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Chapter 9: Introduction to Quantification 

§ 9.1  Variables and atomic wffs 

Variables behave syntactically like names—they appear in sentences in the same places that 
names appear. So all of the following count as correct atomic expressions of FOL: 

Cube(d) FrontOf(a, b) Adjoins(c, e) 

Cube(x) FrontOf(x, y) Adjoins(c, x) Adjoins(y, e) 

These are all well formed formulas (wffs) of FOL. In fact, they are all atomic wffs. But the ones 
with variables in them (in these examples, the ones in the second row, containing x and y) are 
semantically different. For unlike the ones in the first row (whose individual symbols are 
restricted to names), the ones with variables in them do not make determinate statements, and 
hence do not have truth-values. 

All of the expressions above are wffs; but only those in the top row are sentences. 

FOL contains an infinite supply of variables: t, u, v, w, x, y, z, t1, u1, etc. Fitch understands all of 
these, but Tarski’s World is restricted to these six: u, v, w, x, y, z. 

§ 9.2  The quantifier symbols: ∀∀∀∀, ∃∃∃∃ 

The quantifier symbols, ∀ and ∃, are used with variables and wffs to create FOL sentences. 

Universal quantifier (∀∀∀∀) 

∀x is read “for every object x.” Thus, “Every object is a cube” would be expressed in FOL as 
∀x Cube(x). Some other obvious translations: 

English FOL 

Everything is either a cube or a tetrahedron. ∀x (Cube(x) ∨ Tet(x)) 

Every tetrahedron is small. ∀x (Tet(x) → Small(x)) 

Existential quantifier (∃∃∃∃) 

∃x is read “for at least one object x.” Thus, “At least object is a tetrahedron” would be 
expressed in FOL as ∃x Tet(x). Some other obvious translations: 

English FOL 

Some tetrahedron is small. ∃x (Tet(x) ∧ Small(x)) 

There is at least one cube in front of b. ∃x (Cube(x) ∧ FrontOf(x, b)) 

Pay particular attention to the two “small tetrahedron” sentences: 

Every tetrahedron is small. ∀x (Tet(x) → Small(x)) 

Some tetrahedron is small. ∃x (Tet(x) ∧ Small(x)) 

In English, the only difference between them is that one contains every where the other contains 
some. So one might suppose that in FOL, the only difference between them would be that one 
contains ∀ where the other contains ∃. But this is not the case, as you can see. The universally 
quantified sentence contains a → where the existentially quantified sentence contains a ∧. We will 
spend some time later getting clear exactly why this is so. 
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§ 9.3  Wffs and sentences 

In the portion of FOL we have studied up until now (the logic of sentences, or “propositional 
logic”), all sentences are built up out of atomic sentences, truth-functional connectives, and 
parentheses. In quantificational logic, we still have all of these sentences, but we have a lot more. 
For we can now form sentences out of parts that are neither sentences nor connectives, namely, out 
of wffs that are not sentences. That is, the parts will include wffs that contain variables. 

What we need to do is to give the rules of the syntax of FOL. We will approach this in two stages. 
First, we’ll describe the rules for constructing the wffs; then we will state the rules for determining 
which of the wffs are sentences. 

Wffs 

We begin with the notion of an atomic wff: any n-ary predicate followed by n individual 
symbols. (An individual symbol is either an individual constant or a variable.) Atomic wffs 
are the “building blocks” of FOL. 

The examples we looked at earlier are all atomic wffs: 

Cube(d) FrontOf(a, b) Adjoins(c, e) 

Cube(x) FrontOf(x, y) Adjoins(c, x) Adjoins(y, e) 

Any variable occurring in an atomic wff is free (unbound). Thus, there are free variables (x 
and y) in the atomic wffs in the second row, and no variables in the atomic wffs in the first 
row. 

We can now give the rules for constructing more complex wffs out of atomic wffs, 
connectives, parentheses, and quantifiers: 

1. If P is a wff, so is ¬P. 

2. If P1,…, Pn are wffs, so is (P1 ∧ …∧ Pn). 

3. If P1,…, Pn are wffs, so is (P1 ∨ …∨ Pn). 

4. If P and Q are wffs, so is (P → Q). 

5. If P and Q are wffs, so is (P ↔ Q). 

6. If P is a wff and ν is a variable, then ∀ν P is a wff, and any occurrence of ν in ∀ν P is 
said to be bound. 

7. If P is a wff and ν is a variable, then ∃ν P is a wff, and any occurrence of ν in ∃ν P is 
said to be bound. 

Examples 

Cube(x) and Dodec(y) are both atomic wffs, so (Cube(x) ∧Dodec(y)) is a wff (by 
clause 2). 

Since (Cube(x) ∧Dodec(y)) is a wff, so is ¬(Cube(x) ∧Dodec(y)) (by clause 1). 

Since Adjoins(x, y) is a wff, so is ∃x Adjoins(x, y) (by clause 7). 

Since ¬(Cube(x) ∧Dodec(y)) and ∃x Adjoins(x, y) are both wffs, so is 
(¬(Cube(x) ∧ Dodec(y)) → ∃x Adjoins(x, y)) (by clause 4). 

And so on. Note that in our last wff above, the occurrence of x in the antecedent is free, 
while both occurrences of x in the consequent are bound. All occurrences of y are free. 
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Sentences 

A sentence is a wff in which no variable has a free occurrence. So, to convert our wff 
above into a sentence, we will have to do something to its free variables. 

Bind with a quantifier 

One way to convert our wff to a sentence is to attach quantifiers to bind the variables. 
We would do this in two stages: 

∀y(¬(Cube(x) ∧ Dodec(y)) → ∃x Adjoins(x, y)) 

This takes care of y, as all three of its occurrences are now bound. But the leftmost 
occurrence of x is still free. So we can attach another quantifier, this one containing an 
x. Note that it will bind only the leftmost x; the ones in the consequent are already 
bound, and so are not bindable by the new quantifier. 

∀x∀y(¬(Cube(x) ∧Dodec(y)) → ∃x Adjoins(x, y)) 

There are no free variables in this wff, and so it is a sentence. (We are not worried right 
now about what this sentence means. We are only trying to see what makes it a 
sentence.) 

Substitution 

Another way to convert a wff to a sentence is to replace the free variables it contains 
with constants. Starting with: 

(¬(Cube(x) ∧ Dodec(y)) → ∃x Adjoins(x, y)) 

we replace both occurrences of y with the same constant (in this case a)—replacement 
must be uniform. As for x, we do not replace its occurrences in the consequent, because 
they are not free; we replace only the occurrence in the antecedent. We can replace that 
occurrence of x with any constant we like (including a). Or, we can use a different 
constant: 

(¬(Cube(b) ∧ Dodec(a)) → ∃x Adjoins(x, a)) 

There are no free variables in this wff, and so it is a sentence. 

You can confirm that these are sentences in Tarski’s World. Open the file Ch9Ex1.sen from 
the Supplementary Exercises page of the course web site: 

1.  ∀x∀y(¬(Cube(x) ∧Dodec(y)) → ∃x Adjoins(x, y)) 

2.  (¬(Cube(b) ∧Dodec(a)) → ∃x Adjoins(x, a)) 

Then try to verify the two sentences (above) that it contains. You will find that both are 
sentences, but neither is evaluable. (1) is not evaluable because the world is empty, and no 
sentence is evaluable in an empty world. As soon as you put a block into the world, (1) will be 
evaluable (it will come out false if all you do is to put in one block. Even when you add a 
second block, (1) will remain false unless your two blocks adjoin one another). 

Note that (2) remains unevaluable. It cannot be evaluated until the names it contains are 
assigned to objects in the world. (Note this disparity in FOL between names and predicates: 
the predicates can be “empty”, but the names cannot.) As soon as you assign the names a and 
b to blocks, (2) will evaluate as true or false. 
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Notice, also, that, for convenience, I have omitted the outermost pair of parentheses on (2). It 
is always permissible to omit the outermost pair of parentheses. Just don’t forget to put them 
back on if you are embedding the sentence in a larger context (e.g., negating it, or making it a 
component of a compound sentence, or attaching a quantifier to it). We will turn next to an 
example of what can happen if you are not careful about this. 

Scope of quantifier 

Pay careful attention to the example discussed on p. 233. Parentheses are important in 
indicating the scope of a quantifier, that is, which part of the sentence contains occurrences of 
variables bindable by that quantifier. 

So we must distinguish between these two wffs: 

∃x (Doctor(x) ∧ Smart(x)) 

and 

∃x Doctor(x) ∧ Smart(x) 

The first is a sentence (it says, roughly, “some doctor is smart”); the second is not a sentence, 
since the x in Smart(x) is free. (This wff says, roughly, “There are doctors, and x is smart.”) 

It’s easy to make the mistake of writing the second wff when you intend the first sentence. 
Here’s how it might happen: 

You start with the atomic sentences Doctor(x) and Smart(x). You then conjoin them and 
get (Doctor(x) ∧ Smart(x)). You decide to drop the outer parentheses for convenience, 
and get the perfectly acceptable Doctor(x) ∧ Smart(x). Then, when you attach the 
quantifier, you forget to put the missing parentheses back. So instead of the intended 
sentence ∃x (Doctor(x) ∧ Smart(x)) you get the mistaken wff 
∃x Doctor(x) ∧ Smart(x). Be careful! 

§ 9.4  Semantics for the quantifiers 

Satisfaction 

Wffs containing free variables don’t have truth-values—they are not true or false. 
Consequently, a quantified sentence that is built of such wffs, such as ∃x Cube(x), cannot 
have its truth-value defined in terms of the truth-value of its component wff, Cube(x), since 
that atomic wff does not have a truth-value. 

Wffs containing free variables, although not true or false simpliciter, nevertheless can be said 
to be true or false of things. The wff Cube(x) is true of each cube, and false of every other 
thing. The wff Tet(x) ∧ Small(x) is true of each small tetrahedron, and false of every other 
thing. Another way to put this is to say that each cube satisfies Cube(x) and each small 
tetrahedron satisfies Tet(x) ∧ Small(x). 

Satisfaction, then, is a relation between an object and a wff with a free variable. 
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[We are simplifying for ease of comprehension. Strictly speaking, we should say that 
satisfaction is a relation between an ordered n-tuple of objects and a wff with n free 
variables. For example, consider a wff with two free variables, such as Larger(x, y). 
Which objects stand in the satisfaction-relation to this wff? No object taken by itself 
does so; rather, it is pairs of objects that satisfy this wff. Thus, if a is a small cube and b 
is a large tetrahedron, then the pair of objects b and a, taken in that order—<b, a> is how 
we write this—satisfies the wff Larger(x, y). Note that <a, b> does not satisfy this wff, 
since a is not larger than b.] 

We can state what it is for an object to satisfy a wff in terms of the truth of a certain sentence. 
For example, if S(x) is a wff containing one free variable, then a given object satisfies S(x) iff 
we get a true sentence when we replace every free occurrence of x in S(x) with the name of 
that object. 

For example, an object named b satisfies Cube(x) ∧ Adjoins(x, a) iff the sentence 
Cube(b) ∧ Adjoins(b, a) is true. 

But not every object has a name. (In many of the worlds in Tarski’s World, lots of objects are 
nameless.) How do we explain what it is for a nameless object to satisfy a wff? We assign the 
object a temporary name and proceed as we did above for named objects. 

Tarski’s World reserves a number of individual constants, n1, n2, n3, …etc. , for just this 
purpose. If we want to know whether a given nameless object satisfies a wff, we temporarily 
give it a name, choosing as its name the first of these constants not already in use. Suppose n2 
is the first such constant. Then, using n2 as a name for our nameless object, that object 
satisfies S(x) iff we get a true sentence when we replace every free occurrence of x in S(x) 
with n2. 

For example, a nameless object satisfies Cube(x) ∧ Adjoins(x, a) iff, treating n2 as the 
name of that object, the following sentence is true: Cube(n2) ∧ Adjoins(n2, a)  

Semantics of ∃∃∃∃ 

A sentence of the form ∃x S(x) is true iff there is at least one object satisfying S(x). 

Example: ∃x (Cube(x) ∧ Small(x)) is true iff there is at least one object satisfying 
Cube(x) ∧ Small(x), i.e., iff there is at least one small cube. 

Semantics of ∀∀∀∀ 

A sentence of the form ∀x S(x) is true iff every object satisfies S(x). 

Example: ∀x (Cube(x) → Small(x)) is true iff every object satisfies 
Cube(x) → Small(x), i.e., iff every object satisfying Cube(x) also satisfies Small(x), 
i.e., iff every cube is small. 

Domain of discourse 

The domain of discourse is the entire collection of things that we take our FOL sentences to be 
“about”—the things we allow our quantifiers to “range over” or pick out. Sometimes, the 
domain is unrestricted, in which case we are talking about everything, and our quantifiers 
range over all objects. More often, the domain is restricted in some way (restricted to a 
smaller collection of objects—people, numbers, politicians, elementary particles, etc.). The 
choice of domains affects how we read the quantifiers and quantified sentences. But in any 
case, the domain must be non-empty. 
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Examples 

In the domain of persons, we read ∀x as ‘for every person, x …’. 

In the domain of numbers, we read ∃x as ‘there is at least one number x such that …’. 

In the domain of politicians, we read ∀y as ‘for every politician, y …’. 

In Tarski’s World, the domain is restricted to blocks. Hence, in sentences about a Tarski 
World, we read ∀x as ‘for every block, x …’ and ∃x as ‘for at least one block, x …’. 

If the domain is unrestricted, then ∀x is read as ‘for everything, x …’ and ∃x is read as 
‘there is at least one thing x such that …’. When a domain has not been specified, it will 
be assumed to be unrestricted. 

A difference in domain is reflected in a difference in the way we translate sentences from 
English to FOL, and vice versa: 

In the domain of numbers, we could translate Some numbers are even as ∃x Even(x). 
But in an unrestricted domain, we’d have to write ∃x (Number(x) ∧ Even(x)). 

Similarly, in the domain of politicians, we could translate All politicians are crooks as 
∀x Crook(x). But in an unrestricted domain, we’d have to write 
∀x (Politician(x) → Crook(x)). 

Obviously, the advantage of a restricted domain is that it makes translation easier. The 
drawback is that once the domain has been restricted, your sentences cannot talk about 
anything outside of the restricted domain. 

Hence, a sentence like Every person owns a pet cannot be translated adequately into an FOL 
whose domain has been restricted to persons, since this sentence requires us to quantify over 
pets, and pets are not persons (at least, many pets are not persons!). 

A notational convention 

In stating the semantics of the quantifiers, and in stating the game rules for Tarski’s World, 
we talk about “sentences of the form ∃x S(x),” for example. S(x) here can be any wff that 
contains at least one free occurrence of x. So, for example, the following FOL sentence is of 
the form ∃x S(x): 

∃x (Cube(x) ∧ ∀y (Tet(y) → Larger(x, y))) 

If we then want to talk about a given substitution instance of this existential generalization, 
we would use the notation S(b), for example. Here, S(b) means “the result of replacing every 
free occurrence of x in S(x) with an occurrence of b.” Hence, where ∃x S(x) is the sentence 
above, S(b) is: 

Cube(b) ∧ ∀y (Tet(y) → Larger(b, y)) 

Game rules for the quantifiers 

The game rules are summarized on p. 237. The only rules that are new are the ones for the 
quantifiers, that is, for sentences of the form ∃x P(x) and ∀x P(x). Study these rules carefully. 
Here’s a handy way of remembering how they work. 
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Existential quantifier 

∃x P(x) is true iff at least one object satisfies P(x). Call any object that does this a 
“witness.” Then the game rule for ∃x P(x) can be stated as follows: whoever is 
committed to TRUE must try to find a witness. If you are committed to TRUE, Tarski’s 
World will ask you to choose a witness; if you are committed to FALSE, Tarski’s World 
will try to choose a witness. 

Universal quantifier 

∀x P(x) is true iff every object satisfies P(x). Call any object that does not satisfy P(x) 
a “counterexample.” Then the game rule for ∀x P(x) can be stated as follows: 
whoever is committed to FALSE must try to find a counterexample. If you are 
committed to TRUE, Tarski’s World will try to find a counterexample; if you are 
committed to FALSE, Tarski’s World will ask you to find a counterexample. 

In both cases, remember that if it is Tarski’s World’s move (that is, you have committed to 
TRUE for ∀x P(x) or to FALSE for ∃x P(x)), and your commitment is correct, there will be no 
counterexample to ∀x P(x) and no witness for ∃x P(x). But Tarski’s World will not give up—
it will choose an object anyway, and try to trick you into thinking that it is a witness (or a 
counterexample). So don’t be intimidated just because Tarski’s World has made a choice. It 
may be bluffing! 

§ 9.5  The four Aristotelian forms 

Aristotle (384-322 BCE) invented the first system of formal logic. He focused on four forms of 
sentences—universal affirmative, universal negative, particular affirmative, and particular 
negative: 

A All P’s are Q’s. 

I Some P’s are Q’s. 

E No P’s are Q’s. 

O Some P’s are not Q’s. 

The labels (A, I, E, O) were not due to Aristotle. They were a medieval mnemonic device, from the 
Latin words affirmo (meaning “I affirm”) and nego (meaning “I deny”). A and I (from affirmo) are 
the positive, or affirmative, ones; E and O (from nego) are the negative ones. 

It is important to learn these forms well, as many very complicated sentences can be shown to be 
based on these simple forms. 

A vs. I 

The most important point to be clear on at the start is the difference between A and I 
sentences when they are translated into FOL. 

English FOL 

All P’s are Q’s ∀x (P(x) → Q(x)) 

Some P’s are Q’s ∃x (P(x) ∧ Q(x)) 
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Why do these FOL sentences have different connectives, as well as different quantifiers? It’s 
pretty easy to see that ∀x (P(x) ∧ Q(x)) could not be right for All P’s are Q’s. For this FOL 
sentence says everything is both P and Q, and this is obviously too strong. All humans are 
mortal is true, but it is not true that everything is both human and mortal. 

Seeing why ∃x (P(x) → Q(x)) is wrong for Some P’s are Q’s is harder. The You try it on p. 
240 will help you see this. 

An easy way to see what’s wrong with this translation into FOL is to remember that P → Q is 
equivalent to ¬P ∨Q. This means that ∃x (P(x) → Q(x)) is equivalent to ∃x (¬P(x) ∨ Q(x)). 
Now compare these two sentences: 

1. Some cubes are large. 

2. Something is either not a cube or large. 

Clearly, these are not equivalent. (1) cannot be true unless there is a large cube; but (2) does 
not require this—it comes out true if there is a non-cube. It also comes out true if there is a 
large thing—whether or not it’s a cube! 

In fact, the only way (2) comes out false is if everything is a cube and nothing is large. 
Here’s a world in which ∃x (Cube(x) → Large(x)) is false. Open the files Ch9Ex2.wld and 
Ch9Ex2.sen. Notice that in this world of small and medium cubes, our sentence comes out 
false. But almost any change we make to the world makes our sentence true. Change any of 
the cubes into a non-cube, and the sentence becomes true; or, add any large object (of any 
shape) to the world, and the sentence becomes true. Notice that the correct translation of some 
cubes are large, ∃x (Cube(x) ∧ Large(x)), remains false when these changes are made. 

Now let’s take what we’ve learned from this example and apply it to any FOL sentence of the 
form ∃x (P(x) → Q(x)). It almost always comes out true. The only way it comes out false is if 
everything satisfies P(x) and nothing satisfies Q(x). Hence, it makes a statement so weak (it 
almost always comes out true) that it is seldom worth asserting. 

Two ways of writing E 

There are two ways of thinking about No P’s are Q’s. You might think of it as (a) a universal 
generalization or (b) a negative sentence. 

(a) Universal generalization 

(a) encourages this reading: for any object, if it’s a P, then it’s not a Q. That is, in FOL: 
∀x (P(x) → ¬Q(x)). 

(b) Negation 

(b) encourages this reading: it is false that even one P is a Q.  
That is, in FOL: ¬∃x (P(x) ∧ Q(x)). 

These are both correct and perfectly acceptable ways of translating E sentences into FOL. 

All vs. Only 

Notice that just as all can be a quantifier in English (as in the phrase all freshmen), so too only 
can be used as a quantifier (as in only freshmen). Compare the following two sentences: 

1. All freshmen are eligible for the Kershner prize. 

2. Only freshmen are eligible for the Kershner prize. 
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Clearly, (1) and (2) are not equivalent. What is the difference between them? (1) tells us that 
being a freshman is a sufficient condition for eligibility—if you’re a freshman, then you’re 
eligible. But (2) tells us that being a freshman is a necessary condition for eligibility—you’re 
eligible only if you’re a freshman (but perhaps there are other necessary conditions as well). 
Hence, our two sentences go into FOL as follows: 

1. ∀x (Freshman(x) → Eligible(x)) 

2. ∀x (Eligible(x) → Freshman(x)) 

Notice that just as, in propositional logic, only if indicates that the sentence that follows is the 
consequent of a conditional, so too in quantificational logic only indicates that the noun 
phrase that follows should be translated by a wff that is the consequent of a conditional 
embedded in the scope of a universal quantifier. 

For practice, open Tarski’s World and construct a world in which there is a small tetrahedron, 
a medium dodecahedron, a small cube, and a large cube. Notice that although not all the cubes 
are large, the only large block is a cube. Now write two FOL sentences that correspond to the 
English sentences (1) All cubes are large and (2) Only cubes are large. Then click Verify All. 
(1) should come out false and (2) should come out true. Now make the small cube large and 
click Verify All again. This time they should both be true. Now make the tetrahedron or the 
dodecahedron large (but leave the cubes both large) and re-verify. This time (1) should come 
out true and (2) should come out false. 

For a handy chart of FOL translations of some common English quantificational sentences, 
download Common Quantificational Forms on the Supplementary Exercises page for this 
chapter. 

§ 9.6  Translating complex noun phrases 

It is now time to investigate sentences that are more complex than the ones we’ve seen so far, but 
that still have the basic structure of one of the four Aristotelian forms. Our first look will be at 
sentences that involve complex noun phrases, such as the following: 

small happy dog 

large cube in front of b 

an apple or an orange 

freshman or sophomore who has studied logic 

In all of these cases, we could treat the complex noun phrase as a single predicate, and then use 
these predicates to construct atomic sentences, such as: 

SmallHappyDog(pris) 

But such translations are undesirable, in that they make some important logical relationships less 
perspicuous than they should be. We’d like to translate Pris is a small happy dog into FOL in a way 
that makes clear that this sentence has Pris is a dog as a consequence. And our proposed “atomic” 
translation above does not do this. 

A better way is to use truth-functional connectives and more familiar (and less complicated) 
predicates. So Pris is a small happy dog will become: 

Small(pris) ∧ Happy(pris) ∧ Dog(pris) 
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Translating the complex noun phrase, then, means finding an appropriate truth-functional 
compound of wffs that are not sentences (i.e., wffs containing a free variable). Our remaining 
examples look like this: 

Large(x) ∧ Cube(x) ∧ FrontOf(x, b) 
Apple(y) ∨ Orange(y) 
(Frosh(x) ∨ Soph(x)) ∧ StudiedLogic(x) 

We can then embed these wffs in sentences, either by replacing the free variables with a name, or 
prefixing the appropriate quantifier. We’ll do that with these sentences: 

There is no large cube in front of b. 

¬∃x (Large(x) ∧ Cube(x) ∧ FrontOf(x, b)) 
 

If Bob eats anything, it will be an apple or an orange. 

∀y (Eats(bob, y) → (Apple(y) ∨ Orange(y)) 
 
Any freshman or sophomore who has studied logic will succeed. 

∀x ((Frosh(x) ∨ Soph(x)) ∧ StudiedLogic(x)) → Succeed(x)) 

[There is a possible ambiguity in this last sentence: in which of these two ways 
do we read the noun phrase? 

(freshman or sophomore) who has studied logic 

freshman or (sophomore who has studied logic) 

The first is more natural (it’s the one we used above), but the second is still 
possible.] 

Sometimes, the correct rendition of a complex noun phrase in FOL is surprising. Take, for example, 
the phrase apples and oranges. We might expect this to go into FOL as Apple(x) ∧ Orange(x). 
But study this wff carefully. Which objects satisfy it? It takes only a little thought to realize that 
nothing satisfies it, for in order to satisfy this wff, an object would have to satisfy both of the wffs 
Apple(x) and Orange(x). But no object does this, since no object is both an apple and an orange. 

The correct rendition of apples and oranges is more likely to be Apple(x) ∨ Orange(x). For when 
you consider such sentences as: 

Apples and oranges are fruits. 

Bob eats only apples and oranges. 

it is clear that the FOL sentences that capture their meanings are: 

∀x ((Apple(x) ∨ Orange(x)) → Fruit(x)) 

∀x (Eats(bob, x) → (Apple(x) ∨ Orange(x)) 

Conversational implicature and quantification 

When we use such English quantificational phrases as every applicant, all my grandchildren, 
etc., there is an apparent implication that there are some applicants, that I have some 
grandchildren, etc. 

But in FOL, such sentences as: 
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∀x (Applicant(x) → Hired(bill, x)) 

∀y (Grandchild(y, marc) → Brilliant(y)) 

come out true when nothing satisfies the wff in the antecedent. So if there were no applicants, 
the FOL translation of Bill hired every applicant comes out true; and if I have no 
grandchildren, the FOL translation of All my grandchildren are brilliant comes out true. 

What are we to say of these vacuous generalizations? They come out true in FOL, but when we 
assert their English translations, something seems wrong with them. But what is wrong with 
them? Is it that they are false? 

The most widely accepted answer to this question makes use of Grice’s notion of 
conversational implicature. Grice’s answer is not that vacuous generalizations are false, but 
that they are misleading. 

What is misleading about them is that the speaker has not been fully forthcoming with all the 
information at his or her disposal. If the speaker knows that there are no applicants, or that 
Marc has no grandchildren, the most fully informative statements he or she could make about 
the applicants, or about Marc’s grandchildren, are: 

There were no applicants. 

Marc has no grandchildren. 

The statements we are considering: 

Bill hired every applicant. 

All of Marc’s grandchildren are brilliant. 

make weaker claims—each is a logical consequence of its counterpart “negative existential,” 
but does not logically imply it. So the vacuous generalization makes a weaker claim. 

The relation is just the same as that between a disjunction and one of its disjuncts—the 
disjunction makes a weaker claim than the disjunct standing alone. But clearly the weaker 
claim is not false—it is just a weaker version of the truth. For example, if I tell my wife “Your 
keys are either in the kitchen or by the front door,” and I know that they are in the kitchen, I 
have not lied—I have not said something false. I have misled her, of course, by withholding 
relevant information that I possessed, namely, that they are not by the front door. I should 
have said simply “They are in the kitchen.” But my mistake was not in saying something 
false; rather, it was in not telling all of the truth I was in possession of. I may have 
conversationally implicated that I did not know the exact location of her keys, but I did not 
assert that. 

That this is exactly what is going on in the cases we are considering becomes apparent when 
we consider an equivalent FOL sentence: 

∀y (¬Grandchild(y, marc) ∨ Brilliant(y)) 

This is equivalent to the standard FOL version of All of Marc’s grandchildren are brilliant and 
it stands in just the same relation to its counterpart negative existential: 

∀y ¬Grandchild(y, marc) 

Here, too, the weaker statement is a disjunction and the stronger statement is one of its 
disjuncts. 
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So when I, who have no grandchildren, say that all of my grandchildren are brilliant, I say 
something that is misleading, but not false. For I have not asserted, falsely, that I have 
grandchildren, although I have implicated this. The implicature can be cancelled, for I can 
say, without contradicting myself (barely!) All of my grandchildren are brilliant—
unfortunately, I don’t have any grandchildren. 


