture 3, 7/11/2019,  Peking U. Summer School

Phew!

�50

Deriva
tion is c

omplicat
ed, but final re

sult is
 fair

ly si
mple and intuitive

!
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An old restriction & a new solution

�51

• Original derivation of [HS14] requires that K2 be nonsingular, because 
singularities lead to additional (uncontrolled) finite-volume effects

• This rules out two-particle bound states (dimers) & resonances

• Physical K2 does not have dimer poles, but our modified version does

• Major restriction on the application of the formalism, since most resonances 
with 3-particle decays have two-particle subchannel resonances, e.g.

•  a2(1320) → ρπ → 3π, N(1440) → Δπ → Nππ, Zc(3900) → D̄D* → D̄Dπ
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An old restriction & a new solution

�51

• Original derivation of [HS14] requires that K2 be nonsingular, because 
singularities lead to additional (uncontrolled) finite-volume effects

• This rules out two-particle bound states (dimers) & resonances

• Physical K2 does not have dimer poles, but our modified version does

• Major restriction on the application of the formalism, since most resonances 
with 3-particle decays have two-particle subchannel resonances, e.g.

•  

• First solution: extend formalism by taking account of such singularities explicitly 
[Briceño, Hansen & SS, 2018]

• Complicated, and yet to be implemented

a2(1320) → ρπ → 3π, N(1440) → Δπ → Nππ, Zc(3900) → D̄D* → D̄Dπ
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An old restriction & a new solution

�51

• Original derivation of [HS14] requires that K2 be nonsingular, because 
singularities lead to additional (uncontrolled) finite-volume effects

• This rules out two-particle bound states (dimers) & resonances

• Physical K2 does not have dimer poles, but our modified version does

• Major restriction on the application of the formalism, since most resonances 
with 3-particle decays have two-particle subchannel resonances, e.g.

•  

• First solution: extend formalism by taking account of such singularities explicitly 
[Briceño, Hansen & SS, 2018]

• Complicated, and yet to be implemented

• New solution: modify PV prescription so that modified K2 entering QC3 does 
not have singularities [Blanton, Briceño, Hansen, Romero-López & SS, in progress]

• Simple to implement; will show first results in final lecture

a2(1320) → ρπ → 3π, N(1440) → Δπ → Nππ, Zc(3900) → D̄D* → D̄Dπ
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Infinite volume relation 
between Kdf,3 & M3

�52

[HS15]
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The issue
• Three particle quantization condition depends on Kdf,3 rather than the three 

particle scattering amplitude M3

• Kdf,3 is an infinite-volume quasi-local 3-particle amplitude, but is unphysical 

• Has a very complicated, unwieldy definition

• Depends on the cut-off function H 

• It was forced on us by the analysis

• To complete the formalism we must relate Kdf,3 to M3

�53
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The method

• Define a “finite volume scattering amplitude” ML,3 which goes over to M3 in 
an (appropriately taken) L→∞ limit

• Relate ML,3 to Kdf,3 at finite volume—which turns out to require only a small 
generalization of the methods used to derive the quantization condition

• Take L→∞, obtaining nested integral equations

�54
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Modifying CL to obtain ML,3

�55

CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3
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Modifying CL to obtain ML,3

�56

Step 1:  “amputate”
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Modifying CL to obtain ML,3
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Step 1:  “amputate”
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Modifying CL to obtain ML,3

�57

Step 2:  Drop disconnected diagrams
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Modifying CL to obtain ML,3
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Step 2:  Drop disconnected diagrams
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Modifying CL to obtain ML,3

�58

Step 3:  Symmetrize
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Step 3:  Symmetrize

Modifying CL to obtain ML,3
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Modifying CL to obtain ML,3

Allows one to obtain ML,3 from expression from CL
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ML,3 in terms of Kdf,3

ℳL,3 = 𝒟L+𝒮 [ℒL𝒦df,3
1

1 + F3𝒦df,3
ℒ†

L]CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3 ⇒
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ML,3 in terms of Kdf,3

ℳL,3 = 𝒟L+𝒮 [ℒL𝒦df,3
1

1 + F3𝒦df,3
ℒ†

L]
𝒟L = − 𝒮 [ 1

1+ℳL,2G
ℳL,2GℳL,2(2ωL3)]

CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3 ⇒
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ML,3 in terms of Kdf,3

ℳL,3 = 𝒟L+𝒮 [ℒL𝒦df,3
1

1 + F3𝒦df,3
ℒ†

L]
𝒟L = − 𝒮 [ 1

1+ℳL,2G
ℳL,2GℳL,2(2ωL3)] ℒL =

1
3

−
1

1+ℳL,2G
ℳL,2F

CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3 ⇒
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ML,3 in terms of Kdf,3

ℳL,3 = 𝒟L+𝒮 [ℒL𝒦df,3
1

1 + F3𝒦df,3
ℒ†

L]
𝒟L = − 𝒮 [ 1

1+ℳL,2G
ℳL,2GℳL,2(2ωL3)] ℒL =

1
3

−
1

1+ℳL,2G
ℳL,2F

CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3 ⇒

ℳL,2 = 𝒦2
1

1 + F 𝒦2

Finite-volume 2-particle
scattering amplitude:

appears in 2-particle CL
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ML,3 in terms of Kdf,3

�61

• Key point: the same (ugly) Kdf,3 appears in ML,3 as in CL 

• Indeed, can use ML,3 to derive QC3

ℳL,3 = 𝒟L+𝒮 [ℒL𝒦df,3
1

1 + F3𝒦df,3
ℒ†

L]
𝒟L = − 𝒮 [ 1

1+ℳL,2G
ℳL,2GℳL,2(2ωL3)] ℒL =

1
3

−
1

1+ℳL,2G
ℳL,2F

CL = C∞ + iA′�3
1

1 + F3𝒦df,3
F3A3 ⇒

ℳL,2 = 𝒦2
1

1 + F 𝒦2
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Final step: taking L→∞ 

�62

• All equations involve matrices with indices k, l, m

Spectator momentum
k =2 n π / L 

Summed over n

l, m already infinite-
volume variables

ℳL,3 = 𝒟L+𝒮 [ℒL𝒦df,3
1

1 + F3𝒦df,3
ℒ†

L]
𝒟L = − 𝒮 [ 1

1+ℳL,2G
ℳL,2GℳL,2(2ωL3)] ℒL =

1
3

−
1

1+ℳL,2G
ℳL,2F

ℳL,2 = 𝒦2
1

1 + F 𝒦2

F3 =
F

2ωL3 [ 1
3

−
1

1+ℳL,2G
ℳL,2F]
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Final step: taking L→∞ 

�62

ℳL,3 = 𝒟L+𝒮 [ℒL𝒦df,3
1

1 + F3𝒦df,3
ℒ†

L]
𝒟L = − 𝒮 [ 1

1+ℳL,2G
ℳL,2GℳL,2(2ωL3)] ℒL =

1
3

−
1

1+ℳL,2G
ℳL,2F

ℳL,2 = 𝒦2
1

1 + F 𝒦2

F3 =
F

2ωL3 [ 1
3

−
1

1+ℳL,2G
ℳL,2F]

• L→∞: Sums over momenta → integrals (+ now irrelevant 1/L terms!)

• Must introduce pole prescription for sums to avoid singularities

ℳ3 = lim
L→∞ iϵ

ℳL,3
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Final result: nested integral equations

�63

• Quantities are still matrices in l,m space

• Presence of cut-off function means that integrals have finite range

• D(u,u) sums geometric series which gives physical divergences in M3

(1) Obtain L→∞ limit of DL

+ + …

G1 G1 G1M2

N.B. iε prescription

Gpℓ′�m′�;kℓm = ( k*
q*p )

ℓ′ �
4πYℓ′ �m′�( ̂k*)H( ⃗p )H( ⃗k )Y*ℓm( ̂p*)

(P − k − p)2 − m2 + iϵ ( p*
q*k )

ℓ

𝒟(u,u)( ⃗p , ⃗k ) = − ℳ2( ⃗p )G∞( ⃗p , ⃗k )ℳ2( ⃗k ) − ∫s

1
2ωs

ℳ2( ⃗p )G∞( ⃗p , ⃗x )𝒟(u,u)( ⃗s, ⃗k )

𝒟 = 𝒮{𝒟(u,u)}
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Final result: nested integral equations

�64

• ρ(k) is a phase space factor (analytically continued when below threshold) 

• Requires D(u,u) and M2

• Corresponds to summing the core geometric series, i.e.

(2) Sum geometric series involving Kdf,3

𝒦df,3
1

1 + F3𝒦df,3
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Final result: nested integral equations
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• Sums geometric series on “outside” of Kdf,3’s

(3) Add in effects of external 2→2 scattering:

M3(~p,~k)� S
n
D(u,u)(~p,~k)

o

| {z }
Mdf,3

= �S
⇢Z

s

Z

r
L(u,u)(~p,~s)T (~s,~r)R(u,u)(~r,~k)

�

lim
L!1

( )

• Can also formally invert and determine Kdf,3 given M3 and M2

• This is how one demonstrates the symmetry properties of Kdf,3
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Comments on “K to M” relation
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• Integral equations are similar to those arising when solving Dyson-Schwinger eqs

• Easy to solve for E* ≾ 3m, where no pole prescription is needed

• Result provides a parametrization of M3 in terms of a real K matrix

• May be useful for amplitude analyses of experimental data (e.g. from JLab)

• Very recently we checked explicitly that the parametrization leads to a unitary 
M3, as expected [Briceño, Hansen, SS & Szczepaniak, 2019]

• Also determined the relation between Kdf,3 and the corresponding quantity 
(“B matrix”) appearing in another parametrization of M3 used by JPAC (Joint 
Physics Analysis Center @ JLab/Indiana) [Jackura, …,SS, et al., 2019]
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Summary of Lecture 3

�67



/68S. Sharpe, “Resonances from LQCD”, Lecture 3, 7/11/2019,  Peking U. Summer School

Summary
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det [F−1
3 + 𝒦df,3] = 0

• QC3 for identical scalars with G-parity-like Z2 symmetry [HS14,HS15]

• Subchannel resonances allowed by modifying PV prescription [BBHRS, in progress]

E0(L)

E1(L)

E2(L)

Kdf,3 M3
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Thank you! 
Questions?

�69


