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Gene–gene interactions may contribute to the genetic variation underlying complex traits
but have not always been taken fully into account. Statistical analyses that consider
gene–gene interaction may increase the power of detecting associations, especially for
low-marginal-effect markers, and may explain in part the “missing heritability.” Detecting
pair-wise and higher-order interactions genome-wide requires enormous computational
power. Filtering pipelines increase the computational speed by limiting the number of
tests performed. We summarize existing filtering approaches to detect epistasis, after
distinguishing the purposes that lead us to search for epistasis. Statistical filtering includes
quality control on the basis of single marker statistics to avoid the analysis of bad and
least informative data, and limits the search space for finding interactions. Biological
filtering includes targeting specific pathways, integrating various databases based on
known biological and metabolic pathways, gene function ontology and protein–protein
interactions. It is increasingly possible to target single-nucleotide polymorphisms that
have defined functions on gene expression, though not belonging to protein-coding genes.
Filtering can improve the power of an interaction association study, but also increases the
chance of missing important findings.
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INTRODUCTION
Genome-wide association studies (GWAS) and next generation
sequencing association studies based on single marker tests can
identify many associated genetic variants, but typically explain
only a small portion of the total estimated heritability. Gene–gene
interactions may play an important role in the genetic etiology
underlying complex phenotypes and statistical analyses that con-
sider interaction may increase the power to detect epistatic genetic
associations, especially among low-marginal-effect markers.

Bateson (1909) defined epistasis as distortions from Mendelian
segregation ratios due to one gene masking the effects of another.
Fisher (1918) introduced the term “epistacy,” considering it to be
any departure from a linear model in which the phenotypic effects
of genotypes at two or more loci are assumed to be additive. Ever
since, the terms “epistasis” and “gene–gene interaction” have often
been used interchangeably and we make no distinction between
these two terms here. However, the purpose of including such
terms in any genetic model must be considered. If, for example,
we know that segregation at each of two loci affects a particular
phenotype, whether quantitative or binary, we already know there
must be biological interaction. So, unless our purpose is to describe
that interaction, no further analysis is necessary to detect its pres-
ence. In the case of a quantitative trait, whether or not there are
interactions can depend on the scale of measurement, so the scale
of the outcome is relevant. Factors that are additive with respective

to the outcome measured on one scale may not be additive on
another (Elston, 1961; Frankel and Schork, 1996; Greenland et al.,
1998; Wang et al., 2010; Steen, 2012). Similarly, in the analysis
of a binary trait, the link function used in a generalized linear
model may determine whether or not interaction terms are neces-
sary (Satagopan and Elston, 2012). If no transformation or change
in link function can remove the interaction, it is called essential;
in that case the best way to describe the interaction depends on
how much of it is removable by a transformation or change of
link function, and how much is essential. Simply describing the
interaction by an appropriate statistical model may be useful for
prediction in the same population as that sampled, but a predic-
tion model may not be generalizable to other populations unless
it is based on biological function.

Detecting pair-wise or higher-order statistical interactions can
require enormous computational time. In a genome-wide analysis,
the increased computational cost makes it impractical to examine
whether interactions are non-essential or can be better described
by removing non-additivity. Advances in computational methods,
such as using a GPU framework (Yung et al., 2011; Zhu et al., 2013)
and parallel computing strategies may overcome this limitation.
However, the multiple hypothesis testing issue needs to be consid-
ered: this is the major reason why most existing epistasis studies are
limited to searching for pair-wise interactions among a moderate
number of genetic markers.
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STATISTICAL METHODS FOR DETECTING STATISTICAL INTERACTIONS
Regression-based approaches are mostly used to model and
test interactions. The regression approach has been imple-
mented in the epistasis module of PLINK (Purcell et al., 2007)
to test pair-wise diallelic by diallelic epistasis for both quanti-
tative and binary traits. An extension of the PLINK epistasis
module, FastEpistasis, uses an efficient parallel computation algo-
rithm to test pair-wise interactions. FastEpistasis is 15 times
faster than PLINK using a single core computer (Schüpbach
et al., 2010). Marchini et al. (2005) proposed an approach for
joint association analyses allowing for pair-wise interactions
based on logistic models; their approach uses an exhaustive
search among single-nucleotide polymorphisms (SNPs) meet-
ing some low marginal significance threshold. The software
package PLATO can perform linear or logistic regression inter-
action analysis, calculating the full model, the reduced model,
and the likelihood ratio test comparing the two (Grady et al.,
2010).

The advantages of regression-based approaches are the clear
interpretation of the model and the parameters that relate geno-
types to phenotype. However, regression-based approaches have
many technical and computational disadvantages for testing
higher-order interactions and require many more tests: the num-
ber of parameters to be tested increases exponentially with the
number of SNPs in the model.

Model-free approaches, such as machine learning and pat-
tern recognition, afford an alternative strategy, and are capa-
ble of detecting high-dimensional non-linear interactions. This
approach generally does not estimate parameters. It finds com-
binations of SNPs that can best separate cases and controls
associated with the disease by epistatic interactions or joint effects.
Some model-free approaches collapse high dimensional data into
two dimensions, such as the combinatorial partitioning method
(CPM; Nelson et al., 2001), restricted partition method (RPM;
Culverhouse et al., 2004), set association (Wille et al., 2003), and
multifactor dimensionality reduction (MDR; Ritchie et al., 2001,
2003; Hahn et al., 2003).

Unsupervised pattern recognition has also been used to detect
interactions. Li et al. (2011) proposed a method for family based
studies to detect differentially inherited SNP modules by hierar-
chically clustering SNPs that could be interactively associated with
a disease. They first construct a genomic context-based SNP net-
work based on adjacency on the chromosome. The association
between each SNP and disease is evaluated on the basis of mutual
information between SNP identity by descent sharing and affec-
tion status sharing of pairs of siblings. Then they use a hierarchical
clustering algorithm to find risk SNP modules (clusters) for which
discriminative scores are locally maximal. In each module, the
SNPs are within a certain network distance (defined as the num-
ber of edges separating connected SNPs), and the discriminative
score of a module is the maximum mutual information of the SNPs
in the module, reflecting the risk associated with the module.

A likelihood ratio-based Mann–Whitney approach (Lu et al.,
2012) and its extension (Wei et al., 2013) are other non-parametric
methods for detecting interaction. They use a multi-locus
Mann–Whitney statistic to evaluate the joint association of a
SNP combination. Using a computationally efficient forward

selection algorithm makes these methods feasible for genome-
wide gene–gene interaction analyses. Nevertheless, they require
at least one SNP in the combination to have a significant
marginal association. The non-parametric approaches do not
suffer from the issue of an increasing number of parame-
ters when modeling high-order interactions, but it is difficult
to determine how the detected SNP combinations affect the
disease, either via the single marker associations or via their
interactions.

Some studies test marker–marker interactions by testing link-
age disequilibrium (LD) in the diseased population (Zhao et al.,
2006), or test the contrast of LD or Pearson correlation in cases
and controls (Kam-Thong et al., 2010; Prabhu and Pe’er, 2012).
These methods are based on the idea that, if two unlinked markers
are interactively associated with a disease, the two markers will
have LD patterns in the disease population. If controls are not
studied, these methods assume that the controls do not exhibit
similar patterns.

FILTERING PIPELINES FOR EPISTATIC INTERACTIONS PRIOR TO
ANALYSIS
In GWAS, an exhaustive search among millions of SNPs for
higher-order statistical interactions, or even just pair-wise inter-
actions, could be computationally and statistically challenging.
Filtering pipelines limit the number of tests performed between
selected SNPs, whereas the use of computational technology
and optimal algorithms increases the computational speed, and
accelerates convergence if maximization is involved. While data
driven filtering such as statistical filtering cleans the data to avoid
the analysis of bad and least informative data, other types of
filtering can be used purely to improve the power of interac-
tion association analyses. In particular, filtering using biological
knowledge limits the analysis to find the biologically most likely
interactions.

Knowledge-driven filtering
Interaction models that are constructed based on specific bio-
logical knowledge are more likely to make sense. Research
over the last several decades has accumulated vast amounts
of biological information that is stored in public databases.
These include gene ontology annotation, gene–gene interac-
tion databases, pathways, disease related gene networks and
systems, as shown in Table 1. This information can greatly
assist GWAS to find epistatic interactions. Many recent studies
have used such biological knowledge and databases for filtering
in their interaction studies. The databases have helped iden-
tify biological pair-wise interactions among SNPs in pathways,
and hence new associations and potential drug targets. For
example, Liu et al. (2012) generated genome-wide SNP pairs
based on multiple biological pathways such as KEGG, STRING,
T2DGADB, etc.

Biofilter is an analysis pipeline that catalogs biological infor-
mation by integrating data from the Reactome, KEGG, GO,
DIP, Pfam, Ensembl, and NetPath (Bush et al., 2009; Pender-
grass et al., 2013b). It can build SNP–SNP models based on
known interactions between genes and proteins in curated path-
ways and networks. Grady et al. (2011) utilized the Biofilter
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Table 1 | Biological information databases on gene ontology annotation, gene–gene interactions, pathways, disease related gene networks and

systems.

Database URL Description Reference

KEGG http://www.genome.jp/kegg/pathway.html KEGG is a collection of manually drawn pathway maps

representing knowledge on the molecular interaction and

reaction networks for metabolism, genetic information

processing, environmental information processing,

cellular processes, organismal systems, human diseases,

and drug development.

Kanehisa and Goto (2000)

GO http://www.geneontology.org/ GO provides an ontology of defined terms representing

gene product properties. The ontology covers three

domains: cellular component, molecular function, and

biological processes.

Ashburner et al. (2000)

DIP http://dip.doe-mbi.ucla.edu/dip/ Databases of experimentally determined interactions

between proteins.

Xenarios et al. (2000)

BioGRID http://thebiogrid.org/ A comprehensive resource of protein–protein and genetic

interactions for all major model organism species.

Stark et al. (2006)

NetPath http://www.netpath.org/ Resource of signal transduction pathways in humans. Kandasamy et al. (2010)

IntAct http://www.ebi.ac.uk/intact/ Database of molecular interactions that are derived from

literature curation or direct user submissions.

Orchard et al. (2014)

MINT http://mint.bio.uniroma2.it/mint/ MINT focuses on experimentally verified protein–protein

interactions mined from the scientific literature by expert

curators.

MINT now uses the IntAct database infrastructure to limit

the duplication of efforts and to optimize future software

development.

Chatr-aryamontri et al. (2007)

MIPS http://mips.helmholtz-

muenchen.de/proj/yeast/CYGD/interaction/

The MIPS mammalian protein–protein interaction

Database is a collection of manually curated high-quality

interactions.

Pagel et al. (2005)

Pfam http://pfam.sanger.ac.uk/ The Pfam database is a large collection of protein families,

each represented by multiple sequence alignments and

hidden Markov models. There are two kinds of entries in

Pfam: Pfam-A entries are high quality, manually curated

families; Pfam-B entries have lower quality.

Punta et al. (2012)

STRING http://string-db.org A database of known and predicted protein interactions,

including direct (physical) and indirect (functional)

associations.

Szklarczyk et al. (2011)

MSigDB http://www.broadinstitute.org/gsea/msigdb/ Molecular signatures database, a collection of annotated

gene sets integrating canonical pathways representing

biological processes.

Subramanian et al. (2005)

BioCarta http://www.biocarta.com/genes/ Includes classical pathways as well as current

suggestions for new pathways.

Nishimura (2001)

Reactome http://www.reactome.org/PathwayBrowser/ The Reactome pathway database aims to provide intuitive

bioinformatics tools for visualization, interpretation and

analysis of pathway knowledge.

Croft et al. (2011)

T2DGADB http://t2db.khu.ac.kr:8080/ A disease gene network database for type 2 diabetes. Lim et al. (2010)
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software to look for epistasis contributing to the risk of viro-
logic failure. Approximately two million SNP–SNP interaction
models were produced by Biofilter, and Grady et al. (2010)
tested these models by using logistic regression via the software
package PLATO. They identified interactions between SNPs in
the TAP1 and ABCC9 genes. Pendergrass et al. (2013a) iden-
tified five significant GxG interactions associated with cataract
using Biofilter. Bush et al. (2011) studied multiple sclerosis sus-
ceptibility with Biofilter, identifying gene–gene interactions of
susceptibility loci involved in the central nervous system and
neuron function. Turner et al. (2011) used Biofilter to detect
associations with low density lipoprotein cholesterol level, iden-
tifying 11 significant GxG interactions, eight of which were
replicated in a second cohort. In each of these examples,
Biofilter generated biologically plausible gene–gene and SNP–
SNP interaction models that were replicated in an independent
study.

Some studies reduce the number of tests by performing a gene-
based, as opposed to a SNP-based, interaction test. Baranzini
et al. (2009) combined the SNP-wise P-values to form a gene-
wise P-value for each gene (such as using the minimum P-value
for the gene), and superimposed the gene-wise P-values on
a human protein interaction network to identify sub-networks
containing a higher proportion of genes associated with mul-
tiple sclerosis than expected by chance. Ma et al. (2013) tested
interactions of SNP pairs that are separately located in two
different genes as marker-based tests. To test the interaction
between each pair of genes, they combined these marker-based
interactions and the LD between markers into a gene-based
statistic.

Knowledge-driven filtering approaches can test models of
genes that participate in the same biological pathway or net-
work, and the interpretation of the interactions is then more
straightforward. But their precision and power are hard to val-
idate by simulation. Because such approaches depend on prior
knowledge, which may not be accurate or may not be appli-
cable to a particular dataset, they may miss what could be
important findings among the genes for which we have little
knowledge.

Data-driven filtering
Filtering based on statistical tests is data-driven. Statistical
data-driven filtering includes, apart from SNP quality control,
single marker associations, feature selection to keep only the
most informative markers, and statistical tests to screen for
potential interactions. Using data-driven filtering in GWAS can
dramatically decrease the search space used to find interac-
tions, so that subsequent statistical tests and machine learn-
ing methods can be applied as an exhaustive search among
a smaller number of SNPs. The performance of data-driven
filtering depends on the assumptions that the statistical tests
or filtering algorithms make. Single marker association fil-
tering can only screen interactions among SNPs showing at
least a moderate effect on the trait of interest, while feature
selection filtering and variance heterogeneity filtering can be
used to detect SNP interactions with very weak marginal SNP
effects.

Filtering according to single marker association. Filtering SNPs
based on their marginal effects is frequently used for a high-
dimensional gene–gene interaction search. It is often combined
with biological filtering to identify interactions among SNPs
that are marginally associated with a phenotype (Baranzini et al.,
2009; Grady et al., 2011; Turner et al., 2011; Ma et al., 2012;
Pendergrass et al., 2013a). This approach follows the princi-
ples of hierarchical model building in the general linear model,
where the interaction terms are tested only after all main-effect
terms are deemed statistically significant. Typically the signifi-
cance threshold used is less stringent than the usual genome-
wide threshold of 5 × 10−8. The advantage of this filtering
is that it is easy to implement; its disadvantage is that it has
low power for detecting interactions among low-marginal-effect
SNPs.

Filtering by feature selection algorithms. Feature selection
algorithms such as Relief (Kira and Rendell, 1992), ReliefF
(Kononenko, 1994), Tuned ReliefF (TuRF; Moore and White,
2007), and Spatially Uniform ReliefF (SURF; Greene et al., 2009)
can also be used. They screen pairs of diallelic SNPs that can clus-
ter individuals with similar phenotypes, on the basis of the nine
two-SNP genotypes, into two distinct classes (e.g., cases versus
controls). For each individual only a small subset of neighboring
individuals, i.e., individuals most similar to that individual over
all the SNPs, is examined. Iterating over each individual and its
chosen subset of neighboring individuals, SNPs are up-weighted
for selection on the basis of belonging to the SNP pairs most
frequently found in all such sets. Simulation results have indi-
cated this is able to identify SNP pairs with purely non-additive
effects in genome-wide datasets. Evaporative cooling (McKinney
et al., 2007) is another feature selection approach which cou-
ples mutual information and thermodynamics theory. It filters
SNPs by removing those with least information for epistatic inter-
actions. Such feature selection filtering is able to retain pure
epistatic (i.e., essential) interaction between markers with low-
marginal effects, offering a powerful alternative to single-marker
filtering.

Filtering by testing variance heterogeneity of phenotype among
SNP genotypes. For a quantitative trait, the presence of gene–gene
interactions will result in heterogeneity of the phenotype vari-
ances among the genotypes of a single SNP, and this heterogeneity
of phenotype variance has been proposed as a screen to priori-
tize SNPs for interaction testing (Paré et al., 2010; Struchalin et al.,
2010). SNPs selected on the basis of variance heterogeneity would
then be used for later gene–gene or gene–environment interac-
tion analyses. However, unless the phenotypic means are the same
for all the SNP genotypes, a transformation corresponding to a
non-linear change in the scale of measurement may equalize the
variances (Sun et al., 2013). This transformation, if it can be found,
would eliminate any interactions detected this way.

USING OPTIMAL SEARCH ALGORITHMS AND COMPUTATIONAL
TECHNOLOGY TO SPEED A SCAN FOR INTERACTIONS
Exhaustive search of interactions among millions of SNPs in
GWAS data is computationally time-consuming. However, heuris-
tic stochastic searching algorithms and efficient computational
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technology, such as parallel computing and bit operation, can
boost the computational speed and, if maximization is involved,
speed the convergence required to calculate test statistics. Some
interaction studies use optimal searching and computational tech-
nology to search the whole space for potential interactions. An
ultrafast genome-wide scan approach for SNP–SNP interactions,
SIXPAC, employs a randomization searching algorithm – prob-
ability approximate complete (PAC) testing – to drastically trim
the universe of SNP combinations. The approach samples small
groups of cases and highlights combinations of alleles carried by
all individuals in the group. By further incorporating bit operation
technology, SIXPAC can scan genome-wide pair-wise interactions
in a few hours, compared to PLINK in weeks (Prabhu and Pe’er,
2012).

Lu et al. (2012) developed a likelihood ratio-based Mann–
Whitney approach that can test high-order interactions. It is
computationally efficient and only conducts one test for all the
identified interaction, so that no adjustment is necessary for mul-
tiple testing. A further extension of the approach introduces a
randomizing algorithm into the scan, using ensemble tree mod-
els (Wei et al., 2013), to increase the computational efficiency and
convergence precision.

Schüpbach et al. (2010) developed an efficient extension of
the PLINK epistasis module by using a parallel computing algo-
rithm running on multiple processors to increase the speed of an
exhaustive scan of all SNP pairs.

Heuristic or randomized search is much more efficient than
exhaustive search, so it can perform a genome-wide scan of inter-
actions among millions of SNPs without any filtering in reasonable
time. However, it cannot guarantee reaching the optimal solu-
tion, which means it may not find all the biologically relevant
interactions.

CONCLUSION
Numerous approaches have been proposed for the analysis of
epistatic interactions, each of which has advantages and disad-
vantages. Regression models are easy for model interpretation,
but they are less suitable for modeling high-order interac-
tion on a large number of markers. Model-free approaches do
not give an explicit explanation of interaction findings, but
they are good at detecting high dimensional non-linear inter-
actions. Tests for interactions by contrasting LD between cases
and controls or by studying phenotype variance heterogene-
ity among the different genotypes of a SNP, are two spe-
cial tests for detecting epistasis in the absence of any main-
effect.

With the emergence of massive amounts of genome sequenc-
ing data, developing efficient searching algorithms and filter
pipelines are especially important. Heuristic searching is much
faster than exhaustive searching, at the cost of missing some true
positive results and finding more false positive results. Filter-
ing pipelines based on biological knowledge have the advantage
of providing a clearer biological explanation for the detected
interactions, but the assumed knowledge may be limited and
not error-free, in which case such filtering may also lead to
testing some irrelevant interaction models and may miss novel
and important signals. Data-driven filtering cleans the data by

removing low quality and the least informative SNPs, but its
performance depends on the underlying assumptions of the fil-
ter. Because statistical and biological filtering each has unique
features, they should be viewed as complementary to, rather
than as competing with, each other. Through novel approaches
for filtering and modeling GxG interactions, we may iden-
tify more of the missing heritability for common, complex
traits.
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