Numerical Methods (See, e.g., Mathematical Methods of Physics, by Mathews \& Walker, Computational Physics, by Koonin, and Numerical Recipes by Press)

Imagine, as is often the case, that we know that the derivative of a function is given in terms of another function(al) of the original function and the free variable, e.g.,

$$
\begin{equation*}
\dot{y}(t)=f(t, y) \tag{NM.1}
\end{equation*}
$$

We also know that $y\left(t_{0}\right)=y_{0}$ and we want to use this information to (numerically) find y at other values of t, i.e., numerically solve the above equation. Previously we have considered cases where there is no t dependence on the right-hand-side and proceeded by separating variables and writing

$$
\begin{equation*}
d t=\frac{d y}{f(y)} \Rightarrow t-t_{0}=\int_{y_{0}}^{y} \frac{d y^{\prime}}{f\left(y^{\prime}\right)} \tag{NM.2}
\end{equation*}
$$

Even in this case we may not be able to perform the integral analytically and want to use numerical methods. A common method for numerically estimating an integral is to use Simpson's rule. Suppose we want to evaluate

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \tag{NM.3}
\end{equation*}
$$

with $f(x)$ a known (but presumably complicated) function. Simpson says that we should divide the interval $\Delta x=b-a$ into $n(n=$ even) smaller equal intervals, $h=\Delta x / n$ and calculate

$$
\begin{align*}
& I \simeq \frac{h}{3}[f(a)+4 f(a+h)+2 f(a+2 h)+4 f(a+3 h)+2 f(a+4 h) \\
&+\ldots+2 f(b-2 h)+4 f(b-h)+f(b)] \tag{NM.4}
\end{align*}
$$

We could apply this method above to find the time to go from y_{0} to y_{1}, i.e., $h=\left(y_{1}-y_{0}\right) / n$. Using such a method one can test the reliability of the result by
looking at how rapidly the numerical result varies as n is varied. Clearly one expects arbitrarily accurate results as $n \rightarrow \infty$.

Returning to the original problem, Eq. (NM.1), a typical approach would be to use the Runge-Kutta method. By using Taylor series expansion we can show that a good estimate of $y\left(t_{0}+\delta\right)$ (to order δ^{5}) is provided by

$$
\begin{align*}
& y\left(t_{0}+\delta\right) \simeq y_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)\left[+O\left(\delta^{5}\right)\right] \\
& k_{1}=\delta f\left(t_{0}, y_{0}\right) \\
& k_{2}=\delta f\left(t_{0}+\frac{\delta}{2}, y_{0}+\frac{k_{1}}{2}\right) \tag{NM.5}\\
& k_{3}=\delta f\left(t_{0}+\frac{\delta}{2}, y_{0}+\frac{k_{2}}{2}\right), \\
& k_{4}=\delta f\left(t_{0}+\delta, y_{0}+k_{3}\right) .
\end{align*}
$$

This result is, in fact quite similar to the Simpson result. To see where this comes from we define $f_{0}=f\left(t_{0}, y_{0}\right), f_{0}^{\prime}=\partial f / \partial y_{\left(t, v v_{0}\right.}, \dot{f}_{0}=\partial f /\left.\partial t\right|_{\left(t_{0}, v_{0}\right)}$, etc. With this notation we can expand the above expressions (in general to arbitrary order, but here to order δ^{4})

$$
\begin{aligned}
k_{1}= & \delta f_{0}, \\
k_{2} \simeq & \delta\left[f_{0}+\frac{\delta}{2} \dot{f}_{0}+\frac{k_{1}}{2} f_{0}^{\prime}+\frac{\delta^{2}}{4 \cdot 2} \ddot{f}_{0}+2 \frac{\delta k_{1}}{4 \cdot 2} \dot{f}_{0}^{\prime}+\frac{k_{1}^{2}}{4 \cdot 2} f_{0}^{\prime \prime}\right. \\
& \left.+\frac{\delta^{3}}{8 \cdot 6} \dddot{f}_{0}+\frac{3}{8 \cdot 6} \delta^{2} k_{1} \ddot{f}_{0}^{\prime}+\frac{3}{8 \cdot 6} \delta k_{1}^{2} \dot{f}_{0}^{\prime \prime}+\frac{k_{1}^{3}}{8 \cdot 6} f_{0}^{\prime \prime \prime}\right]+O\left(\delta^{5}\right) \\
=\delta[& f_{0}+\frac{\delta}{2} \dot{f}_{0}+\frac{\delta}{2} f_{0} f_{0}^{\prime}+\frac{\delta^{2}}{8} \ddot{f}_{0}+\frac{\delta^{2}}{4} f_{0} \dot{f}_{0}^{\prime}+\frac{\delta^{2}}{8} f_{0}^{2} f_{0}^{\prime \prime} \\
& \left.+\frac{\delta^{3}}{48} \dddot{f}_{0}+\frac{1}{16} \delta^{3} f_{0} \ddot{f}_{0}^{\prime}+\frac{1}{16} \delta^{3} f_{0}^{2} \dot{f}_{0}^{\prime \prime}+\frac{\delta^{3}}{48} f_{0}^{3} f_{0}^{\prime \prime \prime}\right]+O\left(\delta^{5}\right), \\
=\delta & f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)+\frac{\delta^{3}}{8}\left(\ddot{f}_{0}+2 f_{0} \dot{f}_{0}^{\prime}+f_{0}^{2} f_{0}^{\prime \prime}\right) \\
& +\frac{\delta^{4}}{48}\left(\dddot{f_{0}}+3 f_{0} \ddot{f}_{0}^{\prime}+3 f_{0}^{2} \dot{f}_{0}^{\prime \prime}+f_{0}^{3} f^{\prime \prime \prime}\right)+O\left(\delta^{5}\right),
\end{aligned}
$$

$$
\begin{align*}
k_{3}= & \delta\left[f_{0}+\frac{\delta}{2} \dot{f}_{0}+\frac{k_{2}}{2} f_{0}^{\prime}+\frac{\delta^{2}}{4 \cdot 2} \ddot{f}_{0}+2 \frac{\delta k_{2}}{4 \cdot 2} \dot{f}_{0}^{\prime}+\frac{k_{2}^{2}}{4 \cdot 2} f_{0}^{\prime \prime}\right. \\
& \left.+\frac{\delta^{3}}{8 \cdot 6} \dddot{f_{0}}+\frac{3}{8 \cdot 6} \delta^{2} k_{2} \ddot{f}_{0}^{\prime}+\frac{3}{8 \cdot 6} \delta k_{2}^{2} \dot{f}_{0}^{\prime \prime}+\frac{k_{2}^{3}}{8 \cdot 6} f_{0}^{\prime \prime \prime}\right]+O\left(\delta^{5}\right) \\
= & \delta\left[f_{0}+\frac{\delta}{2} \dot{f}_{0}+\frac{1}{2}\left\{\delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)+\frac{\delta^{3}}{8}\left(\ddot{f}_{0}+2 f_{0} \dot{f}_{0}^{\prime}+f_{0}^{2} f_{0}^{\prime \prime}\right)\right\} f_{0}^{\prime}\right. \\
& +\frac{\delta^{2}}{8} \ddot{f}_{0}+\frac{\delta}{4}\left\{\delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)\right\} \dot{f}_{0}^{\prime}+\frac{1}{8}\left\{\delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)\right\}^{2} f_{0}^{\prime \prime} \\
& \left.+\frac{\delta^{3}}{48} \dddot{f}_{0}+\frac{1}{16} \delta^{2}\left\{\delta f_{0}\right\} \ddot{f}_{0}^{\prime}+\frac{1}{16} \delta\left\{\delta f_{0}\right\}^{2} \dot{f}_{0}^{\prime \prime}+\frac{\delta^{3}}{48} f_{0}^{3} f_{0}^{\prime \prime \prime}\right]+O\left(\delta^{5}\right) \\
= & \delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)+\frac{\delta^{3}}{8}\left\{\ddot{f}_{0}+2 f_{0} \dot{f}_{0}^{\prime}+2\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right) f_{0}^{\prime}+f_{0}^{2} f_{0}^{\prime \prime}\right\} \\
+ & \frac{\delta^{4}}{16}\left\{\ddot{f}_{0} f_{0}^{\prime}+4 f_{0} f_{0}^{\prime} \dot{f}_{0}^{\prime}+3 f_{0}^{2} f_{0}^{\prime} f^{\prime \prime}+2 \dot{f}_{0} \dot{f}_{0}^{\prime}+2 f_{0} \dot{f}_{0} f_{0}^{\prime \prime}\right. \\
+ & \left.\frac{1}{3} \dddot{f_{0}}+f_{0} \ddot{f}_{0}^{\prime}+f_{0}^{2} \dot{f}_{0}^{\prime \prime}+\frac{1}{3} f_{0}^{3} f_{0}^{\prime \prime \prime}\right\}+O\left(\delta^{5}\right), \tag{NM.7}
\end{align*}
$$

$$
\begin{align*}
k_{4} \simeq & \delta\left[f_{0}+\delta \dot{f}_{0}+k_{3} f_{0}^{\prime}+\frac{\delta^{2}}{2} \ddot{f}_{0}+2 \frac{\delta k_{3}}{2} \dot{f}_{0}^{\prime}+\frac{k_{3}^{2}}{2} f_{0}^{\prime \prime}\right. \\
& \left.+\frac{\delta^{3}}{6} \dddot{f}_{0}+\frac{3}{6} \delta^{2} k_{3} \ddot{f}_{0}^{\prime}+\frac{3}{6} \delta k_{3}^{2} \dot{f}_{0}^{\prime \prime}+\frac{k_{3}^{3}}{6} f_{0}^{\prime \prime \prime}\right]+O\left(\delta^{5}\right) \\
= & \delta\left[f_{0}+\delta \dot{f}_{0}+\left(\delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)\right.\right. \\
& \left.+\frac{\delta^{3}}{8}\left\{\ddot{f}_{0}+2 f_{0} \dot{f}_{0}^{\prime}+2\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right) f_{0}^{\prime}+f_{0}^{2} f_{0}^{\prime \prime}\right\}\right) f_{0}^{\prime} \\
& +\frac{\delta^{2}}{2} \ddot{f}_{0}+\delta\left(\delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)\right) \dot{f}_{0}^{\prime}+\frac{\left(\delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)\right)^{2}}{2} f_{0}^{\prime \prime} \\
& \left.+\frac{\delta^{3}}{6} \dddot{f}_{0}+\frac{\delta^{2}}{2}\left(\delta f_{0}\right) \ddot{f}_{0}^{\prime}+\frac{\delta}{2}\left(\delta f_{0}\right)^{2} \dot{f}_{0}^{\prime \prime}+\frac{\left(\delta f_{0}\right)^{3}}{6} f_{0}^{\prime \prime \prime}\right]+O\left(\delta^{5}\right) \\
= & \delta f_{0}+\delta^{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right)+\frac{\delta^{3}}{2}\left\{\dot{f}_{0} f_{0}^{\prime}+f_{0}\left(f_{0}^{\prime}\right)^{2}+\ddot{f}_{0}+2 f_{0} \dot{f}^{\prime}+f_{0}^{2} f_{0}^{\prime \prime}\right\} \\
& +\frac{\delta^{4}}{8}\left(\ddot{f}_{0} f_{0}^{\prime}+6 f_{0} \dot{f}_{0}^{\prime} f_{0}^{\prime}+2\left(\dot{f}_{0}\left(f_{0}^{\prime}\right)^{2}+f_{0}\left(f_{0}^{\prime}\right)^{3}\right)+5 f_{0}^{2} f_{0}^{\prime} f_{0}^{\prime \prime}+4 \dot{f}_{0} \dot{f}_{0}^{\prime}\right. \\
& \left.+4 f_{0} \dot{f}_{0} f_{0}^{\prime \prime}+\frac{4}{3} \dddot{f_{0}}+4 f_{0} \ddot{f}_{0}^{\prime}+4 f_{0}^{2} \dot{f}_{0}^{\prime \prime}+\frac{4}{3} f_{0}^{3} f_{0}^{\prime \prime \prime}\right)+O\left(\delta^{5}\right) \tag{NM.8}
\end{align*}
$$

Thus, if we take the Runge-Kutta combination for the change in the function, we have

$$
\begin{aligned}
& \frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)=\delta f_{0}+\frac{\delta^{2}}{2}\left(\dot{f}_{0}+f_{0} f_{0}^{\prime}\right) \\
& \quad+\frac{\delta^{3}}{6}\left(\ddot{f}_{0}+2 f_{0} \dot{f}_{0}^{\prime}+f_{0}\left(f_{0}^{\prime}\right)^{2}+\dot{f}_{0} f_{0}^{\prime}+f_{0}^{2} f_{0}^{\prime \prime}\right) \\
& \quad+\frac{\delta^{4}}{24}\left(\dddot{f}_{0}+\ddot{f}_{0} f_{0}^{\prime}+3 f_{0} \ddot{f}_{0}^{\prime}+3 \dot{f}_{0} \dot{f}_{0}^{\prime}+5 f_{0} f_{0}^{\prime} \dot{f}_{0}^{\prime}+3 f_{0}^{2} \dot{f}_{0}^{\prime \prime}\right. \\
& \left.\quad+3 f_{0} \dot{f}_{0} f_{0}^{\prime \prime}+\dot{f}_{0}\left(f_{0}^{\prime}\right)^{2}+4 f_{0}^{2} \dot{f}_{0} f_{0}^{\prime \prime}+f_{0}\left(f_{0}^{\prime}\right)^{3}+f_{0}^{3} f_{0}^{\prime \prime \prime}\right)
\end{aligned}
$$

(NM.9)

On the other hand we find by (tediously) taking derivatives directly

$$
\begin{align*}
\dot{y}\left(t_{0}\right)= & f_{0}, \\
\ddot{y}\left(t_{0}\right)= & \dot{f}_{0}+f_{0} f_{0}^{\prime}, \\
\dddot{y}\left(t_{0}\right)= & \ddot{f}_{0}+2 f_{0} \dot{f}_{0}^{\prime}+f_{0}\left(f_{0}^{\prime}\right)^{2}+\dot{f}_{0} f_{0}^{\prime}+f_{0}^{2} f_{0}^{\prime \prime} \tag{NM.10}\\
\dddot{y}\left(t_{0}\right)= & \dddot{f}_{0}+\ddot{f}_{0} f_{0}^{\prime}+3 f_{0} \dddot{f}_{0}^{\prime}+3 \dot{f}_{0} \dot{f}_{0}^{\prime}+5 f_{0} f_{0}^{\prime} \dot{f}_{0}^{\prime}+3 f_{0}^{2} \dot{f}_{0}^{\prime \prime} \\
& +3 f_{0} \dot{f}_{0} f_{0}^{\prime \prime}+\dot{f}_{0}\left(f_{0}^{\prime}\right)^{2}+4 f_{0}^{2} \dot{f}_{0} f_{0}^{\prime \prime}+f_{0}\left(f_{0}^{\prime}\right)^{3}+f_{0}^{3} f_{0}^{\prime \prime \prime}
\end{align*}
$$

Thus, as advertised, the Runge-Kutta expression is the appropriate expansion, i.e., the Taylor series. Clearly the Runge-Kutta notation is much more compact!

