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Chapter 2: The Logic of Atomic Sentences 

§2.1  Valid and sound arguments 

Conclusion 

An argument is a piece of reasoning (a sequence of statements) attempting to establish a 
conclusion. The conclusion is what the arguer is trying to establish. It is indicated by words 
like therefore, so, hence, thus, consequently. What immediately follows these words is usually 
the conclusion. 

Premises 

The premises are the reasons the arguer gives in support of the conclusion. They may be given 
before the conclusion, or after it. Premises are typically preceded by words like because, since, 
after all. 

Validity 

In a valid argument, the conclusion follows from or is a logical consequence of the premises. 

Here is our definition of validity: 

An argument is valid if it is impossible for its premises  
to be true and its conclusion false. 

The word “impossible” is important here. The fact that an argument’s conclusion is actually 
true does not make the argument valid — validity requires that there be no possible 
circumstance in which the premises would be true and the conclusion false. 

Similarly, the fact that an argument contains a false premise means nothing about the 
argument’s validity or invalidity. Some arguments with false premises are valid, and others are 
invalid. What matters is whether there is any possible circumstance in which the premises 
would be true and the conclusion false. 

Soundness 

A sound argument is a valid argument with true premises. 

So, every sound argument is valid, but not every valid argument is sound. 

Fitch bar notation 

In many books, arguments are written up using the “3-dot” symbol: ∴ So, for example, 
you might see: 

Socrates is a man. 
All men are mortal. 
∴Socrates is mortal. 

In LPL, we’ll use the “Fitch bar” notation. The premises are written above the 
horizontal line (the Fitch bar), and the conclusion below: 

Socrates is a man. 
All men are mortal. 

Socrates is mortal. 
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Examples 

Here are two examples of arguments: one valid, one invalid. 

Example 1a: a valid argument 

Cube(a) 

Large(a) 

SameShape(a, b) 

Cube(b) 

Example 1b: an invalid argument 

Cube(a) 

Large(a) 

SameShape(a, b) 

Large(b) 

We’ll return to these arguments later. We’ll see how to prove the first one valid, and how to 
show that the second one is invalid. Our method of proof of validity is very different from our 
method of showing invalidity. 

§2.2  Methods of proof 

A step-by-step demonstration showing that the conclusion follows from the premises. In a proof, a 
series of intermediate conclusions are reached, leading in a chain from the premises to the 
(ultimate) conclusion. The intermediate conclusions are also written below the Fitch bar. 

At each step, there must be absolute certainty. That is, there must be no chance that any 
conclusion (intermediate or otherwise) does not follow from the sentences it is inferred from. Our 
steps must be such that there is never a possibility that we might be inferring a false sentence from 
true ones. 

Proofs involving the identity symbol 

Our language so far contains only atomic sentences, which limits our ability to come up with 
rules for deriving conclusions from premises. But we can take advantage of some features of 
the identity relation to put our first two rules (concerning the symbol =) into play. 

• First, note that the identity relation (the relation that holds between a and b in virtue of 
which a = b is true) is reflexive. That is, each thing is identical to itself. In other 
words, sentences like b = b are always true. 

• Second, the identity relation is symmetrical. That is, if a = b, then b = a. 

• Third, the identity relation is transitive. That is, if a = b and b =  c, then a = c. 

• Finally, if a = b, then whatever holds of a also holds of b. This is called the 
indiscernibility of identicals. 

We will enshrine these features of identity in our system of proof by introducing rules that 
take advantage of them. 
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§2.3  Formal proofs 

We will be developing a “deductive system” for writing up formal proofs. We call the system F, 
and we will be employing a computer program called “Fitch” that is a somewhat more “user-
friendly” version of F. 

In a formal proof in F, we use the Fitch bar notation. The premises are written above the 
(horizontal) Fitch bar; the subsequent steps (intermediate conclusions and the ultimate conclusion) 
are written below the Fitch bar. 

Each step in a formal proof must be entered in accordance with some precisely stated rule of the 
formal system of rules. By applying a rule to some previous line or lines in a proof, we provide a 
justification for entering a new step in a proof. 

A justification, then, cites a rule and the lines to which the rule is being applied in order to 
generate the line being introduced. 

Our first rules can now be stated: 

Identity Introduction (= Intro) 

  n = n 

The triangle points to the sentence that the rule entitles you to enter. This rule says, in effect, 
that you may enter a sentence of the form n = n at any point you wish. Obviously, this rule 
emodies the principle of reflexivity of identity. 

Identity Elimination (= Elim) 

    P(n) 

    n = m 

   P(m) 

This rule tells you that you may substitute m for n wherever you like, provided that you have 
the sentence n = m. This rule embodies the principle of indiscernibility of identicals. 

Notice that although the rule is called an “elimination” rule, nothing is really being eliminated. 
The idea is that we have used (eliminated?) an identity sentence in the process of arriving at a 
conclusion. That is, we are arguing “from” an identity sentence, and in that sense we are 
“eliminating” it. 

In F, each logical symbol has a pair of rules associated with it: an introduction rule, which 
tells you how to get a sentence containing that logical symbol into a proof, and an elimination 
rule, which tells you how to deduce something from a sentence containing that logical 
symbol. (For this reason the rules in a system like F are sometimes called “int-elim” rules.) 
Thus, = Intro tells us how to enter an identity sentence (we can enter a = a), and = Elim tells 
us how to use an identity sentence (n = m) as a premise. 

Don’t worry that our two rules seem to have ignored the symmetry and transitivity of identity. 
In fact, symmetry and transitivity follow from reflexivity and indiscernibility. That is, using 
only = Intro and = Elim, you can prove that b = a follows from a = b, and that a = c follows 
from a = b and b = c. (You will be proving transitivity in exercise 2.16 in H3.) 
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For an illustration of how = Elim works, open Ch2Ex3.prf. Point the focus slider at line 3 and 
click on both premises; they will be highlighted, meaning that they are your support sentences. 
Then choose rule = Elim, and click on Check Step. Notice which sentence Fitch inserts, by 
default. Is this the sentence you expected? (Perhaps you were surprised to see both 
occurrences of a replaced by b). Try entering a new line that makes only one replacement in 
line 1, and ask Fitch to check it out. (Be sure to highlight your two support lines by clicking on 
them.) Then enter yet another line that makes a different single replacement in line 1 and have 
Fitch check it out. You will notice that = Elim licenses all three of these inferences. 

Please be aware that (unlike Fitch) F is a very strict system. Its rule = Elim permits us to 
substitute the name that occurs to the right of the equals sign for the one that occurs to the 
left, but does not permit us to substitute the name on the left for the one on the right. That is, 
the rule does not strictly apply to the pair of sentences Cube(b) and a = b. It only applies to 
the sentences Cube(a) and a = b. Since the Fitch program is more liberal about this fine detail 
than F is, we will be able to ignore it when we’re using Fitch. 

§2.4  Constructing proofs in Fitch 

You try it 

Work the problem on p. 58, using the file Identity 1 (it’s in the Fitch Exercise Files folder). To 
see what your proof should look like, open the file Proof Identity 1.prf. (Either click on the 
link or find the file on the Supplementary Exercises page of the course web site.) 

Ana Con 

This is a mechanism that is built into Fitch. It basically checks to see whether a conclusion 
does indeed follow from its premises. Ana Con has some limitations: it does not understand 
the predicates Adjoins and Between, and some complicated arguments may stump it. 

As we will see, Ana Con uses a broader notion of logical consequence than is strictly allowed 
in FOL. For example, in FOL we cannot deduce Larger(a, b) from Smaller(b, a). This is 
because this inference depends on the meaning of the predicates, and FOL is ignorant of the 
meanings of the predicates in the arguments it examines. 

But given the meanings of Larger and Smaller, we may note that it is not possible for the first 
sentence to be true and the second false. So there is a clear sense in which the inference in 
question is valid. Ana Con takes the meanings of the predicates into account. So we’ll say that 
Larger(a, b) is an analytic consequence of Smaller(b, a), even though it is not a first-order 
consequence of it. Try to show this in Fitch by opening Ch2Ex2.prf and using Ana Con to 
complete the proof. 

§2.5  Demonstrating nonconsequence 

We don’t use proofs 

We do not give proofs of nonconsequence; we do this by means of counterexample. This is 
because of the following fact: 

When we establish that an argument is valid, we establish something quite general. That is, 
that it is impossible for the premises to be true and the conclusion false. To put it another way, 

we establish that in every possible situation in which the premises are true, so is the 
conclusion. 
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Conversely, to establish that an argument is invalid, we must show that it is not valid. That is, 
that it is possible for the premises to be true and the conclusion false. To put it another way, 
we must establish that there is some possible situation in which the premises are true and the 
conclusion is false. 

So when we show an argument to be invalid, we need not prove anything general. It is 
sufficient to describe a possible situation in which the premises are true and the conclusion is 
false. 

Since demonstrating nonconsequence does not involve proofs, we will not be using the 
program Fitch to show that an argument is invalid. For example, suppose we are using Fitch, 
and we examine some purported proof of a given argument, and we see that the proof contains 
a mistake or a misapplication of the rules. That doesn’t show the argument to be invalid. 
Perhaps it is just a faulty proof of a valid argument! In that case, some other proof could be 
found. 

But we can use Fitch’s Con mechanisms to tell us that an argument is invalid. Let’s apply the 
Ana Con mechanism to our previous examples, Example 1a and Example 1b. To see how, 
open Ch2Ex1a.prf and Ch2Ex1b.prf.] 

We construct counterexamples 

To demonstrate nonconsequence, we use the program Tarski’s World. This program lets us 
create counterexamples: possible situations, or “worlds,” in which the premises of an argument 
are true and its conclusion is false. 

We’ll continue with Examples 1a and 1b. Open Ch2Ex1a.sen, Ch2Ex1b.sen, and 
Ch2Ex1.wld. (1a) is valid, (1b) is invalid. If we change the world slightly, we can make the 
conclusion of (1b) false while leaving the premises true. (Just make b into a small cube.) But 
there is no way of making the conclusion of (1a) false while leaving the premises true, for that 
is a valid argument, and any world in which its premises are true will also make its conclusion 
true. 

Now do the You try it on p. 64 to construct your own demonstration of nonconsequence. You 
will be constructing a counterexample to Bill’s Argument. 

If you solved this problem, you should have ended up with a world that looks something like 
this: Bill’s Argument.wld. 

Deductive vs. Inductive Reasoning 

In this course, we will be studying deductive reasoning, where we try to determine whether a given 
conclusion does or does not follow from a certain set of premises. But a good deal of reasoning is 
not deductive; often, one is interested in something weaker than absolute certainty. One may be 
interested in whether a set of premises makes the truth of a conclusion more probable, rather than 
in whether it guarantees the truth of the conclusion. 

For a good illustration of the difference between these two modes of reasoning, look at the world 
Deductive vs Inductive.wld and the accompanying sentence file Deductive vs Inductive.sen. 

We can’t see whether there is a block behind the medium cube in the column on the right, but we 
know from the fact that the sentences in the file are true that there must be one there. For we know 
that there is a block named b that is in the same column as a and the same row as c. 
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Can we tell anything about the size and shape of b? Using inductive reasoning, we might conclude 
that b is a cube. After all, in the left-hand column, all the blocks are of the same shape, and in the 
middle column, all the blocks are of the same shape. So one might reason, inductively, that the third 
column will be like the other two in this respect. If it is, the hidden block will be a cube, for the two 
that are visible are cubes. But there is no certainty here, for we can imagine a world in which b is 
not a cube. 

Can we tell what size b is? Here, we can do better. For b must be small. If b were medium or large, 
it would be at least partially visible. But we cannot see anything of b. Therefore, it must be small. 
Here, we have used deductive reasoning to establish that a certain conclusion follows from the 
information that we already have (and not just that it is more likely to be true, given that 
information). 

So we have given an inductive argument that b is likely to be a cube, and a deductive argument 
that b must be small. We can now rotate the world 90 degrees (or switch to a 2-D view) to find out 
the size and shape of b. 

As to the size, there can be no surprises—there’s no possibility that b can be anything but small, 
consistent with the information we already have. But as to the shape, we may well be in for a 
surprise. 

Note that this is a feature of all inductive arguments: no matter how good the argument is, there is 
always a possibility, however remote, that the conclusion may be false even though all the premises 
are true. 

 


