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Second Order Logic 

Review 

We saw in chapter 10 that the system of quantificational logic that we are studying is called “first-
order logic” because of a restriction in what we can “quantify over.” In FOL, we quantify over 
individuals, but not over properties. 

That is, in FOL we can take an atomic sentence like Cube(b) and obtain a quantified sentence by 
replacing the name with a variable and attaching a quantifier: 

∃ x Cube(x) 

But we cannot do the same with the predicate. That is, the following expression: 

∃ P P(b) 

is not a sentence of FOL. But this is a legitimate sentence of second-order logic. 

More expressive power 

As a result, second-order logic has much more “expressive power” than FOL does. For example, 
there is no way in FOL to say that a and b have some property in common; but in second-order logic 
this would be expressed as ∃ P (P(a) ∧ P(b)). 

Similarly, second-order logic recognizes as formally valid certain inferences that are not FO-valid. 
For example, the seemingly valid argument: 

a is a cube and b is a cube 

There is a property that a and b both have. 

is not FO-valid, but it is a valid argument in second-order logic. It would be formalized as follows: 

Cube(a) ∧ Cube(b) 

∃ P (P(a) ∧ P(b)) 

And this is a valid application of ∃∃∃∃ -Intro in second-order logic. 

Here is another way in which second-order logic simplifies the expression of things that can be 
said only in a roundabout way in FOL. Suppose we would like to say in the blocks language that a 
and b have the same shape. Since we have the predicate SameShape, we would just write: 

SameShape(a, b) 

But suppose we deleted this predicate from the blocks language. Then the best we could do is 
something like this: 

(Cube(a) ∧ Cube(b)) ∨ (Tet(a) ∧ Tet(b)) ∨ (Dodec(a) ∧ Doced(b)) 

Since in the blocks world the only shapes are cube, tetrahedron, and dodecahedron, for a and b to 
have the same shape is for them either to be both cubes, both tetrahedra, or both dodecahedra. But 
this FOL sentence doesn’t seem to mean quite the same thing as the English sentence it is 
translating—for example, it doesn’t say anything about the fact that it is shape that a and b have in 
common. 

In second-order logic, by contrast, we could add to the blocks language a predicate Shape that is 
true of precisely the properties corresponding to the predicates Cube, Tet, and Dodec . That is, 
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Shape(Cube) ∧ Shape(Tet) ∧ Shape(Dodec) 

and there are no other shapes in a blocks world. So we could write: 

∃ P (Shape(P) ∧ P(a) ∧ P(b)) 

And this will come out true in exactly those worlds where a and b are either both cubes, both 
tetrahedra, or both dodecahedra. So in second-order logic we can express the idea of same shape 
using identity and the second-order predicate Shape; we can do without the special predicate 
SameShape. 

Similarly, we can express the claim that no object has every shape in a way that brings out the 
quantifier in every shape: 

¬∃ x ∀ P(Shape(P) → P(x)) 

In FOL, the best we can do is to say that no block is both a cube, a tetrahedron, and a dodecahedron: 

¬∃ x (Cube(x) ∧ Tet(x) ∧ Dodec(x)) 

In this last FOL sentence we used all the shape predicates in the blocks language, but we did not say 
anything that means the same as every shape. 

Properties of properties 

Unfortunately, along with the greater expressive power of second-order logic come some very 
serious problems. These problems arise because of the fact we just observed above, namely, that 
the properties of blocks can themselves have properties. For example, we noted above that just as 
block b can have the property of being a cube (expressed in FOL as Cube(b)), so the property of 
being a cube can have the property of being a shape (not expressible in FOL, but expressed in 
second-order logic as Shape(Cube)). Note carefully that it is not the cube, b, that is said to have 
the property of being a shape, but the (first-order) property of being a cube that has the (second-
order) property of being a shape. 

This does not at first seem to be a problem. There seems nothing wrong, for example, in saying that 
some properties are common (possessed by many things) and some are uncommon (possessed by 
very few things). Commonness, then is a property of some properties. We might wish to define 
commonness as follows: we’ll call a property common iff at least two things have it. Thus, the 
property of being a cube is common (in most worlds, at any rate), since there are many cubes, but 
the property of being president of the U.S. in 2001 is not common, since it is possessed only by 
George W. Bush. Formally speaking, our definition of common looks like this: 

Common(P) ↔ ∃ x ∃ y (x ≠ y ∧ P(x) ∧ P(y)) 

We’ve just noted that the property of being a cube is common in any world in which there are 
many cubes; similarly, the property of being large is common in any world in which there are many 
large things. What about the property of being common? Is it common? 

Well, the property of being a cube is common, as we noted above, since there are many cubes, and 
so is the (different) property of being large. So we have: 

Cube ≠ Large ∧ Common(Cube) ∧ Common(Large) 

Hence, by ∃∃∃∃  Intro, we have: 

∃ P ∃ Q (P ≠ Q ∧ Common(P) ∧ Common(Q)) 

But this means that the property of being common is itself common—several things have it. That 
is: 
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Common(Common) 

This is a sentence of second-order logic that says that the property of being common has the 
property of being common. That is, it says that this property has itself as one of its properties! 

Problems with second-order logic 

It may seem to be no more than an oddity that there is a property that has itself as one of its 
instances—a self-exemplifying property. But worse is yet to come. For we might note that although 
the property of being common is self-exemplifying, not very many properties are like this. For 
example, the property of being a cube is not itself a cube; the property of being large is not large, 
etc. Facts such as these seem to be expressible in a second-order language as follows: 

¬Cube(Cube) ¬Large(Large) ¬Tet(Tet) … 

One might wish to mark this difference between common, on the one hand, and cube, large, and 
tetrahedron, on the other, by saying that cube and its ilk are ordinary properties, while common is 
extraordinary. Ordinariness, that is to say, is a property of most, but not all, of the properties we’ve 
considered so far. Since it is a property of at least some properties, we should be able, in a second-
order language, to express the facts we just noted as follows: 

Ordinary(Cube) 
Ordinary(Large) 
Ordinary(Tet) 
¬Ordinary(Common) 

In fact, we can use our second-order language to define ordinariness as follows: 

∀ P (Ordinary(P) ↔ ¬P(P)) 

That is, a property is ordinary just in case it does not have itself as one of its properties. 

Unfortunately, we now face a most difficult question: What about the property of being ordinary? 
Is it ordinary? The answer must be either yes or no, but both answers seem to get us into trouble. 
For if the answer is yes, then the property is self-exemplifying, which makes it extraordinary; and 
if the answer is no, then the property is not self-exemplifying, which makes it ordinary after all. 
We have arrived at a contradiction. 

The contradiction emerges immediately from our definition of ordinariness above when one 
realizes that its universal quantifier ∀ P ranges over all properties. So we can apply ∀∀∀∀  Elim to the 
definition and obtain: 

Ordinary(Ordinary) ↔ ¬Ordinary (Ordinary) 

Second-order logic, then, runs the risk of falling into contradiction. 

Russell’s Paradox 

Alert readers with a little knowledge of set theory will no doubt have noticed the similarity 
between this result and what Russell’s Paradox shows about naïve set theory (see LPL, pp. 405-6, 
432-3). For those who don’t know about Russell’s Paradox, here is a brief presentation of it. We’ll 
start with some background information about sets. 

A set is just a collection or a group of objects. These objects are the members of the set. The set of 
all teacups, for example, has all the teacups as its members. The set of all saucers is another set. 
Given any two sets, we can combine them in various ways to form new sets. For example, the 
union of two sets is the set which has as its members anything which is a member of either of them. 
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(The union of the two sets mentioned above is the set whose members are all the teacups and all 
the saucers—that is, anything that is either a teacup or a saucer.) The intersection of any two sets is 
the set which has as its members anything which is a member of both of them. (The intersection of 
the two sets mentioned above is the set which has as its members anything that is both a teacup and 
a saucer. In this case, the intersection is empty—that is, it has no members, since no teacup is a 
saucer.) One set can also be included in (or be a subset of) another. The set of porcelain teacups is 
a subset of the set of teacups, since every porcelain teacup is also a teacup. 

Now comes a point that is crucial both to set theory and to Russell’s Paradox: we can also treat sets 
as objects that are themselves members of other sets. For example, we can form a set, T, that has 
exactly two members—(1) the set of teacups and (2) the set of saucers. Notice that the set of 
teacups is a member of T, but it is not included in T. (That is because the members of T are sets, not 
teacups, and the set of teacups is not a teacup.) Set membership is not the same thing as set 
inclusion. 

When a set does have sets as members, it does not typically have itself as a member. But it would 
seem that in some cases, a set might have itself as a member. For example, since sets are abstract 
objects, the set of all abstract objects would be a member of itself, since it is an abstract object. 

This is where Russell’s Paradox begins. Just as we defined an ordinary property as one that is not 
self-exemplifying, Russell defined an ordinary set as one that is not a member of itself. Then 
Russell asked us to consider R, the set of all ordinary sets. That is, R is defined as follows (where 
‘α’ is a variable ranging over sets and ‘x ε α’ means ‘x is a member of α’): 

∀ α (α ε R ↔ ¬  α ε α) 

That is, R has as its members all and only the sets that are not members of themselves. We then 
apply ∀∀∀∀  Elim to this definition and obtain: 

R ε R ↔ ¬  R ε R 

R, the set of all ordinary sets, is a member of itself iff it is not a member of itself. So naïve set 
theory leads to a contradiction. 

Prospects for second-order logic 

The similarity between second-order logic and set theory has led some people to say that second-
order logic is just “set theory in sheep’s clothing” (Quine, Philosophy of Logic, 1970). This claim, 
however, is controversial (for criticism of it, see Boolos, “On Second-Order Logic,” J. Phil. 72 
(15), 1975). And just as set theory (albeit not naïve set theory) can be developed in a way that 
avoids Russell’s Paradox, so can second-order logic be developed in a contradiction-free way. 

For example, one can distinguish between first-level properties (properties of individuals) and 
second-level properties (properties of first-level properties), and insist that no quantifier can range 
over properties of both levels. Thus, Cube and Tet are first-level properties, and Common is a 
property of such first-level properties as Cube and Tet, But although Common has many 
instances (just as Cube has many instances), that does not mean that Common has itself as a 
property. What makes Cube common is that it has many individual instances, whereas what makes 
Common common is that it has many first-level properties as instances. So the property that 
Common has in virtue of having many instances is not the same as the property that Cube has in 
virtue of having many instances. Hence, Common does not, after all, have itself as a property. 
Rather, the first-level property Common1 has a second-level property Common2. 

This means that our definition of ordinariness: 

∀ P (Ordinary(P) ↔ ¬P(P)) 
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is defective, in that the universal quantifier ∀ P purports to range over both first and second level 
properties. 

However, even if second-order logic can be given a consistent formulation, it has other 
shortcomings. It has been shown, for example, that there can be no set of inference rules for 
second-order logic that is both sound and complete. This contrasts sharply with FOL, for which we 
have system F, among others, that are both sound and complete. 
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