

Different forces acting on water in soil

- Matric force matrix
 Attraction of water for solids/ particle
 surfaces
- Osmotic force osmosis
 - Tendency of solutions to come into equilibrium
 - Water in soils is never pure water
- Gravity
 - Downward flow

Goal of water is to achieve lowest energy level

• What the water will do will be a function of the factors acting upon it and the tendency to move to the lowest energy state

Energy level

- More freedom of movement > energy level
- More restrictions on movement < energy level

In other words -

- The water that is in a very wet soil has high potential
 - It is most likely surrounded by other water molecules
 - Matric and osmotic potentials are low

Dry soil

- The water in a dry soil has low potential
 - It is most likely surrounded by solids and solutes
 - Matric and osmotic potentials are high
 - It has very little freedom of movement
- Matric and osmotic potentials are always negative
- When water responds to these potentials it goes to a lower (more negative) energy state

Units for water (Potential, energy)

- Units for energy

 Mass (joules/kg)
 Volume (newtons/m²)
- 1 pascal (SI) = newton/ 1 m²

- Related to pressure of a column of water (cm)
- Bars 0 -100
- kPa 0 - 10,000
- 1 kPa = 0.01 bars

Matric and osmotic forces

- Are pulling on the water
- Creating tension
- How much tension there is pulling on the water will determine how much water there is for plants

