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Sensory systems constantly exhibit perceptual adaptation, which goes 
unnoticed in our daily experience but becomes apparent after pro-
longed exposure to a given stimulus. Visual perception, for instance, 
can be profoundly affected after viewing steady motion1,2 or constant 
orientation3,4. Such perceptual phenomena are thought to arise from 
adaptation mechanisms that adjust neuronal activity on the basis of 
recent stimulus history.

Sensory systems indeed exhibit various forms of neural adapta-
tion5–14. In V1 in particular, adaptation controls the responsiveness of 
individual neurons6,15–20 and shifts their visual selectivity6,15,16,21,22. 
Whereas the first effect is akin to general neural fatigue, the sec-
ond suggests a more specific adjustment of stimulus representation. 
However, sensory processing is mediated by neuronal populations23, 
and the overall effects of adaptation on population activity have been 
hypothesized2,24–26 but not measured. What benefits does adaptation 
confer on a neuronal population?

RESULTS
To characterize coding and adaptation in a large population of cortical 
neurons, we recorded spiking activity from V1 of anesthetized cats 
using 10 × 10 electrode arrays (Fig. 1). We characterized responses 
as a function of stimulus orientation27 using sequences of static grat-
ings with random orientation and phase, each presented for 32 ms  
(Fig. 1a). We considered stimulus ensembles with two statistical distri-
butions5,7–10: uniform and biased. In the uniform case, the probability 
of each orientation was equal27. In the biased case, the probability of 
one orientation was markedly higher than the others.

As shown previously27, population responses to stimuli with uni-
form statistics could be accurately fitted on the basis of the tuning 
curves of the neurons (Fig. 1c,e–g). The stimulus was a time series of 
orientations (Fig. 1e), and the population responses varied as a func-
tion of time and of the preferred orientation of the neurons (Fig. 1f).  

We divided the axis of preferred orientation evenly into bins, each 
pooling the activity of neurons with similar orientation preferences. 
The population activity tracked the stimulus closely. By applying 
regression to these responses, we obtained tuning curves for each of 
the bins of preferred orientation (Fig. 1c). These tuning curves are 
homogeneous: they are similar to each other except for their preferred 
orientation. As expected27, the tuning curves could be used to fit the 
population responses to the stimulus sequence through summation 
(Fig. 1g). This simple operation (followed by a mild nonlinearity27) 
captured a high proportion (63%) of the explainable variance in the 
population responses in this experiment. We obtained a similar result 
in five more experiments (Supplementary Fig. 1a).

When we changed the statistics of the stimulus ensemble, the cor-
tex displayed a notable ability to adapt (Fig. 1i–k). We biased the 
stimulus sequence markedly in favor of one orientation (the ‘adap-
tor’), presenting it three times more often than the rest (Fig. 1i). If 
the tuning curves were still those we had measured with the uniform 
stimulus ensemble (Fig. 1c), the neurons selective for the adaptor 
orientation would respond on average much more than the others 
(Fig. 1k). The actual response of the population instead showed no 
such bias: the average over time of the cortical response to the biased 
stimulus ensemble was equal across neurons, regardless of preferred 
orientation (Fig. 1j). From the cortical responses, it was not apparent 
that one orientation was shown three times more than the others.  
Evidently the neurons in visual cortex had adapted to the biased 
ensemble, and their adaptation had been strong enough to coun-
teract the bias in the ensemble. Moreover, this adaptation was not 
so strong as to overcompensate; that is, as to create a ‘hole’ in the 
population responses.

The effects of adaptation were well described by a new set of tun-
ing curves, one that was tailored for the biased ensemble (Fig. 1d,l).  
We obtained these adapted tuning curves (Fig. 1d) by applying 
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primary visual cortex
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Sensory systems exhibit mechanisms of neural adaptation, which adjust neuronal activity on the basis of recent stimulus 
history. In primary visual cortex (V1) in particular, adaptation controls the responsiveness of individual neurons and shifts their 
visual selectivity. What benefits does adaptation confer on a neuronal population? We measured adaptation in the responses of 
populations of cat V1 neurons to stimulus ensembles with markedly different statistics of stimulus orientation. We found that 
adaptation served two homeostatic goals. First, it maintained equality in the time-averaged responses across the population. 
Second, it maintained independence in selectivity across the population. Adaptation scaled and distorted population activity 
according to a simple multiplicative rule that depended on neuronal orientation preference and on stimulus orientation.  
We conclude that adaptation in V1 acts as a mechanism of homeostasis, enforcing a tendency toward equality and independence 
in neural activity across the population.
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regression on the population responses to 
the biased ensemble (Fig. 1j). Applying 
these tuning curves to the biased stimulus 
ensemble (Fig. 1i) yielded a fit (Fig. 1l) that 
resembled closely the measured population 
responses (Fig. 1j). This fit captured 40% of 
the explainable variance in the responses, 
considerably higher than the 22% captured 
by the homogeneous tuning curves. This 
increase in predictive power was observed 
in four more experiments (Supplementary  
Fig. 1c,d). In particular, the adapted tuning curves correctly captured 
how the average population response showed no trace of the bias in 
the stimulus (Fig. 1l, bottom).

The adapted tuning curves were markedly different from those 
measured during the presentation of the uniform ensemble, both 
in this experiment (Fig. 1c,d) and the others (Supplementary  
Figs. 2 and 3). Indeed, if one were to use the adapted tuning curves to 
simulate the responses to the uniform ensemble, one would grossly 
underestimate the responses of some of the neurons (Fig. 1h and 
Supplementary Fig. 1b).

We obtained similar results in nine experimental sessions in three 
cats (Fig. 2). To pool the results across sessions, we gave the ori-
entation of the adaptor the nominal value of 0 deg and the average 
response to the uniform ensemble the nominal value of 1 (Fig. 2a). 
The average population response to the biased ensemble was flat  
(Fig. 2d), showing neither a peak nor a trough for the responses of 
neurons tuned to the adaptor. Looking at these average responses, 
it would be impossible to tell that the adaptor had been shown  

3–5 times more than the other orientations. Indeed, there was no 
statistical difference between the average responses of neurons selec-
tive for the adaptor (0 deg) and for the orthogonal orientation (t-test, 
P = 0.98). Therefore, adaptation changed the tuning curves just as 
needed to counter the bias in the stimulus ensemble—neither too 
much nor too little.

Achieving this equalization would be impossible without sub-
stantial changes in the tuning curves. Indeed, no single set of tuning 
curves could predict the measured responses to both the uniform 
and biased stimulus ensembles. For instance, the responses to the 
biased ensemble (Fig. 2d) could be fitted by the adapted tuning 
curves (capturing 54% ± 20% of the explainable variance, s.e.m., n = 4;  
Fig. 2f) but could not be obtained from the homogeneous tuning 
curves, which predict a nonexistent peak in the population responses 
at the orientation of the adaptor (16% ± 12% of the explainable 
variance; Fig. 2e). Conversely, the responses measured with the uni-
form stimulus ensemble could be fitted by the homogeneous tuning 
curves (88% ± 16% of the explainable variance, n = 8; Fig. 2b) but 
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Figure 1  Adaptation in visual cortex prevents 
biases in the population. (a) Stimuli were 
sequences of gratings with random orientations 
(see Online Methods). (b) Layout of a 10 × 10 
electrode array aligned with a map of  
preferred orientation (replotted from ref. 47). 
Electrode sites are spaced 400 µm apart.  
(c) Tuning curves of neurons grouped by 
preferred orientation, measured with a uniform 
stimulus. Responses are scaled to a value of 1 at 
the preferred orientation and 0 at the orthogonal 
orientation. (d) Tuning curves measured with a 
biased stimulus in which the orientation of  
0 deg was presented more often than the others. 
Scale is same as in c. Thicker curves in c,d are 
tuning curves of neurons selective for −15 deg 
and +15 deg. (e) A segment of the stimulus 
sequence in the uniform ensemble. Each dot 
symbolizes a grating. In the whole sequence,  
the probability of presentation across 
orientations is flat (bottom panel). (f) Responses 
to the sequence in e. Each orientation  
bin is normalized to its own time average 
(bottom panel). (g) Fitted responses using the 
homogeneous tuning curves. Time averages are 
in bottom panel, blue line. (h) Simulation made 
using the adapted tuning curves. Time averages 
are in bottom panel, red line. (i,j) Same as e,f, 
but for a biased stimulus ensemble. Responses 
have the same scaling factor as those in f.  
(k) Simulation made using the homogeneous 
tuning curves. (l) Fitted responses using the 
adapted tuning curves. In this experiment, 
adaptor probability was 35%. Error bars in j–l 
bottom panels, ± 1 s.d.
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could not be obtained with the adapted tuning curves, which predict a 
nonexistent hole in the population responses at the orientation of the 
adaptor (capturing 48% ± 11% of the explainable variance; Fig. 2c).

This analysis, therefore, reveals that adaptation maintains equality 
in the time-averaged activity of different neurons in the face of biases 
in the stimulus ensemble. Achieving this equality requires appropri-
ate calibration: if adaptation were stronger or weaker, there would 
be a valley or a peak in the population responses, and instead there 
is neither. Equality, however, can only be maintained for a range of 
stimulus biases. At the extreme, if a single orientation were shown 
100% of the time (as has typically been the case in previous studies of 
adaptation), one would expect the neurons selective for that orienta-
tion to respond more than the rest. Indeed, whereas we saw com-
plete equalization when the probability of the adaptor was 30–40%  
(Fig. 2e), equalization was less perfect when we increased this prob-
ability to 50% (Supplementary Fig. 4).

In addition to equalization, adaptation helped maintain decorrela-
tion across the population (Fig. 3). Because of the width of the tun-
ing curves, a biased stimulus sequence tends to engage not only the 
neurons selective for the adaptor orientation but also those selective 
for nearby orientations. In the absence of adaptation, the activity of 
these neurons would therefore become highly correlated (a ‘correla-
tion catastrophe’). To look for these effects, we computed the cor-
relation coefficients between pairs of bins, for each combination of 
orientation preference. These are known as signal correlations28, and 
they reflect the similarity in tuning curves. As expected, the matrix 
of correlations in the uniform case was diagonal (Fig. 3a). The tun-
ing curves obtained in this condition capture this diagonal aspect  
(Fig. 3b), but they also predict that in the responses to the biased  
stimulus ensemble there should be a strong central peak in the 
matrix (Fig. 3e): the correlation catastrophe. Instead, the population 
responses to the biased stimulus ensemble (Fig. 3d) showed a diago-
nal structure of correlations that was similar to the one seen with the 
uniform stimulus ensemble (Fig. 3a). Consistent with a longstanding 
theoretical proposal24,29–31, therefore, adaptation prevented responses 
of cortical neurons from becoming more correlated.

This effect of decorrelation could be captured by the adapted tuning 
curves: running the biased stimulus ensemble through these adapted 

curves resulted in a diagonal matrix of correlations without a central 
peak (Fig. 3f). The adapted tuning curves would not have been appro-
priate in response to the uniform stimulus ensemble, as they would 
have caused a central hole in the matrix of correlations (Fig. 3c).

Taken together, these results indicate that adaptation provides two 
homeostatic effects to the population, maintaining equality not only in 
the first-order statistics but also in the second-order statistics. These 
effects were achieved quickly, with an average time constant of 1.7 ± 
0.4 s (s.d.; Supplementary Fig. 5). In this short interval the cortex was 
able to engage adaptation mechanisms that effectively counteracted 
the bias in the stimulus ensemble, in terms of both first- and second-
order statistics. However, adaptation is known to operate on more 
than one timescale6,32,33. Perhaps a relevant determinant of timescale 
is the number of stimuli that the adaptation mechanisms need to 
observe to be fully engaged. In our experiments, 1.7 s correspond to 
~53 stimuli. It was sufficient for V1 to observe the same orientation in 
16–26 of those stimuli to adapt its responsiveness and selectivity.

What does adaptation change in a population to allow it to dis-
count these stimulus statistics? Because the effects of adaptation are 
captured by changes in tuning, the answer lies in the attributes of the 
tuning curves (Fig. 1c,d). To characterize these tuning curves and to 
reveal the precise effects of adaptation, we examined the full matrix of 
responses to individual flashing gratings, averaging the results of all 
our experiments (Fig. 4a–c). This response matrix (Fig. 4b) depends 
both on the preferred orientation of the neurons (rows) and on the 
orientation of the stimulus (columns). Taking sections across the rows 
yields the familiar tuning curves of each preference bin (Fig. 4a). 
Taking sections across columns instead yields population response 
profiles, one for each stimulus orientation (Fig. 4c).

The response matrix measured with the biased ensemble summa-
rizes the effects of adaptation (Fig. 4d–f). A look at these tuning 
curves and population responses indicates that adaptation had two 
main effects. The first effect was an offset: a small reduction of all 
responses, regardless of orientation preference (Fig. 4d) and of stimu-
lus orientation (Fig. 4f). We modeled this effect with a simple subtrac-
tive shift. The second effect was a marked reduction in amplitude, 
which was strongest for the tuning curves of neurons with orientation 
preference near zero, the nominal orientation of the adaptor (Fig. 4d). 
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Figure 2  Adaptation equalizes population responses. (a) Time average  
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This effect amounted to creating a hole in the 
diagonal of the matrix (Fig. 4e).

There are two simple ways to create such a 
hole along the diagonal of the response matrix 
(Fig. 4e): across rows and across columns. The 
first possibility is intuitive and rests on neu-
ron identity: adaptation would reduce mostly 
the responses of the neurons selective for the 
adaptor (Fig. 4d). The second possibility is less intuitive and rests on 
stimulus identity: adaptation would control the population responsive-
ness to different stimuli, reducing it most strongly for stimuli with the 
same orientation as the adaptor (Fig. 4f).

Both descriptions are rooted in studies of adaptation in single neu-
rons. The neuron-specific description of adaptation evokes simple 
forms of neural fatigue and agrees with the view of adaptation as 
controlling a neuron’s responsiveness or sensitivity18–20. The stimulus-
specific description involves fatiguing stimuli (rather than neurons), 
reducing their effectiveness in driving the cortex. This description 

agrees with the stimulus-specific effects of adaptation that have been 
reported in single neurons6,15–17,34.

To resolve the dichotomy in these descriptions, we designed a simple  
model that includes both neuron-specific and stimulus-specific fac-
tors (Fig. 4g–i). In the model, the response matrix is scaled by two 
multiplicative gain factors. One of these factors specifies how much 
to reduce the responsiveness of each neuron (Fig. 4i) and the other  
specifies how much to reduce the responses to each stimulus (Fig. 4g).  
We describe the gain factors as Gaussians peaking at zero (the orienta-
tion of the adaptor and the preferred orientation of neurons tuned for 
the adaptor). The two Gaussians are multiplied to obtain a matrix of 
gain factors (Fig. 4h). In practice, the model works as follows: take the 
response matrix measured with the uniform stimulus ensemble (Fig. 4b),  
multiply it pointwise by the matrix of gain factors (Fig. 4h) and  
subtract a constant offset. The model is defined by only five param-
eters: the two widths and two amplitudes of the Gaussians, and the 
constant offset.

This simple model described accurately the effects of adaptation 
(Fig. 4j–l). The fitted model predicted a response matrix (Fig. 4k) that 
was extremely similar to the actual one (Fig. 4e), explaining 89.3% of 
the variance in this matrix. This similarity is confirmed by plotting the 
tuning curves on top of the measured ones (Fig. 4j) or by plotting the 
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population response profiles on top of the measured ones (Fig. 4l). 
Similar results were obtained when working with matrices obtained 
separately from the experiments with adaptor probabilities of 30–40% 
(n = 6, 80.0% of the variance) and with an adaptor probability of 50% 
(n = 5, 86.7% of the variance).

In particular, the model correctly predicted that adaptation would 
reduce the tuning curves and repel them away from the adaptor 
orientation (Fig. 5a–c). Because one of the gain factors depends on 
stimulus orientation (Fig. 4g), it scales the tuning curves more on the 
flank toward the adaptor than on the other flank, pushing them away 
from the adaptor orientation (Fig. 5a). The result for tuning curves 
is a reduction in amplitude6,18–20 (Fig. 5b) and a shift in preferred 
orientation15,16,21,22 (Fig. 5c). Our simple model captures these effects 
accurately (Fig. 5a–c).

In addition, the model makes a prediction: that adaptation should 
not only reduce population response profiles but also repel them from 
the adaptor (Fig. 5d–f ). The second gain factor depends on preferred 
orientation (Fig. 4i), so it scales the population profiles more on the 
flank where neurons are selective for the adaptor than on the opposite 
flank, pushing them away from the adaptor orientation. We verified 
these predictions in the data: population responsiveness was reduced 
(Fig. 5e) and the peak of the population response profile was pushed 
away from the adaptor orientation (Fig. 5f). The model predicts these 
effects (Fig. 5d–f).

Because it accounts for responses simultaneously recorded from a 
population, the model allows us to measure the relative importance of 
stimulus-specific adaptation and neuron-specific adaptation. Notably, 
the less intuitive component of the model, the one that is stimulus 
specific (Fig. 4g) was stronger than the neuron-specific one (Fig. 4i). 
The reduction in stimulus-specific gain was consistently larger than 
the reduction in neuron-specific gain, both in individual experimen-
tal sessions and in averages across sessions (Supplementary Fig. 6). 
The most important effect of adaptation was therefore the one that is 
stimulus specific, as if adaptation had reduced the effective strength 
of stimuli with orientations near the adaptor.

Our analysis of the effects of adaptation on populations has con-
cerned the average responses to repeated stimulus presentations 
(‘signal’) and not the trial-by-trial deviations from these average 
responses (‘noise’). Measurements in awake primates following pro-
longed exposure to single stimuli suggest that adaptation reduces the 

correlation among these deviations (‘noise correlations’; ref. 28) in 
neuronal pairs35. Our experiments, however, gave little support for 
this conclusion: adaptation reduced noise correlations in some pairs 
but increased it in others (Fig. 6a). The overall effect varied across 
data sets (Fig. 6b): in some, adaptation slightly reduced noise cor-
relations (6 of 11 with P < 0.05: Wilcoxon rank-sum test), but in 
others it slightly increased them (4 of 11), or had no significant effect  
(1 of 11). On average, the change in noise correlations was a negli-
gible 0.02 ± 0.06 (s.d., N = 69,596 pairs). We obtained similar results 
when we shifted the spike bins relative to the stimulus refresh times  
(data not shown), when we used longer bins (Supplementary  
Fig. 7), and when we distinguished among pairs on the basis of pre-
ferred orientation (Supplementary Fig. 8). In summary, under our 
experimental conditions, the main effects of adaptation on the popu-
lation code concerned the signals and their correlations, not the trial-
by-trial deviations from these signals.

DISCUSSION
We discovered that primary visual cortex displays a remarkable ability 
to counteract biases in the stimulus ensemble, by rapidly introducing 
the appropriate opposing biases in the responsiveness and selectiv-
ity of neurons. These adaptation phenomena are due to homeostatic 
mechanisms that work toward two simple goals: to maintain equality 
in the time-averaged responses across the population and to enforce 
independence in selectivity across the population.

These results provide experimental evidence for previous propos-
als. The first goal, equalization, is consistent with proposals made by 
psychophysicists of adaptation being a ‘graphic equalizer’ counter-
acting changes in the statistics of the environment1. It also echoes 
proposals that adaptation may act to ‘center’ a population response 
by subtracting the responses to the prevailing stimulus distribution25, 
or to scale responses so that the average of a measured signal is kept 
constant26. The second goal, independence, matches a longstanding 
proposal that the function of cortical adaptation is to maintain decor-
relation24,25,29,30.

We were able to characterize these homeostatic mechanisms 
because we measured responses in a whole population and because 
we measured activity concurrently with changes in stimulus 
statistics5,7–10. Recording from a whole population is a promising 
technique for studying adaptation36. The key to our results, how-
ever, was our choice of stimuli. These stimuli allowed us to observe 
the homeostatic mechanisms achieve their stable (and arguably 
intended) effects rather than their fleeting (and unintended) after-
effects. By contrast, previous studies of adaptation in V1 used the  
traditional adapt-test design6 developed in psychophysics1,3,37–41, 
in which the phases of adaptation and response measurement are 
distinct. This design can only reveal adaptation’s aftereffects, those 
that persist after a change in stimulus properties even though they 
are no longer needed.

We further discovered that adaptation in primary visual cortex fol-
lows a simple arithmetical rule to shape the population responses. At 
the heart of this rule is multiplication by two gain factors, one that 
depends on stimulus attributes and one that depends on neuronal 
preference. This rule provides a unified framework that encompasses 
the known effects of adaptation on responsiveness and orientation 
selectivity of individual V1 neurons. Having this arithmetical rule, in 
turn, may guide and constrain research into the underlying circuits 
and mechanisms. These could involve synaptic depression42,43 and 
fatigue at an earlier cortical stage34. For instance, as our recordings 
mostly targeted layer 2/3, the adaptation we measured there could be 
at least partially inherited from inputs from layer 4.
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Figure 6  Adaptation to biased ensembles does not affect pairwise noise 
correlations. (a) Noise correlations between pairs of units in response to 
uniform and biased ensembles. Colors distinguish data sets (n = 11).  
For graphical purposes, only a randomly selected 5% of the 69,596 pairs 
are displayed. (b) The same data, averaged within each data set (n = 11, 
each with 1,892–9,120 pairs). The error bars indicate ± 1 s.d. of  
the difference in noise correlations in responses to the uniform and  
biased ensembles.
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The mechanisms studied here may well operate in the whole cortex, 
but for now we have only demonstrated that they do so in V1, and 
specifically in the processing of stimulus orientation. Future work 
could establish the degree to which our observations generalize to 
other stimulus variables beyond orientation and to other cortical 
areas beyond V1. Further work is also required to understand how 
the effects of adaptation in one sensory area cascade into subsequent 
ones, leading to compounding perceptual effects44. For instance, 
the effects of adaptation observed in primary visual cortex appear 
to be distinct from those observed in motion-processing area MT  
(refs. 34,45). The effects of adaptation in MT might be consistent 
with those that we propose. This could be established, for instance, 
by adapting MT neurons to aspects of the stimuli that do not elicit 
selective responses in V1.

Adaptation is thought to be a mechanism constantly at work 
throughout cortex. We tend to notice its perceptual effects only 
when it does not work properly, or rather when it is catching up 
with a marked change in stimulus statistics1–4. The simple arith-
metical rules that we found to govern neural adaptation may help 
guide future work on perceptual adaptation. Moreover, they provide 
a framework for linking adaptation with other mechanisms of home-
ostasis, such as the ones at work during plasticity and development46. 
Meanwhile, the results we have observed in primary visual cortex 
offer a glimpse at how an entire cortical population can adapt to the 
statistics of its inputs.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Experiments were carried out at the Smith-Kettlewell Eye Research Institute, 
under the supervision of the local Institutional Animal Care and Use Committee. 
They were performed in the same animals and with the same methods as in our 
previous study27. Briefly, four young adult female cats (2–4 kg) were anesthetized 
with ketamine and xylazine during surgical procedures and with sodium pentothal 
and fentanyl during electrical recordings. A neuromuscular blocker was admin-
istered to prevent eye movements. The animals were respirated and the depth of 
anesthesia carefully monitored and adjusted by following EEG and vital signs. 
Utah probes (Blackrock, Utah) were inserted in area V1 and covered in 2% agar 
to improve stability. The probes consisted of a 10 × 10 grid of silicon electrodes 
with 400-µm spacing and 1.5-mm electrode length. Insertion depths were about 
0.8–1 mm, resulting in recordings confined mostly to layers 2/3. Receptive fields 
were typically on the vertical meridian, indicating that the electrodes were placed 
at the border between areas 17 and 18, which together form cat area V1.

Stimuli were presented to the contralateral eye on a CRT monitor (refresh rate 
120 Hz, mean luminance 32 cd/m2). They consisted of large, stationary gratings 
(30 deg in diameter) flashed in random sequence for 32 ms each. Each grating 
had one of 4 spatial phases and one of 6–12 orientations. The orientations could 
occur either with equal probability or with biased statistics, where the ‘adap-
tor’ orientation had a higher probability of occurrence (0.30, 0.35, 0.40 or 0.50). 
Grating contrast was typically 50–80% and spatial frequency was 0.2 cycles/deg. 
This spatial frequency was empirically determined to be effective in activating 
the recorded neurons and is visible to neurons in both areas 17 and 18 (ref. 48). 
Sequences were broken into 4–8 segments lasting 6–20 s each. Control segments 
were measured in response to a gray screen. Segments were presented in random 
order, and each block of segments was generally presented ten times.

Well-tuned multiunit activity was typically recorded from most of the 96 elec-
trodes. Traces were acquired at 12 kHz and firing rates were obtained by low-pass 
filtering the spike trains with a cutoff at 25 Hz. Firing rates were then resam-
pled at 32-ms intervals (the duration of our flashed gratings). To identify multi-
unit activity, we set thresholds at 4 s.d. of the background noise in each of the  
96 channels of the multielectrode array.

Population responses were computed by binning sites (15 deg bin width) 
according to their preferred orientation. Such preferred orientation was deter-
mined in the first experiment of the series with an unbiased stimulus sequence 
using event-related analysis27. Binned responses in subsequent experiments with 
a biased stimulus ensemble were normalized to the time averages of responses to 
the first experiment. To compute correlation coefficients instead, responses were 
normalized to the s.d. over time.

To study the effects of adaptation, we could not use the traditional method 
of event-related analysis27 because this method works only for random stimuli 
whose distribution is uniform and spherical49. We therefore measured a neuron’s 
filter (or receptive field) F(τ, θ) in time τ and orientation θ as the least-square 
solution to the equation

r t S t Fi( ) ( , ) ( , )= −∑∑ t q t q
tq

where ri(t) is the response of neurons in orientation bin i at time t and S(t−τ, θ) 
is the stimulus at time t−τ and orientation θ (a matrix of zeros and ones). We 
solved the equation in Matlab version R2012a using the pseudoinverse opera-
tor pinv. In the case of uniform stimuli, this procedure is analogous to simple 
stimulus-triggered averaging (Supplementary Fig. 9). Other aspects of the linear- 
nonlinear model, including the static nonlinearity, are as in our previous study27. 
We imposed the static nonlinearity to be the same when modeling the responses 
to uniform and biased stimuli; the fits barely improved if we allowed two different 
nonlinearities in the two conditions.

The filters F(τ, θ) were matrices of size 12 × 8, where 12 was the number of 
preferred orientations and 8 the number of time steps in the past (Supplementary 
Fig. 9a). From these matrices we obtained one-dimensional tuning curves by 
considering the time at which the filter attained its maximal value.

To study how adaptation affected the correlations between stimuli (Fig. 3) 
we first averaged responses across stimulus repetitions. Then, we normalized 
the data by the s.d. over time of the responses in the uniform-ensemble condi-
tion. Finally, we computed the covariance between pairs of orientation bins: 
cov [( ( ))( ( ))]= − −E R E R R E Ri i j j , where E is the expectation operator, and Ri(t) 
and Rj(t) are the responses of neurons in bins i and j.

The model of adaptation (Fig. 4g–l) specifies the responses to individual 
gratings of neurons selective for orientation θp to stimulus with orientation θs.  
The response of the neurons when the stimulus ensemble is uniform is Runiform 
(θs, θp), and the responses when the stimulus ensemble is biased is Rbiased (θs, θp). 
The model can be written as follows:

R s p R Ks p s a p a s pbiased uniform( , ) ( ) ( ) ( , )q q a q q q q q q= − − −

where θa is the adaptor orientation. In this equation, α is an overall gain factor, 
K is a subtractive term, and s and p are terms that govern the stimulus-specific 
adaptation and the neuron-specific adaptation:

s a G
p a G

s a s s a

p a p p a

( ) ( , . )
( ) ( , . )
q q q q
q q q q

− = − −
− = − −

1 28 3
1 28 3

where G(µ, σ) is a circular Gaussian with mean µ and s.d. σ. The value of  
28.3 deg was obtained simply by fitting a Gaussian function to the tuning  
curves. In other words,

R Gs p s puniform( , ) ( , . )q q q q≈ − 28 3

The subtractive baseline K can be taken to be a constant or, for improved fits, to 
be a function of stimulus orientation as follows:

K kGs a s a k( ) ( , )q q q q s− = −

Here, the parameters k and σk determine the strength and tuning of the subtrac-
tive term. In the fits, the latter came out to be very large, leading to an almost flat 
curve; that is, almost a constant. The model, therefore, has five free parameters: 
the three multiplicative gain factors α, as and ap, and the two parameters of the 
subtractive baseline, k and σk.

To compute noise correlations, we measured multiunit activity in 44–96 
responsive recording sites per experiment. Sites were considered responsive if 
their mean response explained at least 10% of the variance across repeats. We 
divided time into 32-ms or 2-s bins and represented the spike count at time t of 
the ith site to the nth repeat of a stimulus sequence as ri, n(t). We calculated the 
noise correlation between a pair of sites i and j as the Pearson’s linear correlation 
coefficient between ̂( ( ) ˆ ( )),r r t r ti n i−  and ̂( ( ) ˆ ( )),r r t r tj n j− , where ˆ ( )r tk  is the mean 
response of site k across all stimulus repeats. We only considered time bins 1.5 s 
after stimulus onset, to allow the effects of adaptation to stabilize.

48.	Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Spatial and temporal contrast 
sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. J. Physiol. 
(Lond.) 283, 101–120 (1978).

49.	Simoncelli, E.P., Paninski, L., Pillow, J. & Schwartz, O. Characterization of  
neural responses with stochastic stimuli. Cognitive Neurosciences III 3rd edn.  
(ed. Gazzaniga, M.S.) 327–338 (2004).
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