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Outline
Lecture 1

• Motivation/Background/Overview

• Deriving the two-particle quantization condition (QC2)

Lecture 2

• Applying the QC2, in brief

• Deriving the three-particle quantization condition for identical scalars (QC3)

Lecture 3

• Status of three-particle formalism

• Applications of QC3 

• Outlook
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Main references for this lecture
[Full list of references at end of lecture 3]
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• Blanton & SS, 2105.12904, PRD21 (Formalism for 2+1 systems)

• Blanton, Romero-López & SS, 2111.12734, JHEP22, “Implementing the three-particle quantization 
condition for  and related systems”

• Blanton, Hanlon, Hörz, Morningstar, Romero-López & SS, 2106.05590, JHEP 21, “  
interactions beyond leading order from lattice QCD”

• Draper, Hanlon, Hörz, Morningstar, Romero-López & SS, 2302.13587, JHEP 23, “Interactions of ,  
and  systems at maximal isospin from lattice QCD” 

• Blanton, Romero-López & SS, 1909.02973, PRL, “I=3 three-pion scattering amplitude from lattice QCD” 
(includes LO ChPT calculation of )

• Baeza-Ballesteros, Bijnens, Husek, Romero-López, SRS & Sjö, 2303.13206, JHEP, “The isospin-3 three-
particle K-matrix at NLO in ChPT”

π+π+K+

3π+ & 3K+

πK ππK
KKπ

𝒦df,3



/39S. Sharpe, “Multiparticle Scattering”, Lecture 3, 7/19/2023,  Bad Honnef Summer School

Outline for Lecture 3
• Status of three-particle formalism

• Focus on studies of resonances (rather than electroweak decays)

• Applications of the three-particle formalism

• Overview

•  and  amplitudes using LQCD

• NLO ChPT results for  for 

• Summary and Outlook 

π+π+K+ K+K+π+

𝒦df,3 3π+ → 3π+
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Status of three-particle 
formalism (focusing on 

resonances, rather than 
electroweak decays)
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Status: mid 2023
• 3 identical spinless particles [Hansen & SRS 14,15 (RFT); Hammer, Pang, Rusetsky 17 

(NREFT); Mai, Döring 17 (FVU)]

• Applications:  as well as  theory

• Mixing of two- and three-particle channels for identical spinless particles [Briceño, 
Hansen, SRS 17]

• Applications: Step on the way to , etc.

• 3 degenerate but distinguishable spinless particles, e.g  with isospin 0, 1, 2, 3 
[Hansen, Romero-López, SRS 20];  case in FVU approach [Mai et al., 21]

• Applications: 

3π+, 3K+, 3D+, … ϕ4

N(1440) → Nπ, Nππ

3π
I = 1

Resonance Ifififi JP Irrep (P = 0) 3fi orbit
Ê(782) 0 1≠ T ≠

1 4
h1(1170) 0 1+ T +

1 2
Ê3(1670) 0 3≠ A≠

2 4
fi(1300) 1 0≠ A≠

1 1
a1(1260) 1 1+ T +

1 2
fi1(1400) 1 1≠ T ≠

1 4
fi2(1670) 1 2≠ E≠ and T ≠

2 2
a2(1320) 1 2+ E+ and T +

2 3
a4(1970) 1 4+ A+

1 16

Table 4: Lowest lying resonances with negative G-parity, and which couple to three
pions, in the di�erent isospin and JP channels. The fourth column shows the cubic group
irreps that are subduced from the rotation group irreps, assuming that the resonance is

at rest (P = 0). The final column gives the lowest three-pion momentum orbit that
contains the corresponding cubic group irrep, again assuming P = 0.

as in the previous section, this is an infinite-volume exercise. When using the resulting
forms for K[I]

df,3 in the quantization condition, one must covert the forms given here to the
k¸m index set introduced above. This is a straightforward exercise that we do not discuss
further here.

By analogy with the two-particle case, we expect that a three-particle resonance can
be represented by a pole in the part of K[I]

df,3 with the appropriate quantum numbers [20],
i.e.

K[I,|‰Í]
df,3 = K

X

df,3
cX

s ≠ M2
X

+ O
#
(s ≠ M2

X)0$
, (3.31)

where the superscript |‰Í on the left-hand side emphasizes that we work in the basis of
definite symmetry states for Ifififi = 1 (see also appendix C). On the right-hand side,X
labels the quantum numbers, MX is close to the resonance mass (at least in the case of
narrow resonances), the real constant cX is related to the width of the resonance, and
K

X

df,3 carries the overall quantum numbers. The precise relationship of cX and MX to
the resonance parameters in M3 is not known analytically, since determining M3 requires
solving the non-trivial integral equations discussed above.

We stress that, once a form for K
X

df,3 is known, only one sign of cX will lead to a
resonance pole with the physical sign for the residue. The correct choice can be identified by
requiring that the finite-volume correlator CL has a single pole with the correct residue [20,
22]. In the limit cX æ 0, one recovers an additional decoupled state in the finite-volume
spectrum at energy E = MX (assuming P = 0), corresponding to a stable would-be
resonance. The form in eq. (3.31) was proposed in ref. [20] for the case of identical scalars
(which is equivalent to the Ifififi = 3 channel here) for which K

X

df,3 is a constant. As noted
above, however, there are no resonances in nature in the Ifififi = 3 or Ifififi = 2 channels, so
the example given in ref. [20] is for illustrative purposes only. In the following we determine

– 28 –

Decays

π+π0π−

ρπ → 3π
3π, 5π

ρπ → 3π
3π, KK̄π
ηπ, 3π?
3π, KK̄π
3π, KK̄, 5π, ηπ
3π, KK̄, 5π, ηπ
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Status: mid 2023 (continued)
• 3 nondegenerate spinless particles [Blanton, SRS 20]

• Applications:  

• 2 identical +1 different spinless particles [Blanton, SRS 21]

• Applications: 

• 3 identical spin-½ particles [Draper, Hansen, Romero-López, SRS 23]

• Applications: 

D+
s D0π−

π+π+K+, K+K+π+

3n, 3p, 3Λ



/39S. Sharpe, “Multiparticle Scattering”, Lecture 3, 7/19/2023,  Bad Honnef Summer School 8

Form of generalized results
• Result for spinless particles presented in Lecture 2:

det[1 + F3𝒦df,3] = 0

19

Using similar expansions for eA0(u), eA(u), and �C3,1, we find that the factors of L
3 in B2,L, eIF , and � eG either cancel

or can be used to convert sums into integrals, again assuming a PV prescription such that K2 is smooth. Thus these
three kernels are also infinite-volume quantities.

5. Summary

We close this subsection by taking stock of what has been achieved. We started from the closed-form expression
for the three-particle correlator, Eq. (24), which is composed of infinite-volume amplitudes, but has the disadvantage
that these amplitudes are o↵ shell. After some technical e↵ort, which involved generalizing results from HS1 so that
they applied to TOPT amplitudes, we obtained two simple equations, (52) and (57), that allow the correlator to be
expressed in terms of on-shell kernels, as shown explicitly in Eq. (59). In a final step, we determined the volume
(in)dependence of these kernels. These steps lead to the following result for the correlation function,

C3,L(E,P) = eC3,1(E,P) + eA0(u)
i( eF + eG)

1

1 � i

⇣
2!L3K2 + eK(u,u)

3,df

⌘
i( eF + eG)

eA(u)
, (75)

where contributions with no L dependence are collected into21

eC3,1 ⌘ eC(0)
3,1 + � eC3,1 , (76)

and we have introduced the diagonal matrix
⇥
2!L

3
⇤
k`m;p`0m0 = �kp�``0�mm0 2!kL

3
. (77)

All L dependence is now explicit, entering through the quantities eF , eG, and 2!L
3.

Our result can be compared to Eq. (250) of HS1, rewritten to match our notation:

C3,L = C3,1 + A
0
iF3

1

1 � iKdf,3iF3
A , (78)

F3 = eF
"

1

3
�

1

1/(2!L3K2) + eF + eG
eF
#

. (79)

This shows the trade-o↵ that we have made: by using an asymmetric form of the three-particle K matrix, our final
expression is simpler, containing only the combination eF + eG and no factors of 1/3. Another gain is that we have
explicit expressions for all quantities in terms of the underlying TOPT amplitudes, in contrast to HS1, where the
definitions of the kernels are constructive and not explicit.

D. New form of the quantization condition

To make contact with the FV energy spectrum of the theory, we exploit the fact that C3,L(E,P) has a simple pole

whenever E lies in the FV spectrum. Since eC3,1, eA0(u)
, eA(u) are all smooth infinite-volume quantities, any singularity

in C3,L must arise from the quantity lying between eA0(u) and eA(u) in Eq. (75). This quantity is a matrix in the {k`m}

index space, and must have a diverging eigenvalue for C3,L to have a pole. Equivalently, the determinant of its inverse
should vanish,

det
h

eF + eG
i�1

det
h
1 � i

⇣
2!L

3
K2 + eK(u,u)

3,df

⌘
i( eF + eG)

i
= 0 . (80)

The energies where det[ eF + eG]�1 = 0 are the free three-particle energies where E = !k + !a + !bka for some choice

of FV momenta k,a 2
2⇡
L Z3. For general K2 and eK(u,u)

3,df , we expect that the product of the two determinants will not

21 Our notation (with the subscript 1) is slightly misleading because eC3,1 is not the complete infinite-volume limit of C3,L, since the
other term on the right-hand side of Eq. (75), which contains all the volume dependence, has a nonvanishing infinite-volume limit.
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Form of generalized results
• Result for spinless particles presented in Lecture 2:

det[1 + F3𝒦df,3] = 0
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or can be used to convert sums into integrals, again assuming a PV prescription such that K2 is smooth. Thus these
three kernels are also infinite-volume quantities.

5. Summary

We close this subsection by taking stock of what has been achieved. We started from the closed-form expression
for the three-particle correlator, Eq. (24), which is composed of infinite-volume amplitudes, but has the disadvantage
that these amplitudes are o↵ shell. After some technical e↵ort, which involved generalizing results from HS1 so that
they applied to TOPT amplitudes, we obtained two simple equations, (52) and (57), that allow the correlator to be
expressed in terms of on-shell kernels, as shown explicitly in Eq. (59). In a final step, we determined the volume
(in)dependence of these kernels. These steps lead to the following result for the correlation function,
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2!L

3
⇤
k`m;p`0m0 = �kp�``0�mm0 2!kL

3
. (77)

All L dependence is now explicit, entering through the quantities eF , eG, and 2!L
3.

Our result can be compared to Eq. (250) of HS1, rewritten to match our notation:

C3,L = C3,1 + A
0
iF3

1

1 � iKdf,3iF3
A , (78)

F3 = eF
"

1

3
�

1

1/(2!L3K2) + eF + eG
eF
#

. (79)

This shows the trade-o↵ that we have made: by using an asymmetric form of the three-particle K matrix, our final
expression is simpler, containing only the combination eF + eG and no factors of 1/3. Another gain is that we have
explicit expressions for all quantities in terms of the underlying TOPT amplitudes, in contrast to HS1, where the
definitions of the kernels are constructive and not explicit.

D. New form of the quantization condition

To make contact with the FV energy spectrum of the theory, we exploit the fact that C3,L(E,P) has a simple pole

whenever E lies in the FV spectrum. Since eC3,1, eA0(u)
, eA(u) are all smooth infinite-volume quantities, any singularity

in C3,L must arise from the quantity lying between eA0(u) and eA(u) in Eq. (75). This quantity is a matrix in the {k`m}

index space, and must have a diverging eigenvalue for C3,L to have a pole. Equivalently, the determinant of its inverse
should vanish,

det
h

eF + eG
i�1

det
h
1 � i

⇣
2!L

3
K2 + eK(u,u)

3,df

⌘
i( eF + eG)

i
= 0 . (80)

The energies where det[ eF + eG]�1 = 0 are the free three-particle energies where E = !k + !a + !bka for some choice

of FV momenta k,a 2
2⇡
L Z3. For general K2 and eK(u,u)

3,df , we expect that the product of the two determinants will not

21 Our notation (with the subscript 1) is slightly misleading because eC3,1 is not the complete infinite-volume limit of C3,L, since the
other term on the right-hand side of Eq. (75), which contains all the volume dependence, has a nonvanishing infinite-volume limit.

• Form for all the generalizations

det[1 + ̂F 3
̂𝒦 df,3] = 0

̂F 3 = ̂F [ 1
3

−
1

1/(2ωL3𝒦̂2 + ̂F + Ĝ
̂F]
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What is different?
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What is different?

• “Hats” indicate the presence of additional matrix indices (beyond )

• Additional kinematic differences (e.g. for nondegenerate particles) are buried in the 
definitions of the symbols

• Illustrate for example of “2+1” system: 

• Indices enlarge to , with  labeling the spectator flavor

• Spectator is  (  scattering) or  (  scattering)

• All partial waves contribute to  scattering, while only even waves contribute to 
 scattering

kℓm

π+π+K+

kℓmi i

π+ i = 1 ⇒ π+K+ K+ i = 2 ⇒ π+π+

π+K+

π+π+

det[1 + ̂F 3
̂𝒦 df,3] = 0

̂F 3 = ̂F [ 1
3

−
1

1/(2ωL3𝒦̂2 + ̂F + Ĝ
̂F]
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Details on matrices:  ̂F

10

J
H
E
P
0
2
(
2
0
2
2
)
0
9
8

including both s- and p-wave two-particle interactions; and (iii) how to project the quanti-
zation condition onto irreducible representations (irreps) of the appropriate finite-volume
symmetry group. We relegate some technical details to appendix A.

Throughout this section we denote the flavor of the two identical particles as 1, and
their mass as m1, while the flavor of the solitary particle is 2 and its mass m2. The total
energy of the three-particle system at rest, assuming no interactions, would then be

M = 2m1 +m2 . (2.1)

We assume that the finite volume is a cubic box of length L, and that the fields satisfy pe-
riodic boundary conditions. Thus finite-volume momenta are drawn from the finite-volume
set, i.e., k = (2π/L)nk with nk a vector of integers. We are interested in determining the
allowed values of the total energy E for a 2+1 system with given total spatial momentum
P (itself a member of the finite-volume set), and box size L. A useful variable in the
following will be the center-of-momentum frame (CMF) energy, E∗ =

√
E2 − P 2.

The quantization condition applies (and is derived) in the continuum limit, so no lattice
spacing, a, is present. This means that, strictly speaking, to apply the formalism to the
results of lattice QCD simulations, one must send a → 0.

2.1 Summary of formalism and definitions for 2 + 1 systems

Here we recapitulate the formalism for 2 + 1 systems derived in ref. [24]. As noted in the
introduction, we consider here only the implementation of the quantization condition, i.e.,
the formula relating the finite-volume spectrum to Kdf,3. Furthermore, we consider only
the so-called symmetric form of the quantization condition, i.e., that in which Kdf,3 has all
the symmetries of M3. This is the simplest to implement, as the symmetric form of Kdf,3
involves the smallest number of parameters.

The quantization condition is3

det
[
F̂−1
3 (E,P , L) + K̂df,3(E∗)

]
= 0 , (2.2)

i.e., there are finite-volume levels at the energies E for which the determinant vanishes, for
the given values of the box size L and total momentum P . The K matrix K̂df,3 is an infinite-
volume Lorentz-invariant quantity that does not depend on E, P , and L separately, but
only on the CMF energy E∗. We discuss it separately in section 2.3. F̂3 is an intrinsically
finite-volume object that will be defined below. Both quantities are matrices with multiple
indices, over which the determinant runs. The indices are k"mi, and we explain these
in turn. The first three are a shorthand for k"m, and these are the standard indices in
all approaches to the three-particle quantization condition [3, 7, 8]. They represent the
variables of an on-shell, finite-volume three-particle amplitude. One of the particles is
chosen as the “spectator,” with momentum k drawn from the finite-volume set, while the
remaining pair are boosted to their CMF, where the amplitude is decomposed into spherical
harmonics, leading to the "m indices. Further details of this decomposition will be given in

3This is valid up to exponentially suppressed corrections, i.e., those that scale with L as exp(−miL).
We will assume throughout that such corrections can be neglected.

– 4 –

J
H
E
P
0
2
(
2
0
2
2
)
0
9
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section 2.3. The final index i runs over the two choices of flavor of the spectator particle,
i = 1 and i = 2. We follow ref. [24] and place carets (“hats”) on quantities to indicate that
they are matrices in flavor space as well as the usual k!m space.

The matrix F̂3 is given by

F̂3 =
F̂

3 − F̂
1

K̂−1
2,L + F̂ + Ĝ

F̂ , (2.3)

and is composed of the kinematical matrices F̂ and Ĝ, and the matrix K̂2,L that contains
the two-particle K matrices. The flavor-index structure of these matrices is

F̂ = diag
(
F̃ (1), F̃ (2)

)
, (2.4)

Ĝ =
(

G̃(11) √
2PLG̃(12)

√
2G̃(21)PL 0

)

, (2.5)

K̂2,L = diag
(
K(1)

2,L,
1
2K

(2)
2,L
)
. (2.6)

Here F̃ (i), G̃(ij), and K2,L are matrices with only k!m indices, where the superscript i, j

indicates the flavor of the spectator(s). The matrix PL is a parity factor and is given by

[PL]p′!′m′;p!m = δp′pδ!′!δm′m(−1)! , (2.7)

and thus multiplies odd partial waves by −1. The first kinematic matrix, commonly referred
to as a Lüscher zeta function, is given by

[
F̃ (i)

]

p′!′m′;p!m
= δp′p

H(i)(p)
2ω(i)

p L3

[
1
L3

UV∑

a

−PV
∫ UV d3a

(2π)3

]

×



Y!′m′(a∗(i,j,p))
(
q∗(i)
2,p
)!′

1
4ω(j)

a ω(k)
b

(
E−ω(i)

p −ω(j)
a −ω(k)

b

)
Y!m(a∗(i,j,p))
(
q∗(i)
2,p
)!



 . (2.8)

The flavor labels are chosen as follows: if i = 1, then j = 1 and k = 2, while if i = 2, then
j = k = 1. The sum over a runs over the finite-volume set, and both sum and integral must
be regularized in the ultraviolet (UV) in the same way, although the precise choice is not
important. We describe our choice of regulator, and give further details of the evaluation
of F̃ (i), in appendix A. On-shell energies are exemplified by

ω(j)
p =

√
p2 +m2

j , (2.9)

and the third momentum is b = P − a − p. The Y!m are harmonic polynomials defined
with normalization such that

Y!m(a) =
√
4πY!m(â)|a|! . (2.10)

We use real spherical harmonics, whose form is given in appendix A. The quantity q∗(i)
2,p

is the magnitude of the relative momenta of the pair in their CMF, assuming all three
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̂F = (F̃(1) 0
0 F̃(2))

�
π+(p)

π+ π+

K+
K+

π+(p)

�
π+

π+ π+

K+(p)K+(p)

π+

J
H
E
P
0
2
(
2
0
2
2
)
0
9
8
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 . (2.8)

The flavor labels are chosen as follows: if i = 1, then j = 1 and k = 2, while if i = 2, then
j = k = 1. The sum over a runs over the finite-volume set, and both sum and integral must
be regularized in the ultraviolet (UV) in the same way, although the precise choice is not
important. We describe our choice of regulator, and give further details of the evaluation
of F̃ (i), in appendix A. On-shell energies are exemplified by

ω(j)
p =

√
p2 +m2

j , (2.9)

and the third momentum is b = P − a − p. The Y!m are harmonic polynomials defined
with normalization such that

Y!m(a) =
√
4πY!m(â)|a|! . (2.10)

We use real spherical harmonics, whose form is given in appendix A. The quantity q∗(i)
2,p

is the magnitude of the relative momenta of the pair in their CMF, assuming all three
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•  is 
transition/cutoff 
function

• Only even  
contribute if 

H(i)(p)

ℓ
i = 2
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Details on matrices: ̂G
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including both s- and p-wave two-particle interactions; and (iii) how to project the quanti-
zation condition onto irreducible representations (irreps) of the appropriate finite-volume
symmetry group. We relegate some technical details to appendix A.

Throughout this section we denote the flavor of the two identical particles as 1, and
their mass as m1, while the flavor of the solitary particle is 2 and its mass m2. The total
energy of the three-particle system at rest, assuming no interactions, would then be

M = 2m1 +m2 . (2.1)

We assume that the finite volume is a cubic box of length L, and that the fields satisfy pe-
riodic boundary conditions. Thus finite-volume momenta are drawn from the finite-volume
set, i.e., k = (2π/L)nk with nk a vector of integers. We are interested in determining the
allowed values of the total energy E for a 2+1 system with given total spatial momentum
P (itself a member of the finite-volume set), and box size L. A useful variable in the
following will be the center-of-momentum frame (CMF) energy, E∗ =

√
E2 − P 2.

The quantization condition applies (and is derived) in the continuum limit, so no lattice
spacing, a, is present. This means that, strictly speaking, to apply the formalism to the
results of lattice QCD simulations, one must send a → 0.

2.1 Summary of formalism and definitions for 2 + 1 systems

Here we recapitulate the formalism for 2 + 1 systems derived in ref. [24]. As noted in the
introduction, we consider here only the implementation of the quantization condition, i.e.,
the formula relating the finite-volume spectrum to Kdf,3. Furthermore, we consider only
the so-called symmetric form of the quantization condition, i.e., that in which Kdf,3 has all
the symmetries of M3. This is the simplest to implement, as the symmetric form of Kdf,3
involves the smallest number of parameters.

The quantization condition is3

det
[
F̂−1
3 (E,P , L) + K̂df,3(E∗)

]
= 0 , (2.2)

i.e., there are finite-volume levels at the energies E for which the determinant vanishes, for
the given values of the box size L and total momentum P . The K matrix K̂df,3 is an infinite-
volume Lorentz-invariant quantity that does not depend on E, P , and L separately, but
only on the CMF energy E∗. We discuss it separately in section 2.3. F̂3 is an intrinsically
finite-volume object that will be defined below. Both quantities are matrices with multiple
indices, over which the determinant runs. The indices are k"mi, and we explain these
in turn. The first three are a shorthand for k"m, and these are the standard indices in
all approaches to the three-particle quantization condition [3, 7, 8]. They represent the
variables of an on-shell, finite-volume three-particle amplitude. One of the particles is
chosen as the “spectator,” with momentum k drawn from the finite-volume set, while the
remaining pair are boosted to their CMF, where the amplitude is decomposed into spherical
harmonics, leading to the "m indices. Further details of this decomposition will be given in

3This is valid up to exponentially suppressed corrections, i.e., those that scale with L as exp(−miL).
We will assume throughout that such corrections can be neglected.
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section 2.3. The final index i runs over the two choices of flavor of the spectator particle,
i = 1 and i = 2. We follow ref. [24] and place carets (“hats”) on quantities to indicate that
they are matrices in flavor space as well as the usual k!m space.

The matrix F̂3 is given by

F̂3 =
F̂

3 − F̂
1

K̂−1
2,L + F̂ + Ĝ

F̂ , (2.3)

and is composed of the kinematical matrices F̂ and Ĝ, and the matrix K̂2,L that contains
the two-particle K matrices. The flavor-index structure of these matrices is

F̂ = diag
(
F̃ (1), F̃ (2)

)
, (2.4)

Ĝ =
(

G̃(11) √
2PLG̃(12)

√
2G̃(21)PL 0

)

, (2.5)

K̂2,L = diag
(
K(1)

2,L,
1
2K

(2)
2,L
)
. (2.6)

Here F̃ (i), G̃(ij), and K2,L are matrices with only k!m indices, where the superscript i, j

indicates the flavor of the spectator(s). The matrix PL is a parity factor and is given by

[PL]p′!′m′;p!m = δp′pδ!′!δm′m(−1)! , (2.7)

and thus multiplies odd partial waves by −1. The first kinematic matrix, commonly referred
to as a Lüscher zeta function, is given by

[
F̃ (i)

]

p′!′m′;p!m
= δp′p

H(i)(p)
2ω(i)

p L3

[
1
L3

UV∑

a

−PV
∫ UV d3a

(2π)3

]

×



Y!′m′(a∗(i,j,p))
(
q∗(i)
2,p
)!′

1
4ω(j)

a ω(k)
b

(
E−ω(i)

p −ω(j)
a −ω(k)

b

)
Y!m(a∗(i,j,p))
(
q∗(i)
2,p
)!



 . (2.8)

The flavor labels are chosen as follows: if i = 1, then j = 1 and k = 2, while if i = 2, then
j = k = 1. The sum over a runs over the finite-volume set, and both sum and integral must
be regularized in the ultraviolet (UV) in the same way, although the precise choice is not
important. We describe our choice of regulator, and give further details of the evaluation
of F̃ (i), in appendix A. On-shell energies are exemplified by

ω(j)
p =

√
p2 +m2

j , (2.9)

and the third momentum is b = P − a − p. The Y!m are harmonic polynomials defined
with normalization such that

Y!m(a) =
√
4πY!m(â)|a|! . (2.10)

We use real spherical harmonics, whose form is given in appendix A. The quantity q∗(i)
2,p

is the magnitude of the relative momenta of the pair in their CMF, assuming all three
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i = 1 and i = 2. We follow ref. [24] and place carets (“hats”) on quantities to indicate that
they are matrices in flavor space as well as the usual k!m space.

The matrix F̂3 is given by

F̂3 =
F̂

3 − F̂
1

K̂−1
2,L + F̂ + Ĝ

F̂ , (2.3)

and is composed of the kinematical matrices F̂ and Ĝ, and the matrix K̂2,L that contains
the two-particle K matrices. The flavor-index structure of these matrices is

F̂ = diag
(
F̃ (1), F̃ (2)

)
, (2.4)

Ĝ =
(

G̃(11) √
2PLG̃(12)

√
2G̃(21)PL 0

)

, (2.5)

K̂2,L = diag
(
K(1)

2,L,
1
2K

(2)
2,L
)
. (2.6)

Here F̃ (i), G̃(ij), and K2,L are matrices with only k!m indices, where the superscript i, j

indicates the flavor of the spectator(s). The matrix PL is a parity factor and is given by

[PL]p′!′m′;p!m = δp′pδ!′!δm′m(−1)! , (2.7)

and thus multiplies odd partial waves by −1. The first kinematic matrix, commonly referred
to as a Lüscher zeta function, is given by

[
F̃ (i)

]

p′!′m′;p!m
= δp′p

H(i)(p)
2ω(i)

p L3

[
1
L3

UV∑

a

−PV
∫ UV d3a

(2π)3

]

×



Y!′m′(a∗(i,j,p))
(
q∗(i)
2,p
)!′

1
4ω(j)

a ω(k)
b

(
E−ω(i)

p −ω(j)
a −ω(k)

b

)
Y!m(a∗(i,j,p))
(
q∗(i)
2,p
)!



 . (2.8)

The flavor labels are chosen as follows: if i = 1, then j = 1 and k = 2, while if i = 2, then
j = k = 1. The sum over a runs over the finite-volume set, and both sum and integral must
be regularized in the ultraviolet (UV) in the same way, although the precise choice is not
important. We describe our choice of regulator, and give further details of the evaluation
of F̃ (i), in appendix A. On-shell energies are exemplified by

ω(j)
p =

√
p2 +m2

j , (2.9)

and the third momentum is b = P − a − p. The Y!m are harmonic polynomials defined
with normalization such that

Y!m(a) =
√
4πY!m(â)|a|! . (2.10)

We use real spherical harmonics, whose form is given in appendix A. The quantity q∗(i)
2,p

is the magnitude of the relative momenta of the pair in their CMF, assuming all three
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particles are on shell. This depends on the total momentum P , the spectator momentum
p, and the flavor of the spectator, and is given by

(
q∗(i)
2,p
)2 =

λ(σi,m2
j ,m

2
k)

4σi
, σi ≡ (E − ω(i)

p )2 − (P − p)2 , (2.11)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is the standard triangle function. The
momentum a∗(i,j,p) is the spatial part of the four-momentum (ω(j)

a ,a) after a boost to the
CMF of the nonspectator pair, i.e., with boost velocity β(i)

p = −(P −p)/(E−ω(i)
p ). Finally,

H(i)(p) is a cutoff, or transition, function — see discussion in section 2.2.
The other kinematic function is
[
G̃(ij)

]

p!′m′;r!m
= 1

2ω(i)
p L3

Y!′m′(r∗(i,j,p))
(
q∗(i)
2,p
)!′

H(i)(p)H(j)(r)
b2ij − m2

k

Y!m(p∗(j,i,r))
(
q∗(j)
2,r
)!

1
2ω(j)

r L3
, (2.12)

where p∗(j,i,r) is defined analogously to r∗(i,j,p), with the roles of r and p (and the corre-
sponding flavors) interchanged, while the four-vector bij is

bij = (E − ω(i)
p − ω(j)

r ,P − p − r) , (2.13)

and, finally, k = 2 if i = j = 1, while k = 1 if {i, j} = {1, 2} or {2, 1}.
The final matrix is defined by [3, 9, 11]
[
K(i)

2,L
]

p!′m′;r!m
= δpr2ω(i)

r L3
[
K(i)

2 (r)
]

!′m′;!m
, (2.14)

[
K(i)

2 (r)−1
]

!′m′;!m
= δ!′!δm′m

ηi
8π

√
σi

{
q∗(i)
2,r cot δ(i)! (q∗(i)

2,r ) + |q∗(i)
2,r |[1 − H(i)(r)]

}
, (2.15)

where i is the flavor of the spectator, and the scattering occurs between the other two
particles, with δ(i)! the corresponding phase shift. If i = 1, all waves are present, and
the symmetry factor is ηi = 1. If i = 2, the scattering is between identical particles and
thus occurs only in even partial waves, and η2 = 1/2. The two-particle K matrices are
standard above threshold, but have cutoff dependence below threshold. In order to make
our definitions clear, we note that the effective-range expansions for the s- and p-wave
phase shifts are given in terms of scattering lengths and effective ranges by

q cot δ(i)0 (q) = − 1
a(i)0

+ r(i)0 q2

2 + . . . (2.16)

q3 cot δ(i)1 (q) = − 1
a(i)1

+ . . . . (2.17)

We stress, however, that other parametrizations are allowed, for instance one that incor-
porates the Adler zero in the s-wave channel of isospin-2 ππ scattering [28].

The dependence of K(i)
2 on the cutoff function H(i) in eq. (2.15) is an example of the

freedom we have in defining this quantity. Different choices of H(i) change K(i)
2 , F̃ (i), G̃(ij),

and K̂df,3, such that the energy levels are unchanged. In ref. [15] it was noted that, for
identical particles, there is a larger class of redefinitions of K2 that leave the solutions
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including both s- and p-wave two-particle interactions; and (iii) how to project the quanti-
zation condition onto irreducible representations (irreps) of the appropriate finite-volume
symmetry group. We relegate some technical details to appendix A.

Throughout this section we denote the flavor of the two identical particles as 1, and
their mass as m1, while the flavor of the solitary particle is 2 and its mass m2. The total
energy of the three-particle system at rest, assuming no interactions, would then be

M = 2m1 +m2 . (2.1)

We assume that the finite volume is a cubic box of length L, and that the fields satisfy pe-
riodic boundary conditions. Thus finite-volume momenta are drawn from the finite-volume
set, i.e., k = (2π/L)nk with nk a vector of integers. We are interested in determining the
allowed values of the total energy E for a 2+1 system with given total spatial momentum
P (itself a member of the finite-volume set), and box size L. A useful variable in the
following will be the center-of-momentum frame (CMF) energy, E∗ =

√
E2 − P 2.

The quantization condition applies (and is derived) in the continuum limit, so no lattice
spacing, a, is present. This means that, strictly speaking, to apply the formalism to the
results of lattice QCD simulations, one must send a → 0.

2.1 Summary of formalism and definitions for 2 + 1 systems

Here we recapitulate the formalism for 2 + 1 systems derived in ref. [24]. As noted in the
introduction, we consider here only the implementation of the quantization condition, i.e.,
the formula relating the finite-volume spectrum to Kdf,3. Furthermore, we consider only
the so-called symmetric form of the quantization condition, i.e., that in which Kdf,3 has all
the symmetries of M3. This is the simplest to implement, as the symmetric form of Kdf,3
involves the smallest number of parameters.

The quantization condition is3

det
[
F̂−1
3 (E,P , L) + K̂df,3(E∗)

]
= 0 , (2.2)

i.e., there are finite-volume levels at the energies E for which the determinant vanishes, for
the given values of the box size L and total momentum P . The K matrix K̂df,3 is an infinite-
volume Lorentz-invariant quantity that does not depend on E, P , and L separately, but
only on the CMF energy E∗. We discuss it separately in section 2.3. F̂3 is an intrinsically
finite-volume object that will be defined below. Both quantities are matrices with multiple
indices, over which the determinant runs. The indices are k"mi, and we explain these
in turn. The first three are a shorthand for k"m, and these are the standard indices in
all approaches to the three-particle quantization condition [3, 7, 8]. They represent the
variables of an on-shell, finite-volume three-particle amplitude. One of the particles is
chosen as the “spectator,” with momentum k drawn from the finite-volume set, while the
remaining pair are boosted to their CMF, where the amplitude is decomposed into spherical
harmonics, leading to the "m indices. Further details of this decomposition will be given in

3This is valid up to exponentially suppressed corrections, i.e., those that scale with L as exp(−miL).
We will assume throughout that such corrections can be neglected.
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section 2.3. The final index i runs over the two choices of flavor of the spectator particle,
i = 1 and i = 2. We follow ref. [24] and place carets (“hats”) on quantities to indicate that
they are matrices in flavor space as well as the usual k!m space.

The matrix F̂3 is given by

F̂3 =
F̂

3 − F̂
1

K̂−1
2,L + F̂ + Ĝ

F̂ , (2.3)

and is composed of the kinematical matrices F̂ and Ĝ, and the matrix K̂2,L that contains
the two-particle K matrices. The flavor-index structure of these matrices is

F̂ = diag
(
F̃ (1), F̃ (2)

)
, (2.4)

Ĝ =
(

G̃(11) √
2PLG̃(12)

√
2G̃(21)PL 0

)

, (2.5)

K̂2,L = diag
(
K(1)

2,L,
1
2K

(2)
2,L
)
. (2.6)

Here F̃ (i), G̃(ij), and K2,L are matrices with only k!m indices, where the superscript i, j

indicates the flavor of the spectator(s). The matrix PL is a parity factor and is given by

[PL]p′!′m′;p!m = δp′pδ!′!δm′m(−1)! , (2.7)

and thus multiplies odd partial waves by −1. The first kinematic matrix, commonly referred
to as a Lüscher zeta function, is given by

[
F̃ (i)

]

p′!′m′;p!m
= δp′p

H(i)(p)
2ω(i)

p L3

[
1
L3

UV∑

a

−PV
∫ UV d3a

(2π)3

]

×



Y!′m′(a∗(i,j,p))
(
q∗(i)
2,p
)!′

1
4ω(j)

a ω(k)
b

(
E−ω(i)

p −ω(j)
a −ω(k)

b

)
Y!m(a∗(i,j,p))
(
q∗(i)
2,p
)!



 . (2.8)

The flavor labels are chosen as follows: if i = 1, then j = 1 and k = 2, while if i = 2, then
j = k = 1. The sum over a runs over the finite-volume set, and both sum and integral must
be regularized in the ultraviolet (UV) in the same way, although the precise choice is not
important. We describe our choice of regulator, and give further details of the evaluation
of F̃ (i), in appendix A. On-shell energies are exemplified by

ω(j)
p =

√
p2 +m2

j , (2.9)

and the third momentum is b = P − a − p. The Y!m are harmonic polynomials defined
with normalization such that

Y!m(a) =
√
4πY!m(â)|a|! . (2.10)

We use real spherical harmonics, whose form is given in appendix A. The quantity q∗(i)
2,p

is the magnitude of the relative momenta of the pair in their CMF, assuming all three
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particles are on shell. This depends on the total momentum P , the spectator momentum
p, and the flavor of the spectator, and is given by

(
q∗(i)
2,p
)2 =

λ(σi,m2
j ,m

2
k)

4σi
, σi ≡ (E − ω(i)

p )2 − (P − p)2 , (2.11)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is the standard triangle function. The
momentum a∗(i,j,p) is the spatial part of the four-momentum (ω(j)

a ,a) after a boost to the
CMF of the nonspectator pair, i.e., with boost velocity β(i)

p = −(P −p)/(E−ω(i)
p ). Finally,

H(i)(p) is a cutoff, or transition, function — see discussion in section 2.2.
The other kinematic function is
[
G̃(ij)

]

p!′m′;r!m
= 1

2ω(i)
p L3

Y!′m′(r∗(i,j,p))
(
q∗(i)
2,p
)!′

H(i)(p)H(j)(r)
b2ij − m2

k

Y!m(p∗(j,i,r))
(
q∗(j)
2,r
)!

1
2ω(j)

r L3
, (2.12)

where p∗(j,i,r) is defined analogously to r∗(i,j,p), with the roles of r and p (and the corre-
sponding flavors) interchanged, while the four-vector bij is

bij = (E − ω(i)
p − ω(j)

r ,P − p − r) , (2.13)

and, finally, k = 2 if i = j = 1, while k = 1 if {i, j} = {1, 2} or {2, 1}.
The final matrix is defined by [3, 9, 11]
[
K(i)

2,L
]

p!′m′;r!m
= δpr2ω(i)

r L3
[
K(i)

2 (r)
]

!′m′;!m
, (2.14)

[
K(i)

2 (r)−1
]

!′m′;!m
= δ!′!δm′m

ηi
8π

√
σi

{
q∗(i)
2,r cot δ(i)! (q∗(i)

2,r ) + |q∗(i)
2,r |[1 − H(i)(r)]

}
, (2.15)

where i is the flavor of the spectator, and the scattering occurs between the other two
particles, with δ(i)! the corresponding phase shift. If i = 1, all waves are present, and
the symmetry factor is ηi = 1. If i = 2, the scattering is between identical particles and
thus occurs only in even partial waves, and η2 = 1/2. The two-particle K matrices are
standard above threshold, but have cutoff dependence below threshold. In order to make
our definitions clear, we note that the effective-range expansions for the s- and p-wave
phase shifts are given in terms of scattering lengths and effective ranges by

q cot δ(i)0 (q) = − 1
a(i)0

+ r(i)0 q2

2 + . . . (2.16)

q3 cot δ(i)1 (q) = − 1
a(i)1

+ . . . . (2.17)

We stress, however, that other parametrizations are allowed, for instance one that incor-
porates the Adler zero in the s-wave channel of isospin-2 ππ scattering [28].

The dependence of K(i)
2 on the cutoff function H(i) in eq. (2.15) is an example of the

freedom we have in defining this quantity. Different choices of H(i) change K(i)
2 , F̃ (i), G̃(ij),

and K̂df,3, such that the energy levels are unchanged. In ref. [15] it was noted that, for
identical particles, there is a larger class of redefinitions of K2 that leave the solutions
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including both s- and p-wave two-particle interactions; and (iii) how to project the quanti-
zation condition onto irreducible representations (irreps) of the appropriate finite-volume
symmetry group. We relegate some technical details to appendix A.

Throughout this section we denote the flavor of the two identical particles as 1, and
their mass as m1, while the flavor of the solitary particle is 2 and its mass m2. The total
energy of the three-particle system at rest, assuming no interactions, would then be

M = 2m1 +m2 . (2.1)

We assume that the finite volume is a cubic box of length L, and that the fields satisfy pe-
riodic boundary conditions. Thus finite-volume momenta are drawn from the finite-volume
set, i.e., k = (2π/L)nk with nk a vector of integers. We are interested in determining the
allowed values of the total energy E for a 2+1 system with given total spatial momentum
P (itself a member of the finite-volume set), and box size L. A useful variable in the
following will be the center-of-momentum frame (CMF) energy, E∗ =

√
E2 − P 2.

The quantization condition applies (and is derived) in the continuum limit, so no lattice
spacing, a, is present. This means that, strictly speaking, to apply the formalism to the
results of lattice QCD simulations, one must send a → 0.

2.1 Summary of formalism and definitions for 2 + 1 systems

Here we recapitulate the formalism for 2 + 1 systems derived in ref. [24]. As noted in the
introduction, we consider here only the implementation of the quantization condition, i.e.,
the formula relating the finite-volume spectrum to Kdf,3. Furthermore, we consider only
the so-called symmetric form of the quantization condition, i.e., that in which Kdf,3 has all
the symmetries of M3. This is the simplest to implement, as the symmetric form of Kdf,3
involves the smallest number of parameters.

The quantization condition is3

det
[
F̂−1
3 (E,P , L) + K̂df,3(E∗)

]
= 0 , (2.2)

i.e., there are finite-volume levels at the energies E for which the determinant vanishes, for
the given values of the box size L and total momentum P . The K matrix K̂df,3 is an infinite-
volume Lorentz-invariant quantity that does not depend on E, P , and L separately, but
only on the CMF energy E∗. We discuss it separately in section 2.3. F̂3 is an intrinsically
finite-volume object that will be defined below. Both quantities are matrices with multiple
indices, over which the determinant runs. The indices are k"mi, and we explain these
in turn. The first three are a shorthand for k"m, and these are the standard indices in
all approaches to the three-particle quantization condition [3, 7, 8]. They represent the
variables of an on-shell, finite-volume three-particle amplitude. One of the particles is
chosen as the “spectator,” with momentum k drawn from the finite-volume set, while the
remaining pair are boosted to their CMF, where the amplitude is decomposed into spherical
harmonics, leading to the "m indices. Further details of this decomposition will be given in

3This is valid up to exponentially suppressed corrections, i.e., those that scale with L as exp(−miL).
We will assume throughout that such corrections can be neglected.
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section 2.3. The final index i runs over the two choices of flavor of the spectator particle,
i = 1 and i = 2. We follow ref. [24] and place carets (“hats”) on quantities to indicate that
they are matrices in flavor space as well as the usual k!m space.

The matrix F̂3 is given by

F̂3 =
F̂

3 − F̂
1

K̂−1
2,L + F̂ + Ĝ

F̂ , (2.3)

and is composed of the kinematical matrices F̂ and Ĝ, and the matrix K̂2,L that contains
the two-particle K matrices. The flavor-index structure of these matrices is

F̂ = diag
(
F̃ (1), F̃ (2)

)
, (2.4)

Ĝ =
(

G̃(11) √
2PLG̃(12)

√
2G̃(21)PL 0

)

, (2.5)

K̂2,L = diag
(
K(1)

2,L,
1
2K

(2)
2,L
)
. (2.6)

Here F̃ (i), G̃(ij), and K2,L are matrices with only k!m indices, where the superscript i, j

indicates the flavor of the spectator(s). The matrix PL is a parity factor and is given by

[PL]p′!′m′;p!m = δp′pδ!′!δm′m(−1)! , (2.7)

and thus multiplies odd partial waves by −1. The first kinematic matrix, commonly referred
to as a Lüscher zeta function, is given by

[
F̃ (i)

]

p′!′m′;p!m
= δp′p

H(i)(p)
2ω(i)

p L3

[
1
L3

UV∑

a

−PV
∫ UV d3a

(2π)3

]

×



Y!′m′(a∗(i,j,p))
(
q∗(i)
2,p
)!′

1
4ω(j)

a ω(k)
b

(
E−ω(i)

p −ω(j)
a −ω(k)

b

)
Y!m(a∗(i,j,p))
(
q∗(i)
2,p
)!



 . (2.8)

The flavor labels are chosen as follows: if i = 1, then j = 1 and k = 2, while if i = 2, then
j = k = 1. The sum over a runs over the finite-volume set, and both sum and integral must
be regularized in the ultraviolet (UV) in the same way, although the precise choice is not
important. We describe our choice of regulator, and give further details of the evaluation
of F̃ (i), in appendix A. On-shell energies are exemplified by

ω(j)
p =

√
p2 +m2

j , (2.9)

and the third momentum is b = P − a − p. The Y!m are harmonic polynomials defined
with normalization such that

Y!m(a) =
√
4πY!m(â)|a|! . (2.10)

We use real spherical harmonics, whose form is given in appendix A. The quantity q∗(i)
2,p

is the magnitude of the relative momenta of the pair in their CMF, assuming all three
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where M = 2m1 + m2. In the threshold expansion ∆ ∼ ∆S
2 ∼ t̃22 are assumed small

compared to unity. As we will see explicitly below, working to linear order in the threshold
expansion implies that only s- and p-wave contributions are present, i.e. ! ≤ 1 and !′ ≤ 1.

The matrix appearing in the quantization condition is [24]

K̂df,3 =
(

[Kdf,3]p!′m′1;k!m1 [Kdf,3]p!′m′1;k!m2/
√
2

[Kdf,3]p!′m′2;k!m1/
√
2 [Kdf,3]p!′m′2;k!m2/2

)

. (2.28)

Each of the four entries corresponds to a different decomposition of Kdf,3, differing in
the flavors of the spectators. To explain how this decomposition is defined, we consider
the example of the top-right or flavor “12” entry. In this case, the outgoing spectator
momentum has flavor 1, so that p = p1, while the incoming spectator momentum has
flavor 2, implying k = p2. In the final state, the remaining pair has flavors 1′ and 2, and
the remaining kinematic degree of freedom (for fixed E, P , and p1) is the direction of p′

1′

when boosted to the CMF of the pair,5 which is denoted â′∗. Similarly, in the initial state,
the pair has flavors 1 and 1′, and the remaining degree of freedom is the direction of p1 in
the incoming pair CMF, and this is denoted â∗. To proceed, we first express Kdf,3 in terms
of these kinematic variables, and then decompose into spherical harmonics as follows

Kdf,3(p, â′∗;k, â∗) =
∑

!′m′,!m

4πY!′m′(â′∗)[Kdf,3]p!′m′1;k!m2Y!m(â∗) . (2.29)

This is a straightforward but tedious exercise, and we sketch its results below. The other
decompositions are obtained following the same procedure with different choices of spec-
tator flavors.

One immediate general result is that only even values of angular momenta can be
present if the spectator momentum has flavor 2, because the remaining pair consists of
identical particles. Since !max = 1 for our choice of Kdf,3, this implies that, if the flavor
index is 2, only ! = m = 0 contributions are present in the decompositions. Only if the
flavor index is 1 can both ! = 0 and 1 terms appear.

The decomposition of the first two terms in eq. (2.26) is trivial. These are isotropic,
i.e., they only depend on the total CMF energy and not on the directions of the three
particles. Thus there is no dependence on â′∗ or â∗ in any of the decompositions, so only
!′ = ! = 0 terms appear. Given the normalization choice in eq. (2.29), we thus find that
the nonzero contributions are

[Kdf,3]p001;k001 = [Kdf,3]p001;k002 = [Kdf,3]p002;k001 = [Kdf,3]p002;k002 ⊃ Kiso,0
df,3 +Kiso,1

df,3 ∆ .

(2.30)
We stress that these results hold for all choices of the spectator momenta p and k.

Since the decompositions of the other two terms in Kdf,3 require more explanation,
we will address them in separate subsections below. Before doing so, however, we com-
ment on two general issues. The first concerns the removal of factors of q∗ from the
quantization condition. As noted in section 2, we can do so by making the replacement

5Here we are following the convention used in ref. [24] by choosing the particle of flavor 1 to define this
direction, rather than that of flavor 2.
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• Each entry involves the same infinite-volume amplitude, , 
decomposed in different coords

•  is smooth (no cuts or two-particle poles) aside from possible poles associated with 
three-particle resonances 

•  is invariant under Lorentz transformations, T, P, and interchange of identical particles in 
initial and/or final states

•  depends on cutoff function H, and is thus not physical

• Related to  by integral equations of similar form to those discussed in Lecture 2

𝒦df,3(p1, p1′￼, p2; k1, k1′￼, k2)

𝒦df,3

𝒦df,3

𝒦df,3

ℳ3
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• : determined parameters in threshold expansion of , including pair interactions in s- 
and d-waves; integral equations solved for s-wave interactions only [Blanton et al., 19, 21; Mai 
et al. 19; Culver et al. 19, Fisher et al. 20, Hansen et al. 20, Brett et al. 21]

• : determined s- and d-wave parameters in  [Alexandru et al. 20; Blanton et al. 21]

• : extracted  in single-scalar theory; extracted 3-particle resonance parameters in 
two-scalar theory with both RFT and FVU approaches [Romero-López et al. 18, Garofalo et 
al. 22]

•  with : first study of  with formalism based on 2 levels; solved integral 
equations in FVU approach [Mai et al., 21]

•  & : determined s- and p-wave parameters in ; found evidence for 
small discretization effects [Draper et al, 23]

• Integral equations solved for complex energies for simple system with near-unitary two-
particle interactions and Efimov states (bound or resonant) [Jakura et al. 20, Dawid et al., 23]

• ChPT: LO results for , , , , including  effects: agree in rough 
magnitude but not in detail with results from LQCD calculations [Blanton et al., 19, 21]

• ChPT: NLO result for ; greatly improves agreement with LQCD results [Baeza-
Ballesteros et al., 23]

3π+ 𝒦df,3

3K+ 𝒦df,3

ϕ4 𝒦df,3

3π I = 1 a1(1260)

π+π+K+ K+K+π+ 𝒦df,3

3π+ π+π+K+ K+K+π+ 3K+ a2

3π+

15

Status: applications
[Detailed references at end of slides]
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Truncation 

1616

• To use quantization condition, one must truncate matrix space, as for the two-
particle case

• Spectator-momentum space is truncated by cut-off function H(k)

• Need to truncate sums over  in 

• Automatically truncates 

• Illustrate with example of 2+1 system

ℓ 𝒦2, ̂𝒦 df,3
̂F , ̂G

det [ ̂F −1
3 + ̂𝒦df,3] = 0

matrices with indices kℓmi
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Threshold expansion for 𝒦df,3
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a yet-to-be-developed manner, or place the cutoff so that they are avoided. The t-channel
cut occurs when t2 = 4m2

min,jk and s2 = u2 = |m2
j − m2

k|, where the subscripts on s2, t2,
and u2 indicate that they apply to a two-particle subchannel. The u-channel cut has the
same position except with t2 ↔ u2. In both cases, σi = s2 = |m2

j −m2
k|, which we recognize

as the same position as where q∗(i)2
2,p reaches its minimum. Thus the cutoff function given in

eq. (2.24) avoids the left-hand cut, and the quantization condition remains strictly valid.
It might be thought problematic that a lower cutoff is required for the nondegenerate

theory — it certainly conflicts with the usual notion of a UV cutoff that one can send
arbitrarily large, a point stressed recently in ref. [25]. This is why we have also called H(i)

a “transition function,” because, in all derivations in the RFT approach, it has the effect
of transitioning the two-particle amplitude that appears in the expressions between the
two-particle K matrix K2 at threshold (where H(i) = 1) and the two-particle amplitude
M2 far below threshold (where H(i) = 0). As the discussion in this section has shown,
the presence of the left-hand cut implies that, within the context of a derivation that does
not explicitly account for the impact of the associated nonanalyticities, the region of the
transition cannot be extended further below threshold. We stress that there is nothing
inconsistent in this situation: the fact that the cutoff lies a distance below threshold that is
set by mmin,jk implies that the exponentially suppressed corrections that are not controlled
behave as exp(−mmin,jkL). This is the expected size of such corrections, which are dropped
throughout the derivation. In practice, when studying the ππK and πKK systems, this
implies that the cutoff, in terms of q∗(i)2

2,p , must be placed at the same position as in the
study of the 3π system, since the minimum mass is that of the pion in all cases.

2.3 Implementation of threshold expansion of Kdf,3

In this section we describe how we determine the form of the matrix K̂df,3 that enters the
quantization condition [eq. (2.2)]. The starting point is the result for the infinite-volume
amplitude Kdf,3. We label the initial momenta as p1, p1′ , and p2, and the final momenta
as p′

1, p′
1′ , and p′

2, with the subscripts indicating the flavor. All these momenta are on
shell, and the total four-momentum is (E,P ). Using the invariance of Kdf,3 under Lorentz
transformations, under interchange of the two identical particles separately in the initial
and final state, and under time reversal and parity, it was shown in ref. [24] that, to linear
order in the threshold expansion,4

Kdf,3 = Kiso,0
df,3 +Kiso,1

df,3 ∆ +KB,1
df,3∆S

2 +KE,1
df,3t̃22 . (2.26)

Here Kiso,0
df,3 , K

iso,1
df,3 , K

B,1
df,3, and KE,1

df,3 are real constants, while the dimensionless kinematic
variables are given by

∆ = s − M

M2 , s = (p1 + p1′ + p2)2 = P 2 ,

∆S
2 = ∆2 + ∆′

2 , ∆2 =
(p1 + p1′)2 − 4m2

1
M2 , ∆′

2 =
(p′

1 + p′
1′)2 − 4m2

1
M2 ,

t̃22 =
t22
M2 = (p2 − p′

2)2
M2 ,

(2.27)

4The normalization of the final term differs by a factor of 2 from that in ref. [24].
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a yet-to-be-developed manner, or place the cutoff so that they are avoided. The t-channel
cut occurs when t2 = 4m2

min,jk and s2 = u2 = |m2
j − m2

k|, where the subscripts on s2, t2,
and u2 indicate that they apply to a two-particle subchannel. The u-channel cut has the
same position except with t2 ↔ u2. In both cases, σi = s2 = |m2

j −m2
k|, which we recognize

as the same position as where q∗(i)2
2,p reaches its minimum. Thus the cutoff function given in

eq. (2.24) avoids the left-hand cut, and the quantization condition remains strictly valid.
It might be thought problematic that a lower cutoff is required for the nondegenerate

theory — it certainly conflicts with the usual notion of a UV cutoff that one can send
arbitrarily large, a point stressed recently in ref. [25]. This is why we have also called H(i)

a “transition function,” because, in all derivations in the RFT approach, it has the effect
of transitioning the two-particle amplitude that appears in the expressions between the
two-particle K matrix K2 at threshold (where H(i) = 1) and the two-particle amplitude
M2 far below threshold (where H(i) = 0). As the discussion in this section has shown,
the presence of the left-hand cut implies that, within the context of a derivation that does
not explicitly account for the impact of the associated nonanalyticities, the region of the
transition cannot be extended further below threshold. We stress that there is nothing
inconsistent in this situation: the fact that the cutoff lies a distance below threshold that is
set by mmin,jk implies that the exponentially suppressed corrections that are not controlled
behave as exp(−mmin,jkL). This is the expected size of such corrections, which are dropped
throughout the derivation. In practice, when studying the ππK and πKK systems, this
implies that the cutoff, in terms of q∗(i)2

2,p , must be placed at the same position as in the
study of the 3π system, since the minimum mass is that of the pion in all cases.

2.3 Implementation of threshold expansion of Kdf,3

In this section we describe how we determine the form of the matrix K̂df,3 that enters the
quantization condition [eq. (2.2)]. The starting point is the result for the infinite-volume
amplitude Kdf,3. We label the initial momenta as p1, p1′ , and p2, and the final momenta
as p′

1, p′
1′ , and p′

2, with the subscripts indicating the flavor. All these momenta are on
shell, and the total four-momentum is (E,P ). Using the invariance of Kdf,3 under Lorentz
transformations, under interchange of the two identical particles separately in the initial
and final state, and under time reversal and parity, it was shown in ref. [24] that, to linear
order in the threshold expansion,4

Kdf,3 = Kiso,0
df,3 +Kiso,1

df,3 ∆ +KB,1
df,3∆S

2 +KE,1
df,3t̃22 . (2.26)

Here Kiso,0
df,3 , K

iso,1
df,3 , K

B,1
df,3, and KE,1

df,3 are real constants, while the dimensionless kinematic
variables are given by

∆ = s − M

M2 , s = (p1 + p1′ + p2)2 = P 2 ,

∆S
2 = ∆2 + ∆′

2 , ∆2 =
(p1 + p1′)2 − 4m2

1
M2 , ∆′

2 =
(p′

1 + p′
1′)2 − 4m2

1
M2 ,

t̃22 =
t22
M2 = (p2 − p′

2)2
M2 ,

(2.27)

4The normalization of the final term differs by a factor of 2 from that in ref. [24].
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including both s- and p-wave two-particle interactions; and (iii) how to project the quanti-
zation condition onto irreducible representations (irreps) of the appropriate finite-volume
symmetry group. We relegate some technical details to appendix A.

Throughout this section we denote the flavor of the two identical particles as 1, and
their mass as m1, while the flavor of the solitary particle is 2 and its mass m2. The total
energy of the three-particle system at rest, assuming no interactions, would then be

M = 2m1 +m2 . (2.1)

We assume that the finite volume is a cubic box of length L, and that the fields satisfy pe-
riodic boundary conditions. Thus finite-volume momenta are drawn from the finite-volume
set, i.e., k = (2π/L)nk with nk a vector of integers. We are interested in determining the
allowed values of the total energy E for a 2+1 system with given total spatial momentum
P (itself a member of the finite-volume set), and box size L. A useful variable in the
following will be the center-of-momentum frame (CMF) energy, E∗ =

√
E2 − P 2.

The quantization condition applies (and is derived) in the continuum limit, so no lattice
spacing, a, is present. This means that, strictly speaking, to apply the formalism to the
results of lattice QCD simulations, one must send a → 0.

2.1 Summary of formalism and definitions for 2 + 1 systems

Here we recapitulate the formalism for 2 + 1 systems derived in ref. [24]. As noted in the
introduction, we consider here only the implementation of the quantization condition, i.e.,
the formula relating the finite-volume spectrum to Kdf,3. Furthermore, we consider only
the so-called symmetric form of the quantization condition, i.e., that in which Kdf,3 has all
the symmetries of M3. This is the simplest to implement, as the symmetric form of Kdf,3
involves the smallest number of parameters.

The quantization condition is3

det
[
F̂−1
3 (E,P , L) + K̂df,3(E∗)

]
= 0 , (2.2)

i.e., there are finite-volume levels at the energies E for which the determinant vanishes, for
the given values of the box size L and total momentum P . The K matrix K̂df,3 is an infinite-
volume Lorentz-invariant quantity that does not depend on E, P , and L separately, but
only on the CMF energy E∗. We discuss it separately in section 2.3. F̂3 is an intrinsically
finite-volume object that will be defined below. Both quantities are matrices with multiple
indices, over which the determinant runs. The indices are k"mi, and we explain these
in turn. The first three are a shorthand for k"m, and these are the standard indices in
all approaches to the three-particle quantization condition [3, 7, 8]. They represent the
variables of an on-shell, finite-volume three-particle amplitude. One of the particles is
chosen as the “spectator,” with momentum k drawn from the finite-volume set, while the
remaining pair are boosted to their CMF, where the amplitude is decomposed into spherical
harmonics, leading to the "m indices. Further details of this decomposition will be given in

3This is valid up to exponentially suppressed corrections, i.e., those that scale with L as exp(−miL).
We will assume throughout that such corrections can be neglected.
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p1

p1′￼

p2

p′￼1

p′￼1′￼

p′￼2

𝒦df,3

Useful invariants:

• Expand in powers of 

• 1 term of , 3 terms of ,  11 terms of 

• In practice, work to linear order, so that there are 4 undetermined constants:

Δ ∼ ΔS
2 ∼ t̃22

𝒪(Δ0) 𝒪(Δ) 𝒪(Δ2)
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a yet-to-be-developed manner, or place the cutoff so that they are avoided. The t-channel
cut occurs when t2 = 4m2

min,jk and s2 = u2 = |m2
j − m2

k|, where the subscripts on s2, t2,
and u2 indicate that they apply to a two-particle subchannel. The u-channel cut has the
same position except with t2 ↔ u2. In both cases, σi = s2 = |m2

j −m2
k|, which we recognize

as the same position as where q∗(i)2
2,p reaches its minimum. Thus the cutoff function given in

eq. (2.24) avoids the left-hand cut, and the quantization condition remains strictly valid.
It might be thought problematic that a lower cutoff is required for the nondegenerate

theory — it certainly conflicts with the usual notion of a UV cutoff that one can send
arbitrarily large, a point stressed recently in ref. [25]. This is why we have also called H(i)

a “transition function,” because, in all derivations in the RFT approach, it has the effect
of transitioning the two-particle amplitude that appears in the expressions between the
two-particle K matrix K2 at threshold (where H(i) = 1) and the two-particle amplitude
M2 far below threshold (where H(i) = 0). As the discussion in this section has shown,
the presence of the left-hand cut implies that, within the context of a derivation that does
not explicitly account for the impact of the associated nonanalyticities, the region of the
transition cannot be extended further below threshold. We stress that there is nothing
inconsistent in this situation: the fact that the cutoff lies a distance below threshold that is
set by mmin,jk implies that the exponentially suppressed corrections that are not controlled
behave as exp(−mmin,jkL). This is the expected size of such corrections, which are dropped
throughout the derivation. In practice, when studying the ππK and πKK systems, this
implies that the cutoff, in terms of q∗(i)2

2,p , must be placed at the same position as in the
study of the 3π system, since the minimum mass is that of the pion in all cases.

2.3 Implementation of threshold expansion of Kdf,3

In this section we describe how we determine the form of the matrix K̂df,3 that enters the
quantization condition [eq. (2.2)]. The starting point is the result for the infinite-volume
amplitude Kdf,3. We label the initial momenta as p1, p1′ , and p2, and the final momenta
as p′

1, p′
1′ , and p′

2, with the subscripts indicating the flavor. All these momenta are on
shell, and the total four-momentum is (E,P ). Using the invariance of Kdf,3 under Lorentz
transformations, under interchange of the two identical particles separately in the initial
and final state, and under time reversal and parity, it was shown in ref. [24] that, to linear
order in the threshold expansion,4

Kdf,3 = Kiso,0
df,3 +Kiso,1

df,3 ∆ +KB,1
df,3∆S

2 +KE,1
df,3t̃22 . (2.26)

Here Kiso,0
df,3 , K

iso,1
df,3 , K

B,1
df,3, and KE,1

df,3 are real constants, while the dimensionless kinematic
variables are given by

∆ = s − M

M2 , s = (p1 + p1′ + p2)2 = P 2 ,

∆S
2 = ∆2 + ∆′

2 , ∆2 =
(p1 + p1′)2 − 4m2

1
M2 , ∆′

2 =
(p′

1 + p′
1′)2 − 4m2

1
M2 ,

t̃22 =
t22
M2 = (p2 − p′

2)2
M2 ,

(2.27)

4The normalization of the final term differs by a factor of 2 from that in ref. [24].
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• Even though  term is of higher order than  term, it can be easier to determine 

as it appears in more FV irreps

• When decompose into  basis (a straightforward but very tedious exercise)

• Isotropic terms lead only to terms with 

•  &  contain  terms

• Only  contains  terms

• For consistency, truncate effective-range expansion of  at linear order in 

• Decompose all terms in QC3 into irreps of appropriate little group (subgroup of cubic 
group that leaves total momentum  unchanged)

𝒦E,1
df,3 𝒦iso,0

df,3

p, ℓ, m, i

ℓ′￼= ℓ = 0

𝒦B,1
df,3 𝒦E,1

df,3 ℓ′￼, ℓ = 0,1

𝒦E,1
df,3 ℓ′￼= ℓ = 1

𝒦2 q2

P

Independent of relative 
momenta & angles

Depends on relative 
momenta & angles, but 
only contains , 
and only appears in 

trivial FV irreps

Jtot = 0

Depends on relative 
momenta & angles, 

contains , 
and appears in some 
nontrivial FV irreps

Jtot = 0 & 1
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three-particle formalism:
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amplitudes using LQCD
π+π+K+ K+K+π+
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[Draper, Hanlon, Hörz, Morningstar, Romero-López & SRS, 2302.13587 (JHEP)]
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Strategy

2020

E0(L)

E1(L)

E2(L)

Kdf,3 M3

• Consider multiparticle system with weakly repulsive interactions—pions and kaons at 
maximal isospin ( , , , )

• No resonances in two-particle subchannels or in three-particle system

• Simultaneously fit to several spectra using threshold expansions for K matrices

•  For example, to obtain the  interaction need:

2π+/3π+ 2K+/3K+ 2π+/π+K+/3K+ 2K+/π+K+/3K+

π+π+K+

QC3 Int. Eqs.

K+π+

π+

π+

π+π+
K++ +
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Lattices used in pilot calculation

2121

(L/a)3
◊ (T/a) Mfi [MeV] MK [MeV] Ncfg tsrc/a Nev dilution Nr(¸/s)

N203 483
◊ 128 340 440 771 32, 52 192 (LI12,SF) 6/3

D200 643
◊ 128 200 480 2000 35, 92 448 (LI16,SF) 6/3

Table 1. Specific details on the ensembles used in this work, including the name, geometry,
approximate pseudoscalar masses, number of configurations Ncfg, source positions tsrc used, number
of eigenvectors Nev of the covariant Laplacian retained, dilution scheme (see Ref. [59] for details),
and number of noises Nr used for the light (l) and strange (s) quark sources. Both ensembles have
the same lattice spacing a ¥ 0.063 fm.

they are su�ciently far from the temporal boundaries in order to suppress any e�ects from
the boundary. As there was no need to produce additional quark sinks beyond what was
used in our previous study [49], the arguments used there to justify the source and sink
positions carry over here. Essentially, evidence for su�cient suppression of boundary e�ects
on the D200 ensemble was given in Ref. [70], where it was found that a temporal distance
of ≥ 32a from the boundary was enough for the exponentially decaying boundary e�ects
to be negligible. Further, it is expected that the boundary e�ects are more severe on D200
than N203, as the leading contribution comes from the lowest state with quantum numbers
of the vacuum, which should be a two-pion state for the quark masses considered here, and
therefore has a smaller energy on D200. Thus, as the source positions considered for N203
are even further from the boundary than D200, our choices should be safe from the e�ects
of the open boundary conditions. Note that the source position of tsrc = 92a for D200
only has sink times smaller than 92a associated with it (i.e. the correlators go backward
in time, see Ref. [49] for more details).

Finally, autocorrelations, which lead to underestimated errors, can be checked for by
observing dependence on the error estimates from averaging Nrebin successive configura-
tions across all the original measurements into Ncfg/Nrebin new bins. While there is evidence
that values as high as Nrebin = 20 are needed for D200 to completely remove autocorrela-
tions [63], this is not plausible for our use-case, as the number of energies used in our fits in
section 4.2 is too high to reliably estimate the covariance matrix with so few bins. However,
we have found little to no dependence on the final results for N203 when using Nrebin = 1
or Nrebin = 3, suggesting the observables of interest here are not a�ected significantly by
autocorrelations. We therefore use Nrebin = 1 for N203, while using Nrebin = 3 for D200
in order to still obtain reliable estimates for the covariance matrix while removing some
autocorrelation. Additionally, we note that the configurations used on N203 are separated
in Markov time by twice the distance used for D200, which is why we use a conservative
choice for the rebinning on D200.

2.4 Finite-volume energies from correlators

As can be seen from the spectral decomposition in eq. (2.1), in principle one can extract
any energy so long as the operators used have non-zero overlap onto the corresponding
eigenstate. However, with finite statistics, reliably determining the states beyond the first
few terms from fits to a single correlator is di�cult. As we are only interested in the

– 6 –

• Improved Wilson fermions at  (CLS lattices)a = 0.064 fm

MπL = 4.1

MKL = 10

π+

K+
L = 4.1 fm

D200 configurations
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Example of fit

22
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Figure 2. The fifiK center-of-mass frame energies, in units of Mfi, on the N203 ensemble. The
horizontal axis labels the irrep and (in parentheses) the total momentum squared in units of (2fi/L)2.
The horizontal dashed lines and grey boxes (the latter barely visible) indicate the mean and error of
the non-interacting energy levels, while the open circles with error bars correspond to the interacting
energies. The colored symbols show the solutions of the quantization condition with the parameters
found in the 82-level fit in table 8. Teal colored points are associated with energy levels included
in the fit, while the orange points are for levels not in the fit. The horizontal dashed lines running
across the entire plot show the ground state energy (Eú = 2Mfi + MK) and the first inelastic
threshold (Eú = 3Mfi + MK).

correlated fluctuations begin to arise. Among the fits satisfying this critera, our final value
is based on making a conservative choice to ensure that any systematics are smaller than
the statistical errors, while also making sure the fit quality is reasonable. Examples of the
choices of tmin are shown in the figure.

To illustrate the number of levels that we are able to determine, and the errors that
we obtain, we show in figure 2 the energy levels for the fifiK system on the N203 ensemble.
To better compare the levels from di�erent momentum frames, we show the center-of-mass
frame (CMF) energies E

ú =


E2 ≠ P 2. Also shown (as teal dots) are the result of our
standard fit to these levels, to be discussed below, in which we fit only to levels that lie
below the first inelastic threshold. Although the formalism is not, strictly speaking, valid
above this threshold, we also display its predictions for some of the higher levels (as orange
dots). Analogous plots for the other three-meson systems that we consider are shown in
appendix A. Detailed discussion of these and other fits are provided below.

– 10 –

Fit

Free energy

LQCD

Not in fit;
Formalism breaks 

down

N203 π+π+K+ECM

Mπ

Simultaneous fit to 27 , 19 , & 36  levels with 9 parametersπ+π+ π+K+ π+π+K+

χ2/DOF = 119/(82 − 9)

P = (0,0,0) P = (3,0,0)(2π /L)
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Fit is to lab-frame shifts
Simultaneous fit to 28 , 16 , 
& 29  levels with 10 parameters 
on D200:   

K+K+ π+K+

K+K+π+

χ2/DOF = 162/(73 − 10)

A1u(0)0

A1u(0)1

A1u(0)1

A2(1)0

A2(1)1

A2(2)0
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A2(6)0
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A2(8)1

A2(8)2

B1(8)0
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A2(9)2 (included in fit)

Fit P0 = 0

Fit Kdf,3 = 0

Fit

Data

0.010 0.015 0.020 0.025 0.030 0.035

�Elab/MK

A2(2)3

A2(4)3

B2(4)0

A2(5)4

A2(5)5

A2(6)2

A2(8)3

A2(8)4
(not included in fit)

Figure 3. Comparison of values for �Elab/MK to the predictions of various fits for K
+

K
+

fi
+

levels on D200. The upper panel shows 29 levels included in the fits, while the lower panel shows
eight that lie above our maximal Ecm and are thus not included in the fits. Level are denoted by
their irrep, followed in parenthesis by the value of total momentum-squared parametrized by d2

ref ,
with the subscript indicating the level number for the given irrep and total momentum, starting at
0. Above each data point we show, using red dots, blue squares, and orange triangles, respectively,
the fit values from the ADLER3 fit of table 9, the values predicted by the quantization condition if
Kdf,3 = 0 but all other parameters are unchanged, and the values predicted if P0 = 0 with all other
parameters unchanged.
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K+K+π+

ΔElab/MK
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Fit

Data

0.000 0.005 0.010 0.015 0.020 0.025 0.030

�Elab/MK

A1g(0)1

T1u(0)0

A1(1)3

E(1)0

E(1)1

A1(2)3

B1(2)0

A1(4)2

A1(4)3

E(4)0 (not included in fit)

Figure 4. Same as for figure 3 except for the fi
+

K
+ levels in the ADLER3 KK + fiK + KKfi fits.

The upper panel shows the 16 levels included in the fit, while the lower panel shows 10 levels lying
above our maximal Ecm and which thus are not included in the fit.
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π+K+

ΔElab/MK

23
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Results: scattering lengths

24

using
L

r
i (µ2) = L

r
i (µ1) + �i

16fi2
ln

3
µ1

µ2

4
, (5.2)

with �5 = 3/8, we find that the result from our fit yields L5(770 MeV) = 1.0(1.5) · 10≠3.
Varying the choice of 4fiFfi to take for the initial scale (using the physical value of Ffi, or
the value on either of the ensembles) leads to changes in L5 that are significantly smaller
than the error. Our result for L5 is in agreement with all values in the literature, although
we note that our error is much larger than that in the other values.
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M�a��
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MKaKK
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M�Ka�K
0

Figure 5. Results for Mfia
fifi, MfiKa

fiK and MKa
KK as a function of M

2
fi/F

2
fi , where

MfiK = (Mfi + MK)/2. The LO ChPT result is shown, along with a fit to NLO SU(3) ChPT.
The shaded bands show the 1‡ uncertainties in the fit.

Next, we discuss our results for the e�ective range parameters, which are presented in
table 18 in the combination M

2

Xr
XY

a
XY
0 . For the case of identical particles (X = Y = fi

or K), the LO ChPT prediction from section 3.3 is that this quantity equals 3. For two
pions, the results lie 15% and 25% below this prediction on the D200 and N203 ensembles,
respectively, which is consistent with being due to an NLO correction. For two kaons, the
results lie very far away from the LO prediction. Both findings are qualitatively similar to
those obtained in Ref. [49].

For the fiK channel, which is a novel result of this work, the LO ChPT predic-
tion—given in eq. (3.22)—depends on the ensemble:

M
2

fia
fiK
0 r

fiK
0

----
LO ChPT

D200

= 1.597, M
2

fia
fiK
0 r

fiK
0

----
LO ChPT

N203

= 2.395. (5.3)

Our results in table 18 lie ≥ 25% and ≥ 30%, respectively, below the LO ChPT prediction.
Again we view this as reasonable consistency, given the absence of NLO corrections.
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• 2-particle s-wave scattering lengths are well determined
• All are repulsive and consistent with ChPT

• Evidence for small discretization errors from fits to “Wilson ChPT”

physical
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Experimental 
results  

[Pelaez, Rodas, 2010.11222]

25

P-wave  scatt. Lengthπ+K+

25

We now turn to the p-wave fi
+

K
+ scattering length, reported in the rightmost column

of table 17 through the dimensionless combination P
fiK
0 = ≠M

3
fia

fiK
1 . Note that, in contrast

to all the s wave results, the value of P
fiK
0 corresponds to slightly attractive interactions.

We plot the results for the two ensembles in figure 6, including a fit to the leading chiral
behavior given by eq. (3.23), which shows reasonable consistency.

We also plot the NLO ChPT prediction given in appendix C. To do so we use values
for the requisite LECs determined in Ref. [89] from experimental data (specifically, fit
10 to O(p4) from that work). As can be seen, the NLO ChPT result has the same sign
as our results, but its magnitude is significantly smaller. The failure of NLO ChPT for
this quantity was, in fact, expected, based on the observation of Ref. [88] that the NNLO
contribution is two orders of magnitude larger than the NLO one at the physical point (see
table 2 of that work).

0 2 4 6 8 10 12 14 16 18

(M�/F�)2

0.000

0.005

0.010

0.015

0.020

0.025

�
M

3 �
a�

K
1

fit � (M�/F�)3

NLO ChPT

This work

Dispersive analysis

HadSpec

Figure 6. Results for the p-wave scattering parameter, P
fiK
0 = ≠M

3
fia

fiK
1 , plotted as a function of

M
2
fi/F

2
fi . A fit to the leading chiral scaling of P

fiK
0 Ã (Mfi/Ffi)3 is shown with the corresponding

error band, as well as the NLO ChPT prediction as described in appendix C. Also included are the
result at the physical point from the dispersive analysis of Ref. [98] (see Table 29 of that work),
and the lattice QCD determination of the HadSpec collaboration at a heavier pion mass [56].

We can also compare to the expectations and results in the literature from experiment
and dispersive analyses. The current understanding is summarized in figure 10 of Ref. [98].
Experimental results [99] for the p-wave phase shift point to a negative (repulsive) value at
high energies. By contrast, the dispersive analysis indicates a change of sign for the phase
at around

Ô
s ƒ MK + 3Mfi (physical values of the masses), resulting in an attractive

scattering length. The value from analysis of Ref. [98] is also shown in figure 6. As can
be seen, our results for the two ensembles of this work are in qualitative agreement with
the low-momentum behavior found by the dispersive analysis. We note that our fits only

– 42 –

• Find evidence for attractive p-wave scattering length 
• Consistent with dispersive analysis 

repulsive at  
higher energies

attractive at 
threshold

δπ+K+(s)
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s-wave contributions to 𝒦df,3

26

above. To address the latter possibility, a NLO ChPT calculation would be needed, but,
while NLO results are available for the three-particle scattering amplitude [101, 102], the
relation to Kdf,3 has yet to be worked out.
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Figure 8. Results for K0 and K1 for KKfi scattering as a function of M
2
fi/F

2
fi . The LO SU(3)

ChPT predictions given in eq. (3.24) are also shown.

In figures 9 and 10 we plot the results for KB and KE for fifiK and KKfi scattering,
respectively. These quantities vanish at LO in ChPT; their first nontrivial contribution is
expected to appear at NLO in ChPT. Since a NLO calculation has yet to be done, we have
fit to the expected chiral scaling given in eqs. (3.27) and (3.28), finding parameters

c
fifiK
B = 0.41(30), ‰

2
/DOF = 0.0036, c

fifiK
E = ≠1.02(38), ‰

2
/DOF = 3.1,

c
KKfi
B = 1.13(37), ‰

2
/DOF = 0.24, c

KKfi
E = ≠0.36(54), ‰

2
/DOF = 2.1.

(5.4)

We find a reasonable description of the data based on these fit forms.

5.3 Discretization errors

Up to this point we have neglected the e�ects of discretization errors in our two- and three-
particle fits. Since the ensembles used in this work are O(a) improved, these errors are of
O(a2). Here we extend the fits by including the leading a

2 terms predicted by WChPT.
As explained in section 3.3, this is only consistent with chiral power counting if we assume
a

2�2

QCD ≥ M
4
fi/(4fiFfi)4.

We begin with the two-particle scattering lengths. The WChPT results of eqs. (3.29)
to (3.31) predict that each of these quantities receive a common o�set proportional to a

2.
Repeating the global fit to the six s-wave scattering lengths shown in table 17, allows us

– 44 –

include levels in the region where the phase shift is expected to stay positive.
We are aware of two other LQCD results concerning p-wave fi

+
K

+ scattering. First,
Ref. [100], reports a single energy level far from threshold (at much higher energy than our
levels, and in the inelastic regime) that is dominated by p-wave interactions. There, the
p-wave fiK interactions seems repulsive, which is consistent with what experiments find at
those high energies. This result therefore gives no information concerning the scattering
length.

Second, Ref. [56] computed the p-wave scattering length at heavy meson masses,
Mfi ƒ 391 MeV and MK ƒ 549 MeV, and its sign and magnitude are consistent with
our results at lighter pion masses. We include this result with the label “HadSpec” in
the plot, although it is not strictly speaking comparable as Ref. [56] does not follow the
same chiral trajectory. We conclude that, overall, the results from LQCD are in qualitative
agreement with dispersive and experimental results.

0 2 4 6 8 10 12

(M�/F�)2

�2000

�1500

�1000

�500

0

500

1000

1500

2000

M
2 �
K

(�
�
K

)

LO ChPT

M2
�K0(��K)

M2
�K1(��K)

Figure 7. Results for K0 and K1 for fifiK scattering as a function of M
2
fi/F

2
fi . The LO SU(3)

ChPT predictions given in eq. (3.25) are also shown.

Finally, we compare our results for Kdf,3 for 2+1 systems to ChPT. In figures 7 and 8 we
plot the results for K0 and K1 for fifiK and KKfi scattering, respectively. We compare to
the LO ChPT predictions of eqs. (3.24) and (3.25), and find substantial disagreement, most
notably in the sign of K1, while the magnitudes are better matched. Similar disagreement
has been observed for 3fi and 3K systems [49]. There are two possible interpretations for
this disagreement. First, it may be that we have underestimated the errors in the determi-
nations of K0 and K1. One possibility is that discretization errors might be large, although
we present evidence against this option in section 5.3. Second, NLO terms in ChPT may
be substantial, and invalidate the LO result, such as in the case of M

2

Ka
KK
0 r

KK
0 discussed
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π+π+K+ K+K+π+

• Evidence for nonzero values (

• Overall effect of  is repulsive

• LO ChPT predicts opposite sign (but see later)

2−5σ)
𝒦df,3
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p-wave contributions to 𝒦df,3

27
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Figure 9. Results for KB and KE for fifiK scattering as a function of M
2
fi/F

2
fi . Fits to the expected

leading chiral behavior given in eq. (3.27) are plotted alongside the data. For better visibility, the
x-coordinates of the left-most datapoints have been shifted.
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Figure 10. Results for KB and KE for KKfi scattering as a function of M
2
fi/F

2
fi . Fits to the

expected leading chiral behavior given in eq. (3.28) are plotted alongside the data.

to find the value of this o�set, which we denote as follows,

”a(Ma0) = lim
Mfiæ0

Mfia
fifi
0 = ≠

(2w
Õ
6 + w

Õ
8)

16fi
. (5.5)
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π+π+K+
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Figure 9. Results for KB and KE for fifiK scattering as a function of M
2
fi/F

2
fi . Fits to the expected

leading chiral behavior given in eq. (3.27) are plotted alongside the data. For better visibility, the
x-coordinates of the left-most datapoints have been shifted.
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Figure 10. Results for KB and KE for KKfi scattering as a function of M
2
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fi . Fits to the

expected leading chiral behavior given in eq. (3.28) are plotted alongside the data.

to find the value of this o�set, which we denote as follows,

”a(Ma0) = lim
Mfiæ0

Mfia
fifi
0 = ≠

(2w
Õ
6 + w

Õ
8)

16fi
. (5.5)
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K+K+π+

• Evidence for nonzero values in some cases
•  is only contribution of  to nontrivial irreps

• Appear at NLO in ChPT—prediction not yet available

𝒦E 𝒦df,3

“ChPT-inspired” fit
“ChPT-inspired” fit



/39S. Sharpe, “Multiparticle Scattering”, Lecture 3, 7/19/2023,  Bad Honnef Summer School

Applications of the 

three-particle formalism:

NLO ChPT results for  

for 
𝒦df,3

3π+ → 3π+

28

[Baeza-Ballesteros, Bijnens, Husek, Romero-López, SRS, Sjö, 2303.13206]
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 K matrices vs ChPT2π/3π

29

 scattering length2π+  K matrix3π+

• LO ChPT describes 2-pion sector well 
• Large discrepancy in 3-pion sector!
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[Results from Blanton, Hanlon, Hörz, Morningstar, Romero-López, SRS, 2106.05590 (JHEP)]
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NLO ChPT for 𝒦df,3

30

= −

+ −

[
]

cutof

one-particle-exchange
diagrams

• Integral equations simplify to:

one-particle-exchange
subtraction

one-particle-irreducible
diagrams Bull’s-head subtraction

NLO 6-pion amplitude
computed in

[Bijnens, Husek 2107.06291]
[Bijnens, Husek, Sjö, 2206.14212]
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Threshold expansion for 𝒦df,3

31

•  is a real, smooth function which is Lorentz, P and T invariant

• Expand about threshold in powers of , , …

𝒦df,3

Δ = (s − 9M2
π)/9M2

π t̃ij = (p′￼i − pj)2/9M2
π

Depend on CM energy Angular dependence

+𝒪(Δ3)

• Can separate terms in fit based on dependence on energy and rotational properties

• E.g. only  contributes to nontrivial irreps𝒦B
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NLO ChPT results for 𝒦df,3

32

Numerical coefficients
Depend on cutoff H(k)

LECs

-dependence cancelsμ
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Comparison to LQCD

33

• (Very) large NLO corrections
• Discrepancy with LO ChPT resolved!

• ChPT not trustworthy for 𝒦1

Phenomenological LECs
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Comparison to LQCD

34

•  first appears at NLO in ChPT

• Discrepancy may be resolved by NNLO terms?

𝒦B

Phenomenological LECs
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Summary and Outlook

35
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Summary

36

• Two-particle sector is entering precision phase

• Frontier is two nucleons, which are more challenging for LQCD

• Major steps have been taken in the three-particle sector

• Formalism well established & cross checked, and almost complete

• Several applications to three-particle spectra from LQCD

• Initial discrepancy with LO ChPT explained by large NLO contributions

• Integral equations solved in several cases 

• Path to a calculation of  decay amplitudes is now openK → 3π

K+π+

π+

π+

π+π+
K++
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Example of complete application

3737

E0(L)

E1(L)

E2(L)

Kdf,3 M3

[Hansen, Briceño, Dudek, Edwards, Wilson (HADSPEC collaboration) 2009.04931 PRL 21]
4

of fits is given in Sec. 2 of the supplemental material. Both
strategies give consistent results and the key message is
that the full data set is well described by a constant K3,iso

that is consistent with zero, together with the leading-
order e↵ective range expansion: tan �(p) = �a0p with
K2(E?

2 ) = �16⇡E?

2 tan �(p)/p. Here the second equation
defines the S-wave scattering phase shift, �(p), and the
first defines the scattering length, a0. Our best fit, per-
formed simultaneously to all spectra shown in Fig. 1 but
with a cuto↵ in the center-of-momentum frame energies
included,6 yields

m⇡a0 = 0.296 ± 0.008
m2

⇡
K3,iso = �339 ± 770


1.0 0.6

1.0

�
, (4)

with a �2 per degree-of-freedom of 64.5/(37 � 2) = 1.84.
The square-bracketed matrix gives the correlation be-
tween the two fit parameters. This is consistent with the
previous determination of the scattering length at this
pion mass, presented in Ref. [56], and is also the value
used to generate the orange curves in Fig. 1 (together
with K3,iso = 0). In Fig. 2 we illustrate the same fit using
the darker cyan curves. In addition, we include the lighter
bands as a systematic uncertainty, estimated from the
spread of various constant and linear fits, as detailed in
Sec. 2 of the supplemental material.

3⇡+ scattering amplitude — Following the relativistic
integral equations presented in Ref. [5], we can write the
J = 0 and K3,iso = 0 amplitude as follows:
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M2 is the S-wave two-particle scattering amplitude,
introduced above, which depends on the invariant E?2
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(E3 � !k)2 � k2, with !k =
p

k2 + m2. The (u, u) super-
script emphasizes that specific spectator momenta, k and
p, are singled out in the initial and final states respec-
tively. The function Gs encodes the spectator exchange,
projected to the S-wave. It inherits a scheme dependence
through the smooth cuto↵ function H , defined in Eqs. (28)
and (29) of Ref. [4]. This scheme dependence is matched

6 This fit is denoted by B2+3 in Sec. 2 of the supplemental material.
As explained there, the fitted data includes all two-pion energies
below E?

2,cut = 3.4m⇡ and all three-pion energies below E?
3,cut =

4.4m⇡, with both cuto↵s applied to energies in the center-of-
momentum frame.
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by that inside of K3,iso such that the resulting scattering
amplitude is universal.

To use Eq. (5) in practice, one requires a parameteri-
zation for M2. As described in the previous section, the
⇡+⇡+ system is well described using the leading order
e↵ective range expansion for M2,
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strategies give consistent results and the key message is
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that is consistent with zero, together with the leading-
order e↵ective range expansion: tan �(p) = �a0p with
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2 tan �(p)/p. Here the second equation
defines the S-wave scattering phase shift, �(p), and the
first defines the scattering length, a0. Our best fit, per-
formed simultaneously to all spectra shown in Fig. 1 but
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included,6 yields
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with a �2 per degree-of-freedom of 64.5/(37 � 2) = 1.84.
The square-bracketed matrix gives the correlation be-
tween the two fit parameters. This is consistent with the
previous determination of the scattering length at this
pion mass, presented in Ref. [56], and is also the value
used to generate the orange curves in Fig. 1 (together
with K3,iso = 0). In Fig. 2 we illustrate the same fit using
the darker cyan curves. In addition, we include the lighter
bands as a systematic uncertainty, estimated from the
spread of various constant and linear fits, as detailed in
Sec. 2 of the supplemental material.
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projected to the S-wave. It inherits a scheme dependence
through the smooth cuto↵ function H , defined in Eqs. (28)
and (29) of Ref. [4]. This scheme dependence is matched
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As explained there, the fitted data includes all two-pion energies
below E?
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by that inside of K3,iso such that the resulting scattering
amplitude is universal.

To use Eq. (5) in practice, one requires a parameteri-
zation for M2. As described in the previous section, the
⇡+⇡+ system is well described using the leading order
e↵ective range expansion for M2,
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have presented the left-hand side as a function of the five
Lorentz invariants that survive after truncating to J = 0
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of fits is given in Sec. 2 of the supplemental material. Both
strategies give consistent results and the key message is
that the full data set is well described by a constant K3,iso

that is consistent with zero, together with the leading-
order e↵ective range expansion: tan �(p) = �a0p with
K2(E?
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2 tan �(p)/p. Here the second equation
defines the S-wave scattering phase shift, �(p), and the
first defines the scattering length, a0. Our best fit, per-
formed simultaneously to all spectra shown in Fig. 1 but
with a cuto↵ in the center-of-momentum frame energies
included,6 yields

m⇡a0 = 0.296 ± 0.008
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with a �2 per degree-of-freedom of 64.5/(37 � 2) = 1.84.
The square-bracketed matrix gives the correlation be-
tween the two fit parameters. This is consistent with the
previous determination of the scattering length at this
pion mass, presented in Ref. [56], and is also the value
used to generate the orange curves in Fig. 1 (together
with K3,iso = 0). In Fig. 2 we illustrate the same fit using
the darker cyan curves. In addition, we include the lighter
bands as a systematic uncertainty, estimated from the
spread of various constant and linear fits, as detailed in
Sec. 2 of the supplemental material.

3⇡+ scattering amplitude — Following the relativistic
integral equations presented in Ref. [5], we can write the
J = 0 and K3,iso = 0 amplitude as follows:
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M2 is the S-wave two-particle scattering amplitude,
introduced above, which depends on the invariant E?2
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k2 + m2. The (u, u) super-
script emphasizes that specific spectator momenta, k and
p, are singled out in the initial and final states respec-
tively. The function Gs encodes the spectator exchange,
projected to the S-wave. It inherits a scheme dependence
through the smooth cuto↵ function H , defined in Eqs. (28)
and (29) of Ref. [4]. This scheme dependence is matched

6 This fit is denoted by B2+3 in Sec. 2 of the supplemental material.
As explained there, the fitted data includes all two-pion energies
below E?

2,cut = 3.4m⇡ and all three-pion energies below E?
3,cut =

4.4m⇡, with both cuto↵s applied to energies in the center-of-
momentum frame.
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by that inside of K3,iso such that the resulting scattering
amplitude is universal.

To use Eq. (5) in practice, one requires a parameteri-
zation for M2. As described in the previous section, the
⇡+⇡+ system is well described using the leading order
e↵ective range expansion for M2,
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16⇡E?

2

�1/a0 � i
p

E?2
2 /4 � m2

⇡

. (8)

Following the derivation of Ref. [5], the final step is to
symmetrize with respect to the spectators, to reach

M3(s3, m
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13) =
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pi2Pp
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M
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where Pp = {p,a0, �p�a0

} and Pk = {k,a, �k�a}. We
have presented the left-hand side as a function of the five
Lorentz invariants that survive after truncating to J = 0

Mπ ≈ 390 MeV, a ≈ 0.12 fm, L ≈ 2.5 & 2.9 fm
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• Generalize formalism to broaden applications

• 3 nucleons with  (nnp & ppn)

•

• Accessing the WZW term: 

•

•

• Extend ChPT calculations to provide cross/sanity checks for  results

• NLO calculation for  underway

• Extend implementations using LQCD simulations

•  at physical quark masses

•  three-particle resonances ( , …)

• Extend applications of integral equations in the presence of three-particle 
resonances, e.g. 

• Move on to 4 particles!

I = 1
2

Tcc(3875, I = 0, JP = 1+?) → D0D0π+, D+D0π0, D+D+π−

KK̄ ↔ π+π0π−(I = 0)

N(1440, JP = 1
2

+
) → Nπ, Nππ

JPC, IG = 1−+,1− : π1(1600) → ηπ, 3π, KKππ, ηπππ, 5π

𝒦df,3

I = 0,1,2

3π+, 3K+, π+π+K+, K+K+π+

I = 0,1 ω, a1

Tcc



/39S. Sharpe, “Multiparticle Scattering”, Lecture 3, 7/19/2023,  Bad Honnef Summer School

ExoHad collaboration
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exohad.org
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• M. Mai & M. Döring, 1807.04746 , PRL [3 pion spectrum at finite-volume from FVU]

• M. Mai et al., 1909.05749 ,PRD [applying FVU approach to spectrum from Hanlon & Hörz]

• C. Culver et al., 1911.09047, PRD [calculating  spectrum and comparing with FVU predictions]

• A. Alexandru et al., 2009.12358 , PRD [calculating  spectrum and comparing with FVU predictions]

• R. Brett et al., 2101.06144, PRD [determining  interaction from LQCD spectrum]

• M. Mai et al., 2107.03973, PRL [three-body dynamics of the  from LQCD]

• D. Dasadivan et al., 2112.03355, PRD [pole position of  in a unitary framework]

3π+

3π+

3K−

3π+

a1(1260)

a1(1260)

★HALQCD approach 


• T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

http://arxiv.org/abs/arXiv:1709.08222
http://arxiv.org/abs/arXiv:1706.06118
https://arxiv.org/abs/1809.10523
http://arxiv.org/abs/arXiv:1807.04746
https://arxiv.org/abs/1909.05749
https://arxiv.org/abs/1911.09047
https://arxiv.org/abs/2009.12358
https://arxiv.org/abs/2101.06144
https://arxiv.org/abs/2107.03973
https://arxiv.org/abs/2112.03355
http://arxiv.org/abs/arXiv:1106.2276
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• In RFT derivation, need cutoff function to truncate matrix indices and to avoid LH cut

• Must be smooth to avoid power-law finite-volume (FV) effects

• May be possible to raise the cutoff, following the arguments used to relativize the NREFT 
approach [F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, 2110.09351, JHEP]

Form for degenerate particles

H(p)

x = σp /(4M2)

In the definition of G, Eq. (21), we are using the notation
described in Eqs. (1)–(10), with ~p in place of ~a. Observe in
particular that G makes use of the off shell phase space
described in the paragraph containing Eq. (10). Since both
~k and ~p can equal any finite-volume three momentum,
ðE − ωk − ωp; ~bpkÞ will generally not be on shell. For this

reason the magnitude of ~k# (defined via a boost with
velocity ~βp) and that of ~p# (boost velocity ~βk) are uncon-
strained. These magnitudes appear in the factors ðk#=q#pÞl

0

and ðp#=q#kÞl, which remove singularities due to the
spherical harmonics and so ensure that G is nonsingular
for ~k# or ~p# equal to zero. [A similar factor ða#=q#kÞlþl0

appears in F for the same reason.]
The final ingredient in G is the function H (which

appears also in F). The role of H is to provide a smooth
ultraviolet cutoff on the sum over spectator momentum.
There are two cutoff functions, Hð~pÞ and Hð~kÞ, because G
has different spectator momenta in its left- and right-hand
indices (~p and ~k, respectively). To understand the need for
the cutoff we note that, for fixed ðE; ~PÞ, as the spectator
momentum (say ~k) increases in magnitude, the energy
momentum of the other two particles falls below threshold,
E#
2;k < 2m. Now, in the quantization condition (18), the

determinant runs over all values of spectator momentum,
which leads to values of E#2

2;k arbitrarily far below threshold.
Once E#2

2;k ≤ 0, however, the boost needed to define p#

becomes unphysical (jβkj ≥ 1). The cutoff function Hð~kÞ
resolves this issue. It has the properties

Hð~kÞ ¼
!
0; E#2

2;k ≤ 0;

1; ð2mÞ2 < E#2
2;k;

ð27Þ

where the first condition removes unphysical boosts and
the second ensures that the cutoff does not change the
contributions from on shell intermediate states. In the
intermediate region, 0 < E#2

2;k < ð2mÞ2, Hð~kÞ interpolates
between 0 and 1. For reasons that will become clear in the
derivation below, this interpolation must be smooth. An
example of a function which does the job is

Hð~kÞ≡ JðE#2
2;k=½4m2'Þ; ð28Þ

with

JðxÞ≡

8
>><

>>:

0; x ≤ 0;

exp
"
− 1

x exp
#
− 1

1−x

$%
; 0 < x ≤ 1;

1; 1 < x:

ð29Þ

This function is plotted in Fig. 3.
It would also be consistent with the requirements stated

so far to have H remain smooth but transition more rapidly

from 0 to 1. In that case, however, the difference between a
sum and an integral over H will be enhanced,

#
1

L3

X

~k

−
Z

~k

$
Hð~kÞ ¼ Oðe−ΔLÞ; ð30Þ

with Δ being the width of the dropoff region. Since these
corrections are neglected, an enhancement from using too
small a width would invalidate our final result. We must
thus additionally require

#
1

L3

X

~k

−
Z

~k

$
Hð~kÞ ¼ Oðe−mLÞ: ð31Þ

In other words we must ensure thatm is the smallest energy
scale in the problem, and thus take Δ ≈m. The form
sketched in Fig. 3 satisfies this requirement.
The appearance of subthreshold momenta is a general

feature of the three-particle quantization condition, as first
pointed out in Ref. [13]. Indeed, for spectator momenta
such that 0 < E#2

2;k < ð2mÞ2, the two-particle K-matrices in
F3 are evaluated below threshold. Our modified PV
prescription [denoted fPV and defined in Eqs. (59) and
(64) below] ensures that this is achieved by analytic
continuation.8 The cutoff functions in G (and in F) ensure
that these subthreshold contributions are absent for
E#2
2;k ≤ 0. The three-particle amplitude Kdf;3 must also be

FIG. 3 (color online). The smooth cutoff function Hð~kÞ≡ JðxÞ
with x ¼ E#2

2;k=½4m2'. The function varies from 0 to 1 as E#2
2;k ≡

ðE − ωkÞ2 − ð~P − ~kÞ2 varies from 0 to 4m2. Using this range of
variation ensures that the function has width Δ ≈m in the space
of spectator momentum ~k.

8This is in distinction to the standard PV prescription, which
leads to a cusp in K2 at threshold. Our definition is the same as
that used in studies of bound-state energies using Lüscher’s
two-particle quantization condition (see, e.g., Refs. [23,24]).
In particular, the quantity ða#Þ2lþ1 cot δlða#Þ has a Taylor
expansion in ða#Þ2 that can be analytically continued to
ða#Þ2 < 0.

MAXWELL T. HANSEN AND STEPHEN R. SHARPE PHYSICAL REVIEW D 90, 116003 (2014)
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p

} Invariant mass-squared
σp{

Spectator momentum

(E, P)

Position of left-hand 
cut in pair interaction 

(  or ):𝒦2 ℳ2
s = u = 0, t = 4M2

https://arxiv.org/abs/2110.09351
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• For nondegenerate particles, LH cut moves, and must change cutoff function accordingly

Assume  :Mj < Mk
j j

j j

k k

s

t

t = 4M2
j = 4M2

min, jk

s = u = |M2
k − M2

j | > 0

H(p)

x = (1 + ϵH)
σp − |M2

k − M2
j |

(Mj + Mk)2 − |M2
k − M2

j |

In the definition of G, Eq. (21), we are using the notation
described in Eqs. (1)–(10), with ~p in place of ~a. Observe in
particular that G makes use of the off shell phase space
described in the paragraph containing Eq. (10). Since both
~k and ~p can equal any finite-volume three momentum,
ðE − ωk − ωp; ~bpkÞ will generally not be on shell. For this

reason the magnitude of ~k# (defined via a boost with
velocity ~βp) and that of ~p# (boost velocity ~βk) are uncon-
strained. These magnitudes appear in the factors ðk#=q#pÞl

0

and ðp#=q#kÞl, which remove singularities due to the
spherical harmonics and so ensure that G is nonsingular
for ~k# or ~p# equal to zero. [A similar factor ða#=q#kÞlþl0

appears in F for the same reason.]
The final ingredient in G is the function H (which

appears also in F). The role of H is to provide a smooth
ultraviolet cutoff on the sum over spectator momentum.
There are two cutoff functions, Hð~pÞ and Hð~kÞ, because G
has different spectator momenta in its left- and right-hand
indices (~p and ~k, respectively). To understand the need for
the cutoff we note that, for fixed ðE; ~PÞ, as the spectator
momentum (say ~k) increases in magnitude, the energy
momentum of the other two particles falls below threshold,
E#
2;k < 2m. Now, in the quantization condition (18), the

determinant runs over all values of spectator momentum,
which leads to values of E#2

2;k arbitrarily far below threshold.
Once E#2

2;k ≤ 0, however, the boost needed to define p#

becomes unphysical (jβkj ≥ 1). The cutoff function Hð~kÞ
resolves this issue. It has the properties

Hð~kÞ ¼
!
0; E#2

2;k ≤ 0;

1; ð2mÞ2 < E#2
2;k;

ð27Þ

where the first condition removes unphysical boosts and
the second ensures that the cutoff does not change the
contributions from on shell intermediate states. In the
intermediate region, 0 < E#2

2;k < ð2mÞ2, Hð~kÞ interpolates
between 0 and 1. For reasons that will become clear in the
derivation below, this interpolation must be smooth. An
example of a function which does the job is

Hð~kÞ≡ JðE#2
2;k=½4m2'Þ; ð28Þ

with

JðxÞ≡

8
>><

>>:

0; x ≤ 0;

exp
"
− 1

x exp
#
− 1

1−x

$%
; 0 < x ≤ 1;

1; 1 < x:

ð29Þ

This function is plotted in Fig. 3.
It would also be consistent with the requirements stated

so far to have H remain smooth but transition more rapidly

from 0 to 1. In that case, however, the difference between a
sum and an integral over H will be enhanced,

#
1

L3

X

~k

−
Z

~k

$
Hð~kÞ ¼ Oðe−ΔLÞ; ð30Þ

with Δ being the width of the dropoff region. Since these
corrections are neglected, an enhancement from using too
small a width would invalidate our final result. We must
thus additionally require

#
1

L3

X

~k

−
Z

~k

$
Hð~kÞ ¼ Oðe−mLÞ: ð31Þ

In other words we must ensure thatm is the smallest energy
scale in the problem, and thus take Δ ≈m. The form
sketched in Fig. 3 satisfies this requirement.
The appearance of subthreshold momenta is a general

feature of the three-particle quantization condition, as first
pointed out in Ref. [13]. Indeed, for spectator momenta
such that 0 < E#2

2;k < ð2mÞ2, the two-particle K-matrices in
F3 are evaluated below threshold. Our modified PV
prescription [denoted fPV and defined in Eqs. (59) and
(64) below] ensures that this is achieved by analytic
continuation.8 The cutoff functions in G (and in F) ensure
that these subthreshold contributions are absent for
E#2
2;k ≤ 0. The three-particle amplitude Kdf;3 must also be

FIG. 3 (color online). The smooth cutoff function Hð~kÞ≡ JðxÞ
with x ¼ E#2

2;k=½4m2'. The function varies from 0 to 1 as E#2
2;k ≡

ðE − ωkÞ2 − ð~P − ~kÞ2 varies from 0 to 4m2. Using this range of
variation ensures that the function has width Δ ≈m in the space
of spectator momentum ~k.

8This is in distinction to the standard PV prescription, which
leads to a cusp in K2 at threshold. Our definition is the same as
that used in studies of bound-state energies using Lüscher’s
two-particle quantization condition (see, e.g., Refs. [23,24]).
In particular, the quantity ða#Þ2lþ1 cot δlða#Þ has a Taylor
expansion in ða#Þ2 that can be analytically continued to
ða#Þ2 < 0.
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• Same functional form, but 
argument adjusted so 

 vanishes at position 
of left-hand cut

• Strictly speaking, to avoid 
power-law FV effects, 
need  (though in 
practice set to zero) 

H(p)

ϵH > 0


