
Graduate QM (PHYS 517) Handout 11/23/10
WKB approximation and applications

Calculations in these notes are done with the Mathematica notebook wkb.nb,
which is posted on the class web site.

1 Oscillator with a hard wall

The potential is

V (x) =

{
mω2

2
x2 −a < x < a

∞ a ≤ |x| (1)

As discussed in class, the WKB wavefunction is

uWKB(x) ∝ 1√
k(x)

sin
[∫ x

−a
dx′k(x′)

]
, (|x| ≤ a) , (2)

where

k(x) =

√
2m(E − V (x))

h̄
. (3)

In order for uWKB(a) = 0, we need∫ +a

−a
k(x)dx = nπ , n = 1, 2, 3, . . . (4)

This result is valid as long as

E ≥ V (a) =
mω2a2

2
, (5)

for otherwise the turning points occur for |x| < a, and the BC we have used are
invalid. (In this case, one needs to do a standard WKB analysis, matching to
exponentially falling solutions.)

It is convenient to measure energies relative to the ground state oscillator energy,
E0 = h̄ω/2 and distances relative to

√
2 times the ground-state oscillator spread,

x0 =
√

2〈x2〉g.s. =

√
h̄

mω
. (6)

Thus we use
ε = E/E0 , and ã = a/x0 . (7)

Doing the integral, one finds that the WKB condition becomes

nπ = ε

(
θ0 +

sin(2θ0)

2

)
, sin θ0 =

ã√
ε
. (8)

1



-1.0 -0.5 0.5 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Comparison of exact wavefunction for ground state in cut-off SHO
(red) with WKB wavefunction (blue). Horizontal scale is x/x0; vertical scale is
arbitrary. Both wavefunctions have the same slope at x/x0 = −1.

This is a non-linear condition that can be solved numerically. The validity
requirement (5) simplifies to ε > ã2 in our new variables.

For ã = 1 the energies are given in Table 1, and compared with the exact
energies. The WKB approximation improves as n increases. The exact and
WKB wavefuctions for n = 1, 2 are shown in Figs. 1 and 2.

n EWKB Eexact

1 2.81 2.60
2 10.21 10.15
3 22.54 22.51
4 39.81 39.80

Table 1: Comparison of bound-state energies from WKB approximation and
“exact” result (obtained numerically) for cut-off SHO potential with ã = 1.

2 Airy functions

In the neighborhood of a turning point, and using in suitable variables, Schrödinger’s
equation becomes the equation

d2u(z)

dz2
= zu(z) , (9)
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Figure 2: As for Fig. 1 but for first excited state. The difference between exact
and approximate wavefunctions are only visible at the peak and trough.

whose solutions are Airy functions. (Here we have chosen to consider a turning
point where the classically allowed region is z < 0.) The two standard solutions
are labeled Ai(z) and Bi(z). The former falls to zero as z →∞, while the latter
grows to infinity. Thus we are interested in Ai(z) for normalizable solutions.

As discussed in class, it turns out that the WKB approximation applied to this
equation leads to the leading term in the asymptotic expansion of the Airy
functions as |z| → ∞. For Ai(z) the explicit forms are

Ai(z)
z→+∞−→ 1

2
√

πz1/4
exp

(
−2z3/2/3

) [
1 + O(z−3/2)

]
, (10)

z→−∞−→ 1√
π|z|1/4

cos
(
2|z|3/2/3− π/4

) [
1 + O(|z|−3/2)

]
. (11)

Figure 3 compares Ai(z) to the asymptotic forms, showing that they work well
for |z| > 1.

For completeness, Fig. 4 compares Ai(z) and Bi(z).

3 Quartic potential in WKB approximation

Here we apply the WKB quantization condition,

∫ x2

x1

dx

√
2m(E − V (x))

h̄
= (n + 1/2)π (12)
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Figure 3: Airy function Ai(z) (blue) compared to its asymptotic forms (dashed
red).
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Figure 4: Comparison of Ai(z) (blue) and Bi(z) (red).
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(where x1,2 are the classical turning points) to the quartic potential

V (x) = V0(x/x0)
4 . (13)

This parametrization is redundant (V0 could be absorbed into x0) but allows
the units to be kept straight more easily.

Doing the integral, one finds

En = E0

(
(n + 1/2)π

I

)4/3

, n = 0, 1, 2, . . .

I =
∫ +1

−1
dy
√

1− y4 ≈ 1.74804

E0 =

 h̄2V
1/2
0

2mx2
0

2/3

.

The first five energy levels are given in Table 3. The WKB approximation does
increasingly well as n increases.

n EWKB/E0 Eexact/E0

0 0.87 1.06
1 3.75 3.80
2 7.41 7.46
3 11.61 11.64
4 16.23 16.26

Table 2: Comparison of bound-state energies from WKB approximation and
“exact” result (obtained numerically) for quartic potential.

The “exact” (from numerical solution) and WKB wavefunctions are compared
in Fig. 5. The horizontal axis is x/L, where

L =

(
h̄2x4

0

2mV0

)1/6

(14)

is the distance at which V (L) = E0. Both solutions are normalized to equal
unity for x = 0. (Normalizing the inside solution automatically normalizes
the outside solution through the matching formula.) One sees that the WKB
approximant captures only a small part of the inside wavefunction.

The figure also shows the Airy function which “does” the matching (normalized
to match the exact wavefunction at the turning point). One sees that it actually
matches quite poorly onto the WKB solutions. This is because keeping only the
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Figure 5: Comparison of exact ground-state (n = 0) wavefunction (blue) and
WKB approximants (red). The orange curve shows the Airy function solution
that is used to match across the turning point. For more details see text.

leading term in the Taylor expansion of the potential about the turning point
is accurate only for a very small neighborhood of the turning point in this case.

Similar plots for n = 2, 4, 8 are shown in Figs. 6, 7 and 8, respectively. The
WKB wavefunction captures the exact behavior inside and outside increasingly
well (there is hardly any blue curve visible!), but it is only at n = 8 that we can
see the Airy function match onto the inside wavefunction. Note that it is not
expected that the Airy function match the WKB curve away from the turning
point—they are solutions to a different problem.
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n=2

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Figure 6: As for Fig. 5 except for the n = 2 state.

n=4
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Figure 7: As for Fig. 5 except for the n = 4 state.
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n=8
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Figure 8: As for Fig. 5 except for the n = 8 state.
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