CONTENTS

Preface	vii
I. INTRODUCTION	1
A. Interfaces	1
B. Colloids	4
C. The bridge to nanoscience	10
1. What is "nanoscience?"	10
2. Nanostructures and assemblies	12
3. Generic nanoscience	17
4. New tools of generic nanoscience	18
5. The plan	22
II. FLUID INTERFACES AND CAPILLARITY	23
A. Fluid interfaces: Young's membrane model	23
1. The thinness of interfaces	23
2. Definition of surface tension	25
B. The surface tension of liquids	26
1. Pure liquids	26
2. Temperature dependence of surface tension	27
3. Surface tension of solutions	29
C. Intermolecular forces and the origin of surface tension	31
1. Van der Waals forces	31
2. Surface tension as "unbalanced" intermolecular forces;	
the Hamaker constant	35
3. Pressure deficit in the interfacial layer; Bakker's equation	37
4. Components of the surface tension	41
D. Interfacial tension	43
1. Experimental interfacial tension	43
2. Combining rules for interfacial tension	43
E. Dynamic surface tension	46
F. Capillary hydrostatics: the Young-Laplace Equation	46
1. Capillary pressure: pressure jump across a curved fluid	
interface	46
2. The curvature of a surface	48
3. Derivation of the Young-Laplace equation	53
4. Boundary conditions for the Young-Laplace equation	55
G. Some solutions to the Young-Laplace equation	57
1. Cylindrical surfaces; meniscus against a flat plate	57
2. Axisymmetric and other surfaces	59

x CONTENTS

3. Nondimensionalization of the Young-Laplace equation;	
the Bond number	59
4. Saddle-shaped surfaces	62
H. The measurement of surface and interfacial tension	64
1. Geometric vs. force methods	64
2. Capillary rise	65
3. Sessile drop and pendant drop	68
4. Du Noüy ring detachment	68
5. Wilhelmy slide	69
6. Langmuir film balance	70
7. Drop weight (or volume)	71
8. Maximum bubble pressure and dynamic surface tension	72
9. The pulsating bubble "surfactometer"	74
10. Elliptical (vibrating) jet	74
11. Contracting circular jet	75
12. Problems with interfacial tension measurement	75
13. Spinning drop method	76
I. Forces on solids in contact with liquids: capillary interactions	76
1. Liquid bridges	76
2. Shared menisci	80
J. Effect of curvature on the equilibrium properties of bulk	
liquids: the Kelvin Effect	84
1. The vapor pressure of small droplets and liquids in pores	84
2. The effect of curvature on boiling point	86
3. Capillary condensation	86
4. Nucleation	88
K. Thin liquid films	91
1. Disjoining pressure and its measurement	91
2. The molecular origin of disjoining pressure	94
3. The disjoining pressure isotherm	98
4. The augmented Young-Laplace equation	101
SOME FUN THINGS TO DO: CHAPTER 2	103
III. THERMODYNAMICS OF INTERFACIAL SYSTEMS	107
A. The thermodynamics of simple bulk systems	107
1. Thermodynamic concepts	107
2. The simple compressible system	108
B. The simple capillary system	110
1. The work of extension	110
2. Heat effects; abstract properties; definition of	
boundary tension	111
C. Extension to fluid-solid interfacial systems	114
1. The work of area extension in fluid-solid systems	114
2. Compound interfacial systems; Young's equation	116
D. Multicomponent interfacial systems	119
1. The Gibbs dividing surface and adsorption	119

CONTENTS xi

2. Immiscible interfacial systems	123
3. The measurement of adsorption	124
4. The phase rule; descriptive equations for binary	
interfacial systems	127
E. The Gibbs adsorption equation	128
F. Surface tension of solutions	134
1. Ideal-dilute capillary systems	134
2. Moderately dilute capillary systems	135
G. Surface active agents (surfactants) and their solutions	137
1. The structure of different types of surface active agents	137
2. Solutions of non-electrolyte surfactants	144
3. Solutions of electrolyte surfactants	147
H. Self-assembly of surfactant monomers in solution	148
1. Formation of micelles: critical micelle concentration (CMC	(7)148
2. Solubilization	160
I. Micelle morphology, other self-assembled structures, and	
concentrated surfactant solutions	164
1. Micellar shape and the Critical Packing Parameter (CPP)	164
2. Beyond micelles: other self-assembled structures	166
3. Concentrated surfactant solutions; liquid crystalline	
mesophases	170
4. Kinetics of micellization and other self-assembly processes	171
J. Dynamic surface tension of surfactant solutions	171
1. Diffusion-controlled adsorption	171
2. Finite adsorption-desorption kinetics	175
K. Insoluble (Langmuir) monolayers	176
1. Formation of monolayers by spontaneous spreading	176
2. Hydrodynamic consequences of monolayers:	
Gibbs elasticity	177
3. π -A isotherms of insoluble monolayers	178
4. Langmuir-Blodgett films	182
5. Transport properties of monolayers	184
L. The thermodynamics of fluid-solid interfacial systems revisited	186
1. The concept of interfacial energy and its measurement in	
fluid-solid systems	186
2. Adsorption of non-polymeric molecules at the solid-liquid	
interface	191
3. Experimental measurement of small molecule solid-liquid	
adsorption	201
4. Adsorption of polymers at the solid-liquid interface	202
SOME FUN THINGS TO DO: CHAPTER 3	207
IV. SOLID-LIQUID INTERACTIONS	214
A. Wettability and the contact angle: Young's Equation	214
1. Importance of wetting: definition of contact angle	214

xii CONTENTS

2. Young's equation revisited; classification of wetting and	
contact angle values	216
B. Contact angle hysteresis	218
1. Origins of hysteresis: roughness and heterogeneity	218
2. Complexity of real surfaces: texture and scale	221
3. Wenzel equation for rough surfaces	223
4. Cassie-Baxter analysis of heterogeneous surfaces;	
composite surfaces and ultra-hydrophobicity	224
5. The dynamic contact angle; Tanner's law	227
C. Methods for measuring the contact angle	229
1. Optical or profile methods: contact angle goniometry	229
2. Force methods: contact angle tensiometry	231
3. Dynamic contact angle measurement	235
D. Relation of wetting behavior to surface chemical constitution	236
1. Zisman plots; the critical surface tension	236
2. The wettability series	238
3. Estimates of surface energies from contact angle data	230
or vice versa	239
4. Thermodynamics of solid-liquid contact: work of adhesion,	237
work of wetting and work of spreading; the Young-Dupré	
equation	243
1	243
5. The promotion or retardation of wetting: practical	245
strategies E. Spreading of liquids on solid surfaces	250
E. Spreading of liquids on solid surfaces	
1. Criteria for spontaneous spreading; spreading morphology	250
2. Temperature effects of wetting; heats of immersion and	254
wetting transitions	254
3. The kinetics of spreading on smooth surfaces	255
4. Spreading agents; superspreaders	257
F. The relationship of wetting and spreading behavior to adhesion	258
1. Definition of adhesion; adhesion mechanisms	258
2. The "Laws of Molecular Adhesion"	259
3. "Practical adhesion" vs. "thermodynamic adhesion"	261
4. The importance of wetting (contact angle) to practical	• 60
adhesion	263
5. The optimization of thermodynamic contact adhesion	264
6. Acid-base effects in adhesion	267
7. Contact mechanics; the JKR method	272
G. Heterogeneous nucleation	277
H. Processes based on wettability changes or differences	279
1. Detergency	279
2. Flotation	280
3. Selective or "spherical" agglomeration	281
4. Offset lithographic printing	282
I. Wicking flows (capillary action) and absorbency	284
1. Wicking into a single capillary tube	284

CONTENTS	xiii
001(121(12	71111

	2. Wicking in porous media	286
	3. Practical strategies for promoting absorbency	290
	4. Immiscible displacement	292
	5. Mercury porosimitry	292
	6. Motion of liquid threads	293
	7. Surface wicking; spreading over rough or porous surfaces	295
	J. Particles at interfaces	297
	1. Particles at solid-fluid interfaces: effects on wetting and	
	spreading	297
	2. The disposition of particles at fluid interfaces	297
	3. Particle-assisted wetting	299
	4. Pickering emulsions	303
	5. Armored bubbles and liquid marbles	305
	6. Janus particles and nanoparticles at fluid interfaces	306
	K. The description of solid surfaces	309
	1. Solid surface roughness	309
	2. Fractal surfaces	310
	3. Surface texture	313
	4. Measurement of surface roughness and texture by stylus	
	profilometry	314
	L. Optical techniques for surface characterization	315
	1. Optical microscopy	315
	2. Optical profilometry	318
	3. Confocal microscopy	318
	4. Electron microscopy	319
	5. Near-field scanning optical microscopy (NSOM)	320
	M. Scanning probe microscopy (SPM)	321
	1. Scanning Tunneling Microscopy (STM)	322
	2. Atomic Force Microscopy (AFM)	324
	N. Surface area of powders, pore size distribution	331
	O. Energetic characterization of solid surfaces: Inverse Gas	
	Chromatography (IGC)	333
	SOME FUN THINGS TO DO: CHAPTER 4	338
V.	COLLOIDAL SYSTEMS: PHENOMENOLOGY AND	
	CHARACTERIZATION	345
	A. Preliminaries	345
	1. Definition and classification of colloids	345
	2. General properties of colloidal dispersions	346
	3. Dense vs. dilute dispersions	349
	B. Mechanisms of lyophobic colloid instability	351
	1. Phase segregation: the "phoretic processes"	351
	2. Thermodynamic criteria for stability	353
	3. Aggregation	353
	4. Coalescence	355
	5. Particle size disproportionation	356

xiv CONTENTS

C. Preparation of colloid particles and colloidal dispersions	358
1.Classification of preparation strategies for lyophobic	
colloids	358
2. Top-down strategies	360
3. Bottom-up strategies	365
D. Morphology of colloids: particle size, size distribution, and	
particle shape	371
1. Description of particle size distributions	371
2. Distributions based on different size variables and	
weighting factors	375
3. Normal (Gaussian) and log-normal distributions	379
4. Particle shape	382
E. Sedimentation and centrifugation	387
1. Individual particle settling: Stokes' law	387
2. Multi-particle, wall and charge effects on sedimentation	389
3. Differential sedimentation; particle size analysis	391
4. Centrifugation	395
F. Brownian motion; sedimentation-diffusion equilibrium	397
1. Kinetic theory and diffusion	397
2. Brownian motion	399
3. Sedimentation (centrifugation) – diffusion equilibrium	403
4. Practical retrospective regarding sedimentation and	
other phoretic processes	407
G. Measurement of particle size and size distribution: overview	409
1. Classification of methods	409
2. Microscopy	410
H. Light scattering	413
1. Classical (static) light scattering	413
2. Rayleigh scattering	414
3. Turbidity	418
4. Rayleigh-Gans-Debye (RGD) scattering	421
5. Mie scattering	427
6. Fraunhofer diffraction; laser diffraction	429
7. Inelastic scattering: absorbance; the Raman effect	431
8. Scattering from denser dispersions	436
9. Dynamic Light Scattering (Photon Correlation	
Spectroscopy)	437
10. Dynamic light scattering from denser dispersions	442
I. Aperture, chromatographic and acoustic methods for	
particle sizing	444
1. Aperture (one-at-a-time) methods	444
2. Chromatographic methods	446
3. Acoustic methods	448
SOME FUN THINGS TO DO: CHAPTER 5	450

CONTENTS	XV
CONTENTS	X

VI. ELECTRICAL PROPERTIES OF INTERFACES	455
A. Origin of charge separation at interfaces	455
1. Overview	455
2. Preferential adsorption/desorption of lattice ions	456
3. Specific adsorption of charged species	459
4. Ionization of surface functional groups	460
5. Isomorphic substitution	461
6. Accumulation/depletion of electrons	462
7. Interface charging in non-aqueous systems	463
B. Electric double layer formation and structure	466
1. The Helmholtz model; electrostatic units	466
2. The Gouy-Chapman model; Poisson-Boltzmann equation	467
3. Boundary conditions to the Poisson-Boltzmann equation	475
4. Double layers at spherical and cylindrical surfaces	477
5. The free energy of double layer formation	478
6. The Stern model; structure of the inner part of the	480
double layer 7. The marcury solution interface: electrocapillarity and	400
7. The mercury solution interface; electrocapillarity and refinements to the double layer model	483
8. Oriented dipoles at the interface: the χ -potential	485
C. Electrostatic characterization of colloids by titration methods	487
1. Colloid titrations	487
2. Potentiometric titrations	488
3. Conductometric titrations	492
4. Donnan equilibrium and the suspension effect	493
D. Electrokinetics	496
1. The electrokinetic phenomena	496
2. The zeta potential and its interpretation	500
3. Electrokinetic measurements; micro-electrophoresis	503
4. Relationship of zeta potential to electrophoretic mobility	508
5. Electrokinetic titrations	512
6. Electro-acoustic measurements	514
E. Dielectrophoresis and optical trapping	516
1. Dielectrophoresis	516
2. Electrorotation and traveling wave dielectrophoresis	519
3. Optical trapping; laser tweezers	520
SOME FUN THINGS TO DO: CHAPTER 6	523
VII. INTERACTION BETWEEN COLLOID PARTICLES	525
A. Overview and rationale	525
B. Long-range van der Waals interactions	526
1. The Hamaker (microscopic) approach	526
2. Retardation	530
3. The Lifshitz (macroscopic) approach	532
4. Measurement of Hamaker constants	535
C. Electrostatic interactions; DLVO theory	540

xvi CONTENTS

1. Electrostatic repulsion between charged flat plates	540
2. Electrostatic interactions between curved surfaces;	
the Derjaguin approximation	544
3. DLVO theory: electrocratic dispersions	547
4. Jar testing, the Schulze-Hardy rule and agreement	
with theory	552
5. The Hofmeister series; ion speciation and ionic	
specific adsorption	554
6. Repeptization	556
7. Interaction between dissimilar surfaces: hetero-aggregation	
D. Kinetics of aggregation	560
1. Classification of aggregation rate processes and	
nomenclature	560
2. Smoluchowski theory of diffusion-limited aggregation	561
3. The hydrodynamic drainage effect	566
4. Orthokinetic (shear flow induced) aggregation	568
5. Reaction-limited (slow) aggregation; the stability ratio W	569
6. Secondary minimum effects	571
7. Kinetics of hetero-aggregation	573
8. Measurement of early-stage aggregation kinetics (W)	574
9. Surface aggregation	577
10. Electrostatic stabilization and aggregation rates in	
apolar media	579
E. Steric stabilization and other colloid-polymer interactions	582
1. Polymer adsorption and steric stabilization	582
2. Thermodynamic considerations: enthalpic vs. entropic	
effects	585
3. Fischer theory	587
4. Steric repulsion plotted on DLVO coordinates	591
5. Electro-steric stabilization	595
6. Bridging flocculation	596
7. Depletion flocculation	597
8. Electrophoretic displays; electronic paper	599
F. The kinetics (and thermodynamics) of flocculation	601
G. Other non-DLVO interaction forces	603
H. Aggregate structure evolution; fractal aggregates	607
1. Stages of the aggregation process	607
2. Fractal aggregates	608
3. The effect of particle size on aggregation phenomena;	
coating by nanoparticles	612
SOME FUN THINGS TO DO: CHAPTER 7	613

CONTENTS	xvii
VIII. RHEOLOGY OF DISPERSIONS	616
A. Rheology: scope and definitions	616
B. Viscometry	617
1. Newton's law of viscosity	617
2. Measurement of viscosity	618
C. The viscosity of colloidal dispersions	622
1. Dilute dispersions; Einstein theory	622
2. Denser dispersions of non-interacting particles	623
3. Dilute dispersions of non-spherical particles D. Non Nowtonian rhealogy	625 626
D. Non-Newtonian rheology 1. General viscous behavior of dispersions of non-interacting	020
particulates	626
2. Fluids with a yield stress	630
3. Time-dependent rheology	632
4. Viscoelasticity	633
E. Electroviscous effects	637
SOME FUN THINGS TO DO: CHAPTER 8	640
IX. EMULSIONS AND FOAMS	643
A. General consideration of emulsions	643
1. Classification of emulsions	643
2. Emulsifiers and emulsion stability	644
3. Thermodynamics of emulsification/breakdown	649
4. Preparation of emulsions	651
B. O/W or W/O emulsions?	652
1. Rules of thumb	652
2. The hydrophile-lipophile balance (HLB) and related scales	654
3. Double (or multiple) emulsions	659
C. Application of emulsions	661
1. Formation/breaking in situ	661
2. Demulsification	663
D. Microemulsions	664
1. Distinction between microemulsions and macro emulsions	664
2. Phase behavior of microemulsion systems	666
3. Ultra-low interfacial tension	671
4. Interfacial film properties in microemulsion systems	672
E. General consideration of foams	673
1. Nature and preparation of foams	673
2. Stages in foam lifetime	675
· · ·	676
3. Stability mechanisms A. Foam behavior and foaming agents	681
4. Foam behavior and foaming agents 5. Antifoam action	684
5. Antifoam action	
6. Froth flotation	686

xviii CONTENTS

7. Foaming in non-aqueous media; general surface activity	
near a phase split	687
SOME FUN THINGS TO DO: CHAPTER 9	691
X. INTERFACIAL HYDRODYNAMICS	695
A. Unbalanced forces at fluid interfaces	695
1. Unbalanced normal forces	695
2. Tangential force imbalances: the Marangoni effect	696
3. Boundary conditions at a fluid interface	702
B. Examples of Interfacial Hydrodynamic Flows	705
1. The breakup of capillary jets	705
2. Steady thermocapillary flow	712
3. The motion of bubbles or drops in a temperature gradient	714
4. Marangoni instability in a shallow liquid pool-Bénard cells	718
C. Some Practical Implications of the Marangoni Effect	728
1. Marangoni effects on mass transfer	728
2. Marangoni drying	732
3. Marangoni patterning	733
D. The Effect of Surface Active Agents	735
1. Gibbs elasticity	735
2. The boundary conditions describing the effects	
of surfactants	737
3. The effect of surfactants on bubble or droplet circulation	740
4. The effect of surfactants on the stability of a pool heated	
from below	745
SOME FUN THINGS TO DO: CHAPTER 10	748
Appendix 1: EXERCISES	753
Appendix 2: THE TOP TEN	767
Appendix 3: OTHER SOURCES	771
Index	773