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A b s t r a c t - - T h i s  paper deals with some studies pertaining to nonprocessive recombinase viz. 
Topoisomerases III, IV. The mathematics  of tangles is found to be very useful in studying topoi- 
somerases and recombinases (processive and nonprocessive). It has been seen t ha t  the  enzyme acts 
on the DNA if it is in a certain configuration. Electron micrographs of the  enzyme-DNA complex 
show the enzyme as a blob with DNA looping out of it, but  they are unable to determine the  con- 
figuration of the DNA within the blob. By using knot theory and tangle calculus, the  configuration 
of DNA within the enzyme blob as well as the enzyme action has been determined in some cases. 
(~) 2004 Elsevier Ltd. All rights reserved. 
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i. INTRODUCTION 

One of the longstanding issues in molecular biology is the three-dimensional structure (shape) 

of proteins and deoxyribonucleic acid (DNA) in solution in the cell and the relationship between 

structure and function. Usually, protein and DNA structures are determined by X-ray crystal- 

lography or electron microscopy. Because of the close packing needed for crystallization and the 

manipulation required to prepare a specimen for electron microscopy, these methods provide little 

direct evidence for molecular shape in solution. 

DNA can be viewed as two very long curves that are intertwined millions of times, linked to 

other curves, and subjected to four or five successive orders of coiling to convert it into a compact 

form for information storage. Duplex DNA consists of two backbone strands wound about each 

other in right-handed helical fashion. Each strand consists of sugar phosphate backbone with a 

nitrogenous base attached to each sugar. The DNA of most bacteria and viruses are circular. 

Although human DNA is linear, it is extremely long and tacked down to a protein scaffold 
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at various points on the DNA. This periodic attachment endows human DNA with topological 
constraints similar to those for circular DNA. These topological constraints can interfere with vital 

metabolic cellular processes such as replication and transcription. Enzymes are required to solve 

these topological entanglement problems that arise through cellular metabolism and replication. 

In this case, topoisomerases, which are enzymes that mediate the passage of one segment of DNA 

through an enzyme-bridged transient break in the backbone strands of another DNA segment, are 

responsible for unlinking the DNA. Other enzymes called recombinases break two DNA segments 

and interchange the ends, resulting in an exchange of genetic information. Tangle calculus has 

been successfully used to study recombinases. The topological approach to enzymology is an 

experimental protocol in which the descriptive and analytical powers of topology and geometry 

are employed in an indirect effort to determine the enzyme mechanism and the structure of active 

enzyme-DNA complexes in vitro. The packing, twisting, and topological constraints all taken 

together mean that topological entanglement poses serious functional problems for DNA. This 
entanglement would interfere with, and be exacerbated by, the vital life processes of replication, 

transcription, and recombination. For information retrieval and cell viability, some geometric 
and topological features must be introduced into the DNA, and others quickly removed. Some 

enzymes maintain proper geometry and topology by passing one strand of DNA through another 

by means of a transient enzyme-bridged break in one of the DNA strands. Other enzymes break 

the DNA apart and recombine the ends by exchanging them, a move performed by recombinases. 

Recently, it has been found that topoisomerases viz. Topoisomerase III and IV also help in DNA 

recombination where the recombination is nonprocessive. The description and quantization of 

the three-dimensional structure of DNA and the changes in DNA structure due to the action 

of these enzymes requires extensive use of geometry and topology in molecular biology. This 

use of mathematics as an analytic tool is especially important because there is no experimental 

way to observe the dynamics of enzymatic action directly. The DNA knots and links of the 

reaction product DNA molecules are observed by gel electrophoresis and electron microscopy. By 

observing the changes in geometry (supercoiling) and topology (knotting and linking) in DNA 

caused by an enzyme, the enzyme mechanism can be described and quantized. 
The topological approach to enzymology poses an interesting challenge for mathematicians as 

to how one can deduce enzyme mechanisms from the observed changes of DNA geometry and 

topology. This requires the construction of mathematical models for enzyme action and the use of 

these models to analyze the results of topological enzymology experiments. The entangled form 

of the product DNA knots and links contains information about the enzymes that made them. In 

addition to utility in the analysis of experimental results, the use of mathematical models forces 

all of the background assumptions about the biology to be carefully laid out. 
In 1990, Ernst and Sumners [I] used tangle model to analyze the Tn3 resolvase site-specific 

recombination system. They proved mathematically that, in a processive recombination event, 

Tn3 resolvase binds to its unknotted, negatively supercoiled substrate (sites in direct repeat), 
fixes three negative supercoils, and each round of recombination introduces a positive crossing in 
the domain. Darcy [2] modeled the Xer recombinase using 4-plat oriented equation. But since 

Xer is nonprocessive, the model gave an infinite number of solutions. The solutions of the model 

depended upon the initial assumptions that were made. 
It has been observed that the circular DNA products produced by in vitro enzymology ex- 

periments fall into the mathematically well-understood family of 4-plats. This family consists of 

knot and link configurations produced by patterns of plectonemic supercoiling of pairs of strands 
about each other. All "small" knots and links are members of this family--more precisely, all 
prime knots with crossing number less than eight and all prime (two-component) links with 
crossing number less than seven are 4-plats. For in vitro topological enzymology, we can re- 
gard the enzyme mechanism as a machine that transforms 4-plats into other 4-plats. We need a 
mathematical language for describing and computing these enzyme-mediated changes. In many 
enzyme-DNA reactions, a pair of sites that are distant on the substrate circle are juxtaposed in 
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space and bound to the enzyme. The enzyme then performs its topological moves, and the DNA 
is then released. We need a mathematical language to describe configurations of linear strings 
in a spatially confined region. This is accomplished by means of the mathematical concept of 
tangles, which were introduced into knot theory by Conway [3]. Tangle theory is knot theory 
inside a 3-ball with the ends of the strings firmly glued down. 

It is known that  the resulting protein-DNA tangle is rational, since any tangle whose strings 
can be continuously deformed into the boundary of the defining bali is automatically rational. 
There is a classification scheme for rational tangles that  is based on a standard form, i.e., is 
a minimal alternating diagram. The classifying vector for a rational tangle is an integer entry 
vector (al, a 2 , . . . ,  am) of odd or even length, with all entries (except possibly the last) nonzero 
and having the same sign and with ~alI > 1. Due to the requirement that  rail > 1 in the 
classifying vector convention for rational tangles, the corresponding tangle projection must have 
at least two nodes. There are four rational tangles {(0); (0; 0); (1); ( -1)} that  are exceptions to 
this convention (Jail = 0 or 1). 

We will use tangles to build a model that  will compute the topology of the pre- and post- 
recombination synaptic complex in a single recombination event, given knowledge of the topology 
of the substrate and product. In site-specific recombination of circular DNA substrate, two kinds 
of geometric manipulation of the DNA occur. The first is a global ambient isotopy, in which a pair 
of distant recombination sites are juxtaposed in space and the enzyme binds to the molecule(s), 
forming the synaptic complex. Once synapsis is achieved, the next move is local and is entirely 
due to enzymatic action. Within the region occupied by the enzyme, the substrate is broken 
at each site, and the ends are recombined. We will model this local move. Within the region 
controlled by the enzyme, it breaks the DNA at each site and recombines the ends by exchanging 
them. We model the enzyme as a 3-ball. The synaptosome consisting of the enzyme and bound 
DNA forms a 2-string tangle. 

1. Let U and R be tangles such that N(U + JR) = 4-plat for some i >_ 2, and 
¢ N(U + JR) for some j. Then R is a rational tangle. If  i >_ 3, then R is an integral 

THEOREM 
N(U + jR) 
triangle. 

PROOF. If R were locally knotted, then N(U + iR), i ~ 2 would be composite. Since 4-plats 
are prime, R cannot be locally knotted. Suppose R is a prime tangle. By tangle properties 
U + (i - 1)R is rational or locally knotted and R prime implies that  (i - 1)R prime and U must 
be oo-tangle or locally knotted. 

Now U cannot be an oc-tangle. If U were the infinity tangle, then N ( U  + 'JR) = D(iR) = 
D ( R ) ~ . . .  ~D(R) .  Since 4-plats are prime, D(R) = unknot. But N(U + iR) = D(iIt) = unknot 
= D( jR)  = N(U + jR) ,  a contradiction. Thus, if U is locally unknotted, R must be rational. 

If i __> 3, then R does not have parity oo since 4-plats have at most two components. If i > 3, 
U is locally unknotted, and R is not integral, then if U is not integral, U + R and (i - I )R are 
prime. But N(U + JR) = 4-plat would then contradict the tangle property. If U is integral and 
if R is rational, then N(U + JR) = 4-plat, i _> 3, if and only if R is integral. Thus, if U is locally 
unknotted and i ~ 3, then R must be integral. 

Suppose U is locally knotted. Then, if U ~ is the tangle formed from U by removing the local 
knot, then N(U'  + iR) = unknot, since 4-plats are prime. N(U + jR)  ~ N(U  + JR) implies that  
N(U'  + jR)  ~ N(U'  + JR). Since the unknot is a 4-plat and U' is locally knotted, R is rational 
if i _> 2 and integral if i > 3. | 

THEOREM 2. If N(U + P) = 4-plat and N(U + R) = 4-plat where P = al/bl,  R = a2/b2, 
alb2 - a2bl # :kl, then U is either a rational tangle or ambient isotopic to a sum of two rational 
tangles. 

PROOF. If N ( U + P )  = 4-plat and N ( U + R )  = 4-plat where P = alibi,  R = a2/b2, alb2-a2bl 
:h!, then the cyclic surgery theorem implies that  the double branched cover of the tangle U is a 
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Seirfert fibered space. Erns t  proved t h a t  this means t h a t  U is ambient  isotopic to a Montesinos 

tangle. | 

THEOREM 3. Let  U and R be tangles such that N ( U  + iR) = K1 for 0 _< I _< 3, where K~s are 

4-plats, and {K1,/42,  Ka}  represent  a t / e a s t  two different Bnk or knot types. Then there is at 
most one solution t'or U and  U is either rationM or the sum of  two ra t ional  tangles. 

THEOREM 4. Let E = t / w -  tangle, (w, t) = 1, and ay - bx = 1. Then, the following are 

equivalent for It] _> 2. For t = ±1,  (2) and (3) are equivalent and imply (1). 

(1) dR(N(a/b) ,  N ( z / v ) )  <_ 1. 
(2) If  w = 4-1 m o d t ,  N ( z / v )  = N((tb + w ) a ) / ( - t y  + w)x))  or N ( ( - t x  + (tk + w ) a ) / ( - t y  + 

(tk + w)b)). 
Else w ~ ±1 m o d t  and N ( z / v )  = N((tp2b + sa ) / ( - t p2y  - sx)) or N ( ( - t p 2 x  + sa)/  

( - tp2y  + sb)). 
Where  s = t p ( -q  + pk) 4- 1, (p, q) = 1, p > 0 

(3) N(a/b)  = N ( U  + 0) and N ( z / v )  = N ( U  + t /w)  has the following solutions when Itl >_ 2. 

If  w ¢ :t:1 m o d t ,  then U must be rational and U = a/(b + ka) or a / ( - x  + ka). 
I f  w = ± l m o d t ,  then U must be ambient isotopic to a sum of at most two rational 

tangIes and U = (U1 + U2) o (h, 0) where U1 = ( - b j a ( d -  k j ) ) / ( p b + a ( p k -  q)) or 
(xj  + a(d - k j ) ) / ( - p x  + a(pk - q)) and  U2 = j / p ,  p d -  qj = 1, and h = ( - w  + 1)/t  if  
( - w  + 1) E Z. If  t = +1, then the above list contains a11 solutions when U is ambient 

isotopic to a sum of rationM tangles. 

PROOF. dR(g(a /b) ,  g ( z / v ) )  < 1 if and only if there  exists a U such t h a t  N(a/b)  = N(U + O) 
and N ( z / v )  = N ( U  + t /w) .  By Erns t ' s  Theorem 2, U is either a ra t ional  tangle or ambient  

isotopic to the  sum of two rat ional  tangles. If  U is a ra t ional  tangle,  N ( U  + O) = N(a/b)  implies 

by tangle  fact t h a t  U = a/(b + ka) or a / ( - x  + ka) and N ( z / v )  = N(( tb  + w ) a ) / ( - t y  + w)x))  or 
N ( ( - t x + ( t k + w ) a ) / ( - t y + ( t k + w ) b ) ) .  If  U is ambient  isotopic to  the  sum of two rat ional  tangles, 

U1 +U2,  then  since N(U+O) is a 4-plat, U = (Ul+U2)o(h, 0). Solving N((U1 + j /p )o (h ,  0 ) + 0 )  = 

N(a/b)  implies U1 = ( -b ja(d  - k j ) ) / (pb + a(pk - q)) or (xj  + a(d - k j)  ) / ( - p x  + a(pk - q)) and 
b½ = j / p ,  p d - q j  = 1. If  N((U1 + j / p )  o (h, O) + t / w )  = N((U1 + j / p + t / ( h t  +w)) .  If  U-1 or U2 are 

nonintegral ,  N((U1 + U2 + t / (h t  + w)) is a 4-plat  if and only if ht + w = ±1,  i.e., w = ±1  m o d t ,  

in which case, h = ( - w  + 1)/ t  if ( - w  4- 1) C Z. 

Again by tangle properties,  if s = t p ( - q  + pk) 4-1, N(U1 + U~ + +t) = N((tp2b + sa ) / ( - tp2y  - 

sx)) = N ( ( - t p 2 x  + sa ) / ( - tp2y  + sb)). | 

THEOREM 5. IY N ( U  + f l / g l )  -~ unknot and N ( U  + f2/g2) = N(2z /1 )  where fig2 - f2gl = 4-1, 

then U is rational. 

LEMMA 1. I f  N(Ui + P) = unknot, I = 1, 2, and U1 ¢ [72, then P is rational. 

THEOREM 6. If  N(U + 0/1) = N(1/0)  and N ( U  + 1/w) = N(2k /1) ,  then g is rational. 

COROLLARY 1. Suppose bx - ay = 1, N ( U  + 0/1)  = N(a/b)  and N ( U  + t /w)  = N ( z / v )  where 

N(a/b)  and  N ( z / v )  are unoriented 4-pIats. I f  w ¢ 4-1 or i f  U is rational, then t / w  = (xz - 
av')/(bv' - yz  - kt) and U = a/(b + ka) OR t / w  = (bz - av ' ) / (xv '  - yz - kt) and U = a/(x  + ka) 
where v' is any  integer such tha t  v'v +1 = 1 m o d z .  I f w  = ±1  m o d t ,  then t divides zTa.  

2 .  T H E  M O D E L  

The  model  t h a t  will be formulated here is based upon  the  following assumptions.  

MATHEMATICAL ASSUMPTION 1. E = Ob + P, where Ob contains the entire DNA that is bound 
to the enzyme or to the accessory proteins, except :for the recombination sites that are contained 

in P ( the parental tangle). 
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MATHEMATICAL ASSUMPTION 2. The recombinase action corresponds to a tangle surgery where 
the tangle P is changed by the tangle R (the recombinant tangle), i.e., the enzymatic action 
corresponds to N(O + P) = substrata and N(O + R) = product. 

MATHEMATICAL ASSUMPTION 3. Processive recombination acts by tangle addition. 

BIOLOGICAL ASSUMPTION l .  The recombination mechanism is constant, independent of the 
geometry (supercoiling) and topology (knotting and linking) of the substrata population, i.e., P, 
R, and Ob are constants. 

BIOLOGICAL MODEL FOR RECOMBINASES. 

® Initial configuration. 
* The accessory proteins fix three negative crossings in the domain. Topoisomerase III 

and IV bind to the two recombination sites. 
® Idea: the proteins and the three negative crossings remain fixed. 
o One round of recombination produces one negative crossing in the domain. 

® After recombination, the enzyme releases the molecule. 

BIOLOGICAL MODEL FOR UNKNOTTED SUBSTRATES. 

, Substrata = unknotted circular DNA with sites in direct repeat. 

, K1 = b(1, 1) = (1} [where Ks  are 4-plats]. 
, Product  = 4-crossings right-handed torus link with antiparallel sites. 

, K 1 ~-- b(4, 3) = (1, 2, 1). 

BIOLOGICAL MODEL FOR CATENATED SUBSTRATES. 

® Substrata = 6-crossings right-handed torus link with antiparalM sites. 

, K1 = b(6 ,5)  = (1 ,4 ,  1). 
® Product  = 7-crossings knot or link. 

3. MATHEMATICAL EQUATIONS BASED ON THE MODEL 

Tangle equations for unknotted substrates can be listed as 

(i) N(O + P)  = (1) = b(1, 1), and 
(ii) N(O+ R)=  (1,2,1)--b(4,3), 

together with the assumptions 

(a) P = (0), 

(b) R = (k), k nonzero integer, and 

(e) O is rational or sum of two rational tangles. 

We have to solve for O and R. 

T a n g l e  E q u a t i o n s  for  C a t e n a t e d  S u b s t r a t e s  

In the case of catenated substrates, our task will be to solve 0 and R from the equations 

(i) N(O +/9) = (1,4, 1) = b(6, 5), and 

(ii) N(O + R) = / ( 2  = 7-crossings knot or link, 

in which 

(i) P = (0), 

(ii) R = (k), k nonzero integer, 
(iii) O is rational or sum of two rational tangles, 
(iv) /42 is a 4-plat. 

While solving for O and R, we encounter the following problems. 

i. Xer recombination is not processive. The action on substrates with a single topology 
provides only two tangle equations. 
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ii. For known P (rational) and K (4-plat): N(O + P)  = K has infinitely many solutions 
for O, and 

iii. for known P (rational), K1 and K2 (both 4-plats), N(O + P) ~- K1, N(O + R) = K2 do 
not lead a unique solution. 

In order to solve the tangle equations, we intend to make use of the minimum possible assump- 
tions, with an aim to put forward the results as realistic as possible. 

4 .  R E S U L T S  

U n k n o t t e d  S u b s t r a t e s  

By using the properties of tangle calculus given in the Appendix, we find that  when O is 
rational, the solutions to the tangle equations are 

• o = ( - 3 ,  0) and R = ( - 1 ) .  
• O = ( - 5 , 0 )  and R = (+1). 

• O = ( 1 )  a n d R = ( 3 ) .  

• O = ( - 1 )  and R = (5). 

The last two cases produce 4-crossing links with wrong side alignment and hence are to be 
discarded. 

When O is the sum of two rational nonintegral tangles, there exist no solutions. 

The results may now be summarized as follows. 

(i) N(O + P)  = b(1, 1). 

(ii) N(O + R) = b(4, 3) with sites in antiparallel P = (0), R = (k). 
(iii) O is rational or the sum of two rational tangles. 

(iv) The only solutions to the system are 

O = ( - 3 , 0 ) ,  R = ( -1 ) ;  

O = ( - 5 ,  0), R = (+1).  

For 

(a) 

(b) 
(c) 
(d) 
(e) O 
(f) O 

catenated substrates, when O is rational, the solutions to the tangle equations are 

O = (6) and R = (+1), K) -- b(7, 6). 
O = (6) and R = ( -13) ,  K2 = b(7, 1). 
O = (6, 2, 0) and R = ( -1 ) ,  K2 = b(7, 6). 
O = ( - 5 , - 1 )  and R = (4), K2 = b(14, 9). 

= ( - 5 , - 1 )  and R = ( -1 ) ,  K2 = b(11, 9). 

= ( - 5 ,  - 1 ,  - 2 ,  0) and R = ( + 1 ) , / ( 2  = b( l l ,  9). 

Solutions (a)-(c) have to be discarded, since they correspond to torus knots, while Solution (d) 
is to be discarded because it corresponds to a link of parental genotype. Solutions (e) and (f) are 
the only acceptable ones, since they correspond to twist knots of recombinant genotype. 

When O = X + A, X and A being rational nonintegral, the solutions to the tangle equations 
are as follows. 

(1) X = ( -4 ,0 ) ,  A = ( - 2 , 0 )  and R = (+3), K = b(18,13). 
(2) X = ( - 4 ,  0), A = ( -2 ,  0) and R = ( -1 ) ,  K = b(14, 9). 
(3) X = ( - 3 , 0 )  A = ( - 3 , 0 )  and R = ( -1 ) ,  K = b(15, 11). 
(4) X = ( - 3 ,  0) A = ( -3 ,  0) and R = (+3), K = b(21, 13). 

Here, (1) and (2) are to be discarded as they correspond to a link, while (3) and (4) constitute 
the only acceptable solutions as they correspond to knots of recombinant genotype. 
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Remarks 

The tangle is modeled assuming that, for a given enzyme, the tangles P and R are constants, 
independent of the topology of the substrate. We performed tangle analysis of two recombination 
events mediated by recombinases. It has been shown that if P = (0), R is integral and O is rational 
or the sum of two rational tangtes, and K2 is a 4-plat, then there are only three solutions that 
explain the observed products in both the experiments (unknotted and catenated). 

5. C O N C L U S I O N S  

The tangle model treats the circular DNA substrate and products as knots or links. The site- 
specific recombinase and its accessory proteins are considered as a bail that intersects the DNA 
knot or link in two strands. The interior of the bali is divided into two regions. One of them 
is restricted to strand exchange and corresponds to a parental tangle P. This tangle can be 
chosen to be P = (0). P represents the only region in the synaptic complex that changes upon 
recombination. The region outside P but inside the ball, called Ok, traps all the conformation 
that, together with the change from P to R, determines the topology of the recombination 
products. Finally, the region outside the ball, Of, detects the variation between substrates with 
different topology. The tangle model assumes that the synaptic complex can be expressed as 
N(O + P) = Ko where O = Of + Ob is called the outside tangle. Recombination is modeled 
by a tangle surgery that replaces P by the recombinant tangle R, thus leading to a product 
equation N(O + R) = K1. The assumption of constant mechanism implies that P and R are 
constants uniquely determined by the enzyme. In the cases when there are both topological 
selectivity and specificity (e.g., Tn3 resolvase, Gin, Xer, Topoisomerase III and IV), the tangle O 
is also determined uniquely by both the enzyme and the topology of the substrate. If there is no 
topological selectivity (e.g., X-Int, mutant Gin, and FLP) then, for a fixed substrate, P and R are 
constants but O can vary. Furthermore, processive recombination is modeled by tangle addition. 
A recombination event that consists of n-rounds of processive recombination is translated to a 
system of (n + 1) equations with unknowns 0 (i), P, and R. The tangle O (~) is allowed to change 
from one equation to another if and only if there is no topological selectivity. This introduces 
more unknowns to the system, and the analysis becomes much more difficult. 

A P P E N D I X  

(1) Both N(a/b) and D(a/b) are 4-plats. The knot/link N(a/b) is the 4-pint S(a,--b). The 
knot/link D(a/b) is the 4-plat S(b, a). 

(2) The tangle corresponding to al \ bl is the same as the tangle corresponding to a2 \ b2 if 
and only if al \ bl = a2 \ b2. 

(3) al \ bl + a2 \ b2 ~ a rational tangle unless either bl : =t=1 or b2 : =t=1. 
(4) a/b+ t : (a + bt)/t. 
(5) N(A + C) = N(C + A) where A and C are arbitrary tangles (a lemma). 
(6) N(A + C) = 4-plat impties at least one of A and C is rational or locally knotted. 
(7) D(A + C) = D(A) -~ D(C). 
(8) N(AN(c l , . . . ,  cn) + B) = N(A + BN(cn , . . . ,  cl)) where n is odd (a lemma). 
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