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Numerical Methods (See, e.g., Mathematical Methods of Physics, by Mathews &
Walker, Computational Physics, by Koonin, and Numerical Recipes by Press)

Imagine, as is often the case, that we know that the derivative of a function is given in
terms of another function(al) of the original function and the free variable, e.g.,

  , .y t f t y (NM.1)

We also know that 0 0y t y and we want to use this information to (numerically)
find y at other values of t, i.e., numerically solve the above equation. Previously we
have considered cases where there is no t dependence on the right-hand-side and
proceeded by separating variables and writing
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Even in this case we may not be able to perform the integral analytically and want to
use numerical methods. A common method for numerically estimating an integral is
to use Simpson’s rule. Suppose we want to evaluate
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I f x dx (NM.3)

with f x a known (but presumably complicated) function. Simpson says that we
should divide the interval x b a  into n (n = even) smaller equal intervals, h x n
and calculate
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We could apply this method above to find the time to go from 0y to 1y , i.e.,
 1 0h y y n  . Using such a method one can test the reliability of the result by
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looking at how rapidly the numerical result varies as n is varied. Clearly one expects
arbitrarily accurate results as n .

Returning to the original problem, Eq. (NM.1), a typical approach would be to use the
Runge-Kutta method. By using Taylor series expansion we can show that a good
estimate of  0y t  (to order 5 ) is provided by
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This result is, in fact quite similar to the Simpson result. To see where this comes
from we define  0 0 0,f f t y ,  0 00 ,t y

f f y  ,  0 00 ,t y
f f t  , etc. With this notation we

can expand the above expressions (in general to arbitrary order, but here to order 4 )
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Thus, if we take the Runge-Kutta combination for the change in the function, we have
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On the other hand we find by (tediously) taking derivatives directly
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Thus, as advertised, the Runge-Kutta expression is the appropriate expansion, i.e., the
Taylor series. Clearly the Runge-Kutta notation is much more compact!


