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Chapter 12: Methods of Proof for Quantifiers 

§ 12.1  Valid quantifier steps 

The two simplest rules are the elimination rule for the universal quantifier and the introduction rule 
for the existential quantifier. 

Universal elimination 

This rule is sometimes called universal instantiation. Given a universal generalization (an ∀  
sentence), the rule allows you to infer any instance of that generalization. 

Example: 

From Everyone is mortal, infer Dick Cheney is mortal. 

The formal version of this rule (to be developed in Chapter 13) is called ∀∀∀∀  Elim. It will permit 
inferences like the following. 

Example: 

From ∀ x Cube(x), infer Cube(b). 

Notice that the term “elimination” is somewhat misleading here, for nothing is really being 
eliminated. But since the sentence from which the inference is drawn contains a universal 
quantifier that does not occur in the sentence which is inferred from it, one might well think 
of this maneuver as “eliminating” the universal quantifier. 

Clearly the inferences above are valid. There is no way the from sentence can be true while 
the to sentence is false. (We are assuming, in both cases, that the names being used denote 
objects in the domain of discourse.) If Dick Cheney is not mortal, then it is not true that 
everyone is mortal. And if Cube(b) is false, then we have a counterexample to ∀ x Cube(x). 

Existential introduction 

This rule, which permits you to introduce an existential quantifier, is sometimes called 
existential generalization. It allows you to infer an existential generalization (an ∃  sentence) 
from any instance of that generalization. 

Example: 

From Dick Cheney is mortal infer Someone is mortal. 

The formal version of this rule is called ∃∃∃∃  Intro. It will permit inferences like the following. 

Example: 

From Cube(b), infer ∃ x Cube(x). 

Again, these are both valid inferences. There is no way the from sentence can be true while 
the to sentence is false. If it is true that Dick Cheney is mortal, then it is true that someone 
(Dick Cheney, at the very least) is mortal. And if ∃ x Cube(x) is false, then there are no cubes, 
and so Cube(b) is false. 

We thus have our first two simple rules for quantifiers: we can infer 
from a universal generalization to any of its instances, and we can infer 

to an existential generalization from any of its instances. 
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Why the next two rules are more complicated 

We now have an elimination rule for the universal quantifier, and an introduction rule for the 
existential quantifier. This means that we can draw inferences from universally quantified 
sentences (∀  sentences), and to existentially quantified sentences (∃  sentences). Further, these 
rules are very simple, as can be seen from the examples above, and can be very simply stated (as 
can their formal counterparts ∀∀∀∀  Elim and ∃∃∃∃  Intro). 

We also need to draw inferences from existentially quantified sentences and to universally 
quantified sentences. The question is, how can we formulate inference rules that enable us to do 
this? 

It is clear that if we model these new rules on our present ones, they will not work. Such overly 
simple “rules” would look like this: 

“Existential Elimination” 

From an existential generalization, infer any of its instances. 

“Universal Generalization” 

From any instance of a universal generalization, infer that generalization. 

The trouble is, inferences made in accordance with these “rules” are not valid, for they would 
permit us to infer false sentences from true ones. Here are some examples of invalid arguments 
that these “rules” would permit: 

Someone is a liberal 

Dick Cheney is a liberal 

∃ x Cube(x) 

Cube(b) 

Bill Bradley is a liberal 

Everyone is a liberal 

Cube(c) 

∀ x Cube(x) 

It’s obvious that these arguments are invalid. Bill Bradley is a liberal, but not everyone is (e.g., 
Dick Cheney isn’t a liberal). Someone is a liberal (e.g., Bill Bradley), but Dick Cheney isn’t. And 
it’s easy to construct a Tarski’s World counterexample to the other two arguments: let b be a 
tetrahedron and c a cube. 

So our simple versions of the new rules will not do. We must therefore come up with different 
rules for drawing inferences from existential generalizations and to universal generalizations. 
Instead of introducing those rules at this point, we will informally describe a method of drawing an 
inference from an existential generalization, and a method of inferring to a universal 
generalization. Having done that, we will be in a position to formulate sound rules of existential 
elimination and universal introduction. 
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§ 12.2  The method of existential instantiation 

The method 

We give up the idea of trying to infer an instance of an existential generalization from the 
generalization. Instead, we temporarily introduce a new name into our proof and assume that 
it names an object (whatever it might be) that makes the existential generalization true. (We 
know that there must be such an object—we just don’t know its name.) Then we try to prove 
something about the hypothetical individual. Finally, we derive some further sentence 
(typically, an existential generalization) that does not mention that individual by name. 

Example 

Argument 

Some criminal stole the diamonds from the museum. Whoever stole the diamonds has an 
accomplice on the museum staff. Therefore, some criminal has an accomplice on the 
museum staff. 

Proof 

We know that some criminal stole the diamonds; let’s call him (or her) Ralph. Since 
whoever stole the diamonds has an accomplice on the museum staff, it follows that 
Ralph has such an accomplice. But Ralph is a criminal, and Ralph has an accomplice on 
the staff. So, some criminal has an accomplice on the staff. 

The rule 

If we have followed this method successfully, we are in the following situation: 

•  We have an existential generalization as a line in our proof, say ∃ x P(x). 

•  We have assumed an instance of that generalization, say P(c), as a temporary 
assumption. 

•  We have derived from that assumption some conclusion, say Q, in which c does not 
occur. 

The rule then permits us to enter the conclusion Q that we just reached as a new line, but one 
which depends on the existential generalization ∃ x P(x), rather than on the instance P(c) we 
temporarily assumed. 

Our example followed this procedure: P(x) was x is a criminal and x stole the diamonds 
from the museum, c was Ralph, and Q was Some criminal has an accomplice on the 
staff. Our assumption came at the point where we said Let’s call him Ralph. 

The example on p. 323 also makes clear how this works. When we get to Ch. 13, we’ll see 
how the rule for system F formalizes this procedure. 

§ 12.3  The method of general conditional proof 

Once again, we give up the idea of trying to infer a universal generalization from just any instance 
of the generalization. Instead, we temporarily introduce a new name into our proof and assume 
that it names an object chosen at random. Then we prove something about the randomly chosen 
individual. Finally, we may then infer that what we have proven about this randomly chosen 
individual holds universally—i.e., we may infer a universal generalization. 
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The method 

This is a method of proving generalized conditional sentences, that is, sentences of the form 
All P’s are Q’s. The technique is to pick some arbitrary instance of P, and then prove that it is 
also an instance of Q. Having shown that this arbitrary instance of P is also an instance of Q, 
we may infer that every instance of P is an instance of Q. 

One might well wonder, how can we be certain that we have picked an instance of P? What 
happens if there are none? The answer is that we do not have to be certain of this. That there 
is an instance of P (chosen by us at random) is just an assumption we are making, an 
assumption that we will discharge. So, in the end, our proof will not depend on there actually 
being such an instance. Rather, what we show is that if there is such an instance, it will also 
be an instance of Q. The method looks a lot like the conditional proof method we used in 
propositional logic. 

That is, to prove a statement of the form ∀ x (P(x) → Q(x)): 

•  Assume some instance of the wff P(x), say P(c), where c denotes any arbitrarily 
selected individual satisfying P(x). 

•  Prove Q(c) 

•  Discharge the assumption and draw the conclusion ∀ x (P(x) → Q(x)). 

There is another way to look at this kind of proof, one that usually goes by the name 
universal generalization. Here, one starts out with only the assumption that one has chosen 
some object at random (but no other assumption about it). One then proves something about 
this object. One then concludes that whatever one has proved about this arbitrarily chosen 
object holds of every object. That is: 

•  Choose a name, say c, and assume that it denotes some arbitrary individual. 

•  Prove some sentence containing the name c, say S(c). 

•  Discharge the assumption and infer the universal generalization ∀ x S(x). 

As LPL points out, these two approaches are in fact redundant—we can make do with only 
one of them. But the first is common in everyday reasoning, and the second is common in 
logic books, so we will build them both into system F and into Fitch. 

Planning a strategy: informal proofs 

Sketching out an informal proof is almost always a good thing to do before trying to construct a 
formal proof. So before moving on to the next chapter, let’s try our hand at some informal proofs. 

Example: Exercise 12.9 

∀ x [(Cube(x) ∧ Large(x)) ∨ (Tet(x) ∧ Small(x))] 

∀ x [Tet(x) → BackOf(x, c)] 

∀ x [Small(x) → BackOf(x, c)] 

Proof: We will use the method of general conditional proof. Let a be an arbitrary small 
object—we will prove that a is back of c. Premise 1 tells us that every object is either a large 
cube or a small tetrahedron, so it follows (by ∀∀∀∀  Elim) that a is either a large cube or a small 
tetrahedron. This gives us two cases. But the first case is immediately contradictory, since a 
cannot be both small and large, so the second case must hold, and a must be a small 
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tetrahedron. But premise 2 tells us that every tetrahedron is back of c, so it follows that a is 
back of c, which is what we wanted to prove. Our assumption that a is small, then, has led to 
the conclusion that a is back of c. Hence, by general conditional proof, anything that is small 
is in back of c. QED. 

Example: Exercise 12.20 

∀ x [Cube(x) → ∃ y LeftOf(x, y)] 

¬∃ x ∃ z [Cube(x) ∧ Cube(z) ∧ LeftOf(x, z)] 

∃ x ∃ y [Cube(x) ∧ Cube(y) ∧ x ≠ y] 

∃ x ¬Cube(x) 

Proof: Here we will use the method of existential instantiation. Premise 3 tells us that there 
are at least two cubes; let’s call these a and b. Premise 1 tells us that every cube is left of 
something, so we can infer that if a is a cube, then there is something that a is to the left of. 
But a is a cube, so we may infer (using →→→→ Elim) that there is something that a is to the left of. 
Let’s pick an object that a is to the left of and call it c. We will now prove that c is not a cube. 
For, suppose c is a cube; then a is a cube and c is a cube and a is to the left of c. We may then 
apply ∃∃∃∃  Intro to this and infer that there is a cube that is to the left of a cube, i.e., 
∃x ∃z (Cube(x) ∧ Cube(z) ∧ LeftOf(x, z)), contradicting premise 2. Since our assumption 
that c is a cube has led to a contradiction, we may infer that c is not a cube. So, by ∃∃∃∃  Intro, 
there is at least one object that is not a cube. Now we know from premise 3 that there are at 
least two cubes, and we have been assuming that their names are a and b. From this 
assumption we derived the conclusion that there is at least one non-cube. But nothing in our 
proof depended on the names of the two cubes—no matter what their names are, we could 
still derive the same conclusion. Hence we may conclude (citing premise 3 in place of our 
assumption about the names of the cubes) that there is at least one object that is not a cube. 

§ 12.4  Proofs involving mixed quantifiers 

In both of these methods (existential instantiation and universal generalization), we must be sure 
that we have a way of guaranteeing that the name we use in our assumption picks out an arbitrary 
object. We must be sure that we do not smuggle into our proof any extraneous information that 
may depend on the individual denoted by the name we have chosen to represent a random object. 

A special case in which this issue arises involves proofs with mixed quantifiers. Although ∃∀  
sentences imply their ∀∃  counterparts, the converse is not always true. The following arguments 
illustrate this point. 

A valid argument 

There is a certain person who is admired by everyone. Therefore, everyone admires someone 
or other. 

∃ y ∀ x Admires(x, y) 

∀ x ∃ y Admires(x, y) 

This argument is valid, and our method of proof can establish its validity. 
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Proof 

There is a certain person who is admired by everyone. Let’s call him George. Now 
since everyone admires George, we can pick any person at random and that person will 
admire George. So let’s pick someone at random, and call him Jerry. So, since Jerry 
admires George, it follows that there is someone whom Jerry admires. But Jerry was 
any randomly chosen individual, and we have shown that Jerry admires someone or 
other. Therefore, everyone admires someone or other. 

Switch the premise and conclusion, however, and the argument becomes invalid. 

An invalid argument 

Everyone admires someone or other. Therefore, there is a certain person who is admired by 
everyone. 

∀ x ∃ y Admires(x, y) 

∃ y ∀ x Admires(x, y) 

This argument is clearly invalid. (Just to convince yourself of its invalidity, see whether you 
can describe a possible situation—say, involving George, Jerry, and Elaine—in which the 
premise is true and the conclusion false. You should be able to do this fairly easily—to check 
out your counterexample, compare it with mine.) So we must take pains to ensure that the 
method of proof we used above will not enable us to “prove” the conclusion of this argument. 
If we are not careful, that is just what will happen. Consider the following pseudo-proof: 

Pseudo “proof” 

Everyone admires someone or other. So let’s pick anyone at random, and call her 
Elaine. Now Elaine admires someone or other; so let’s pick a person that Elaine 
admires and call him Cosmo. So, Elaine admires Cosmo. But Elaine was any randomly 
chosen individual, and we have shown that Elaine admires Cosmo. So everyone admires 
Cosmo. Therefore, it follows that there is a certain person (namely, Cosmo) whom 
everyone admires. 

Clearly, this “proof” is fallacious. The fallacy lies in concluding, from the fact Elaine was 
chosen at random, and admires Cosmo, that everyone admires Cosmo. The reason it is a 
fallacy is that we did not choose Cosmo at random from the entire domain of people who are 
admired; rather, we chose him from among the people that Elaine admires. That is, our choice 
of Cosmo depended on our prior choice of Elaine. 

This is an example of what LPL calls a “hidden dependency.” Since the sentence Elaine 
admires Cosmo mentions an individual (Cosmo) whose choice depended on our prior choice 
of Elaine, we cannot universally generalize with respect to Elaine and conclude Everyone 
admires Cosmo. 

As LPL explains(p. 331), “we must now add the restriction that S(c) not contain any constant 
introduced by existential instantiation after the introduction of the constant c.” 

Here’s another way of putting the restriction: even if we prove S(c), where c is a randomly 
chosen individual, we may not draw the conclusion ∀ x S(x) if S(c) contains any other name 
that was introduced as an assumption for existential instantiation after the name c was 
introduced. 



Copyright © 2004, S. Marc Cohen  Revised 11/23/04 12-7

Thus, in our example, S(c) is Elaine admires Cosmo and c is Elaine. Since Elaine admires 
Cosmo contains the name Cosmo, which was introduced after the name Elaine was introduced 
for existential instantiation strategy, we may not infer Everyone admires Cosmo. 

This restriction sounds complicated, but in system F we will have a very simple method of 
ensuring that it is not violated. It will turn out that our rule of ∃∃∃∃  Elim (the formal rule that 
corresponds to the method of existential instantiation) will be set up in such a way as to 
prevent this fallacious inference. We will see how this comes about when we introduce the 
formal rules for quantifiers in Chapter 13. 
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