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Abstract:

 

Bayesian statistical inference provides an alternate way to analyze data that is likely to be more
appropriate to conservation biology problems than traditional statistical methods. I contrast Bayesian tech-
niques with traditional hypothesis-testing techniques using examples applicable to conservation. I use a trend
analysis of two hypothetical populations to illustrate how easy it is to understand Bayesian results, which are
given in terms of probability. Bayesian trend analysis indicated that the two populations had very different
chances of declining at biologically important rates. For example, the probability that the first population
was declining faster than 5% per year was 0.00, compared to a probability of 0.86 for the second population.
The Bayesian results appropriately identified which population was of greater conservation concern. The
Bayesian results contrast with those obtained with traditional hypothesis testing. Hypothesis testing indicated
that the first population, which the Bayesian analysis indicated had no chance of declining at 

 

.

 

5% per year,
was declining significantly because it was declining at a slow rate and the abundance estimates were precise.
Despite the high probability that the second population was experiencing a serious decline, hypothesis testing
failed to reject the null hypothesis of no decline because the abundance estimates were imprecise. Finally, I
extended the trend analysis to illustrate Bayesian decision theory, which allows for choice between more
than two decisions and allows explicit specification of the consequences of various errors. The Bayesian re-
sults again differed from the traditional results: the decision analysis led to the conclusion that the first popu-
lation was declining slowly and the second population was declining rapidly.

 

Métodos Bayesianos en Conservación Biológica

 

Resumen:

 

Las inferencias de la estadística Bayesiana proveen una forma alternativa de analizar datos que
probablemente sea más apropiada para la conservación biológica que los métodos estadísticos tradicionales.
Comparé técnicas Bayesianas con técnicas tradicionales de prueba de hipótesis, mediante el uso de ejemplos
aplicables a la conservación. Utilicé un análisis de tendencias de dos poblaciones hipotéticas para ilustrar lo
fácil que es entender los resultados Bayesianos, los cuales se obtienen en forma de probabilidades. El análisis
Bayesiano de tendencias indicó que las dos poblaciones tenían probabilidades muy diferentes de disminuir a
tasas biológicamente importantes. Por ejemplo, la probabilidad de que la primera población disminuyera
más de un 5% por año fue de 0.0, comparada con una probabilidad de un 0.86 para la segunda población.
Los resultados Bayesianos identifican adecuadamente cual población era la de mayor interés para conservar.
Los resultados Bayesianos se contrastan con aquéllos obtenidos mediante pruebas de hipótesis tradicionales.
Las pruebas de hipótesis indicaron que la primera población (la cual fue indicada por las pruebas Bayesianas
como teniendo una probabilidad de disminución mayor al 5% por año) disminuía significativamente debido
a que la disminución ocurría a una tasa muy baja y las estimaciones de abundancia eran precisas. A pesar
de la alta probabilidad de que la segunda población experimente una disminución seria, la prueba de hipó-
tesis fallo al rechazar la hipótesis nula de no-disminución, debido a que las estimaciones de abundancia
eran poco precisas. Extendí el análisis de tendencias para ilustrar la teoría de decisión Bayesiana, la cual
permite decidir entre más de dos posibilidades y permite una especificación explícita de las consecuencias de
varios errores. Los resultados Bayesianos difirieron una vez más de los resultados tradicionales: el análisis
de decisiones condujo a la conclusión de que la primera población disminuía despacio y la segunda dis-

 

minuía rápidamente.
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Introduction

 

Conservation scientists gather and analyze data with the
goal of improving resource management. Therefore, the
analysis of data should lead to results that are easy to un-
derstand and useful for making conservation decisions.
Biologists often analyze their data with standard statistical
procedures that test hypotheses. Such tests may not detect
what the data could potentially tell us about a conservation
problem and in some cases may even mislead conservation
action because results may inadequately treat uncertainty.
Bayesian statistical inference provides an alternate way to
analyze data that remedies many of the problems inherent
in standard hypothesis testing and, most important, allows
the incorporation of uncertainty.

Bayesian methods calculate the probability of different
values of a parameter given the data. Consequently,
Bayesian methods have practical advantages for conser-
vation biologists because (1) Bayesian analyses are sim-
ple to explain and present and automatically include the
uncertainty of the estimate; (2) probability statements
better represent the state of a population than 

 

p

 

 values
generated from hypothesis tests; (3) Bayesian analyses
relate directly to biological relevance in contrast to sig-
nificance tests, in which biological importance usually
plays no role; (4) Bayesian decision theory can be used,
which allows consideration of the relative consequences
of making incorrect decisions; (5) uncertainty from im-
portant but unknown parameters can be included; (6)
uncertainty in model choice can be formally incorpo-
rated into analysis results by combining the results from
different plausible models via the Bayes factor; and (7)
uncertainty can be reduced by incorporating additional
information in a formal and transparent way, including
combining various types of data, updating an analysis af-
ter collection of additional data, or subjectively using in-
formation from similar populations or species.

I use three examples to illustrate Bayesian methods.
The first provides a visual example as an introduction to
Bayesian analysis, the second is a hypothetical trend
analysis that illustrates the first three general advantages,
and the third illustrates a Bayesian decision analysis.
Given that good introductions to the use of Bayesian
methods in ecology already exist (Reckhow 1990; Elli-
son 1996), I focus on examples that illustrate specific
benefits for conservation issues.

 

What Are Bayesian Statistics?

 

Statistical methods based on Bayes’s theorem (Bayes
1763) represent a different school of statistical inference
and a different statistical philosophy from the standard
statistics that most scientists are taught ( Jeffreys 1939,
1961; Berger 1985; Howson & Urbach 1989, 1991; Lee
1989; Press 1989). Bayesian methods calculate the prob-

ability of the value of a parameter given the observed
data. In contrast, conventional statistical analyses (called
frequentist statistics) calculate the probability of observ-
ing data given a specific value for a parameter, such as a
null hypothesis. In simplest terms, the data are what is
known, the value of the parameter is what is unknown,
and Bayesians therefore focus on what the data tell
about the parameter (Lindley 1986). Nearly any statisti-
cal analysis, such as linear regression, can be carried out
as a Bayesian analysis. Standard statistical methods gen-
erally use significance tests to make conclusions from
data. Bayesian methods rely on probability statements
that are made from a distribution that describes the
probability of all parameter values, given the data.

Both Bayesian and frequentist statistics use the com-
mon tool of sampling distributions to calculate the prob-
ability of observing data given specific values of parame-
ters. Frequentist methods use this sampling distribution
directly. For example, a 

 

p

 

 value is the probability of ob-
serving data as extreme as or more extreme than the
data that were observed, given that the null hypothesis
is true, on repeated sampling of the data. This explains
the origin of the name: the performance of frequentist
statistics is measured by their long-run frequencies un-
der repeated sampling of data. In addition to hypothesis
testing, a frequentist parameter estimate can also be
made from the sampling distribution by calculating the
likelihood function, which is formed by calculating the
probability of observing the data for every possible value
of the parameter. This function is then interpreted in fre-
quentist statistics to represent the relative likelihood of
different parameter values. The function, however, does
not represent the probability of different parameter val-
ues; it represents the probability of observing the data
given different parameter values. A maximum likelihood
estimate is the value of the parameter that maximizes
the probability of the observed data (the peak of the
likelihood function).

Bayesian methods also use the likelihood function, but
in a different way. Bayesian analyses calculate a poste-
rior probability distribution for the parameter as the in-
tegral of the product of the likelihood function with a
prior probability distribution for the parameter. The
prior distribution represents a probability distribution
for the parameter before consideration of the data, and
the posterior represents a probability distribution for
the parameter after consideration of the data. All statisti-
cal inference is then made from the posterior distribu-
tion. Further technical details on Bayesian methods are
provided in the Appendix.

 

An Example of Bayesian Methods

 

I use a simple example to introduce the likelihood func-
tion, the prior distribution, and how they interact to pro-
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duce the posterior distribution. A survey is conducted
and data collected that result in an abundance estimate
of 3000, which is assumed to have a normal sampling
distribution. The likelihood function is the probability of
observing the data (the abundance estimate) given dif-
ferent values of the parameter (the true population
size). In this case, the likelihood function (Fig. 1a) is
produced by successively calculating the probability of
observing an estimate of 3000 if the true population size
is 500, 501, 502, and so on up to 5000. Understandably,
the probability of observing an estimate of 3000 would
be greatest if the true population size was 3000, and the
likelihood function is therefore a normal distribution
centered on that value.

Because nothing is known about the abundance of the
population except for our current data, we choose a
noninformative prior distribution in which any positive
value of the parameter is equally likely (a uniform distri-
bution). If the prior distribution is uniform and the likeli-
hood function is normal, then the posterior distribution
is itself a normal distribution (Fig 1a). The posterior is
the product of the two distributions scaled to be a prob-
ability distribution (i.e., the area under the curve equals
one). This posterior distribution represents a statement
about how probable different values of the parameter
are in light of the data and the prior distribution. The
posterior distribution automatically describes the uncer-
tainty of the abundance estimate and provides the point
estimate, which is the mean of the posterior. The poste-
rior distribution and the likelihood function have exactly
the same shape in this example (and are drawn as per-
fectly overlapping lines in Fig. 1a), but the likelihood
function is independent of scale. It provides only a rela-
tive measure of each parameter value that cannot be in-
terpreted as a probability.

Now suppose an independent second abundance sur-
vey is performed immediately after the first. The Baye-
sian analysis uses the knowledge gained from the previ-
ous survey: the posterior distribution from the previous
analysis serves as the prior distribution for the new anal-
ysis (Fig. 1b). Because the new prior distribution results
from analysis of data, it is called a “data-based prior.” A
new likelihood distribution is calculated from the new
data (shown in Fig. 1b, arbitrarily scaled to a similar size
for presentation purposes). If the likelihood function
and the prior distribution are both normal, then the pos-
terior distribution is also a normal distribution that can
be solved analytically (Fig. 1b; Iversen 1984). The new
posterior distribution is intermediate to the prior and
the likelihood and becomes zero where either the prior
or likelihood becomes zero. Inference from the poste-
rior distribution will be explained in the next example.

 

A Bayesian Regression Example

 

To highlight the different interpretations resulting from
Bayesian and frequentist approaches, I analyzed trends
in abundance for two artificial data sets. If population
growth is exponential, the trend of a population can be
estimated by a linear regression on the natural log of a
series of abundance estimates. A frequentist linear re-
gression estimates the slope and intercept, and common
practice usually focuses on a significance test of the
slope. The null hypothesis of a zero slope (no trend) is
rejected when 

 

p

 

 values are below a specified critical
level (usually 0.05 or 0.01).

I created 10 years of abundance data for two hypothet-
ical populations. In population 1 (Fig. 2a), a frequentist
test of whether the slope was different than 0.0 was sig-

Figure 1. An (a) Bayesian analysis with a uniform 
prior distribution and a normal likelihood function. 
The posterior distribution that results is itself a nor-
mal distribution. The likelihood function is on a differ-
ent scale than the probability distributions; here it has 
been scaled arbitrarily to the posterior distribution 
and so is identical to the posterior distribution. A (b) 
second analysis with new data based on the posterior 
distribution from Fig. 1a as the prior distribution for 
the second analysis. The likelihood function for the 
second data set (arbitrarily scaled to a similar size) is 
centered at 2000. The new posterior distribution is in-
termediate to the new prior and the new likelihood.
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nificant at the 0.05 level (

 

p

 

 

 

5

 

 0.048), whereas the test
for population 2 (Fig. 2b) was not significant (

 

p

 

 

 

5

 

0.053). Therefore, if a statistically significant decline
must occur before conservation action is taken, then ac-
tion would be taken for population 1 but not for popula-
tion 2.

But which hypothetical population likely poses a con-
servation problem? Setting aside the results of the signif-
icance test, most people would view population 2 as a
potential conservation problem, whereas population 1
would appear fairly stable. Population 2 is estimated to
be declining at 10% per year (slope(

 

s

 

) 

 

5

 

 

 

2

 

0.10) but
with much uncertainty, whereas population 1 is fairly
precisely estimated to be declining at about 

 

1

 

⁄

 

3

 

 of 1% per
year (

 

s

 

 

 

5

 

 

 

2

 

0.0036). In other words, population 2 is esti-
mated to be declining at a rate about 30 times greater
than population 1. The frequentist tests did not help
identify the population at greater risk; in fact, the results
were the opposite of the conclusion that most people
would reach without using statistics.

Why did these results occur? There is no mystery: the
data from population 1 are significant because they are

more precise, which provides more statistical power to
detect a trend. The data from population 2 are much less
precise and provide little statistical power to detect a
trend. In practice, most researchers set Type I error, the
probability of rejecting a true null hypothesis, a priori to
a pre-specified level (here, the critical value of 0.05)
without explicitly considering Type II error. Several au-
thors have pointed out the importance of calculating
Type II error levels or statistical power, which are rarely
calculated in practice (Peterman 1990; Taylor & Gerro-
dette 1993; Steidl et al. 1997). Even though retrospec-
tive power analyses can demonstrate a lack of power
and help interpretation, they cannot be used to change
the results (Hayes & Steidl 1997). In particular, a calcu-
lation of statistical power does little to help interpreta-
tion of the conservation status of population 1 because a
finding of a significant decline will not be changed by a
calculation of power.

In a Bayesian analysis of these same hypothetical data,
all inference is drawn from the posterior distribution.
Using noninformative (uniform) distributions for both
the slope and the intercept, the posterior distribution
for the slope is a 

 

t

 

 distribution with degrees of freedom
equal to the sample size minus two (Press 1989; Ber-
nardo & Smith 1994). The confidence limits for the slope
in the frequentist analysis use this same 

 

t

 

 distribution.
The posterior distributions for the slope differ dramat-

ically for the two populations (Fig. 3). For visual conve-
nience, I present the two distributions as equal in height,
which means the scales differ. If they were shown on
the same scale, the area under each curve would equal
one and the posterior distribution for population 1 would
be much taller. The visual impression given by examin-
ing the two posterior distributions matches our previous
intuition: population 2 is likely to be at greater risk than
population 1. The posterior distribution can immediately

Figure 2. Hypothetical data for (a) population 1 and 
the estimated linear regression on log abundance using 
traditional frequentist methods (slope 5 20.03, p 5 
0.048), and hypothetical data for (b) population 2 
and the estimated linear regression on log abundance 
using traditional frequentist methods (slope 5 20.10, 
p 5 0.053).

Figure 3. Posterior distributions for population 1 and 
population 2 from a Bayesian linear regression on log 
abundance. The two posterior distributions are scaled 
differently to be of similar height.
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be “queried” for biologically important questions. For
example, assuming that declines of more than 5% repre-
sent an undesired risk level, one can easily ask “What is
the probability that the population is declining faster than
5%?” For population 1, the probability is zero, whereas
for population 2 it is 0.86, or fairly high (Table 1).

In Bayesian inference, hypotheses can be compared
by means of posterior odds, or the Bayes Factor (Reckhow
1990; Kass & Raftery 1995; Ellison 1996). The Bayes fac-
tor is the ratio of the posterior odds to the prior odds
and thus represents a measure of whether the data have
increased or decreased the likelihood of one hypothesis
relative to another (Kass & Raftery 1995). Interpretation
of the Bayes factor is placed into four broad categories,
from weak (“not worth a bare mention”) to positive,
strong, or very strong evidence for one hypothesis over
another ( Jeffreys 1961; Kass & Raftery 1995). Where
two hypotheses have equal prior probability, the Bayes
factor is equal to the posterior odds and is a function of
only the data. To compare the simple hypothesis that

 

s

 

 

 

5

 

 0.0 to the simple hypothesis that 

 

s

 

 

 

5

 

 

 

2

 

0.05, assum-
ing equal prior probability, the Bayes factor is essentially
the ratio of the height of the posterior distribution at the
two locations (Fig. 3). The Bayes factor for 

 

s

 

 

 

5

 

 0.0 ver-
sus 

 

s

 

 

 

5

 

 

 

2

 

0.05 for population 1 approaches infinity, indi-
cating that the data provide strong evidence that the
population is stable versus declining at 5% per year. The
Bayes factor for 

 

s

 

 

 

5

 

 

 

2

 

0.05 versus 

 

s

 

 

 

5

 

 0.00 would be ap-
proximately 5 for population 2, meaning that the data
provide positive evidence for a 5% decline relative to a
stable population. With this as the posterior odds ratio
(because of the assumption of equal prior odds), the hy-
pothesis of a decline of 5% is five times more probable
than the hypothesis of a stable population.

Another useful approach compares composite hypothe-
ses. For a composite hypothesis, the Bayes factor is still
the ratio of the posterior odds to the prior odds, but
these probabilities are now calculated by integrating
across the posterior and prior distributions, rather than
just evaluating them at a single value. For the sake of
these comparisons, I again assume equal prior odds for
the two hypotheses. Comparing the hypothesis that 

 

s 

 

,
2

 

0.05 to the hypothesis that 

 

s 

 

. 2

 

0.05 leads to the con-
clusion that population 1 shows evidence that it is de-
clining slowly versus declining rapidly. On the other
hand, population 2 has positive evidence for a biologi-

cally important decline. Alternatively, we could compare
the hypothesis that the population is declining (

 

s 

 

, 

 

0.0)
to the hypothesis it is increasing (

 

s 

 

. 

 

0.0), which results
in strong evidence that both populations are declining.
In summary, the Bayes factor leads to the conclusions
that there is (1) strong evidence that population 1 is de-
clining, but not at a biologically important rate, and (2)
strong evidence that population 2 is declining and posi-
tive evidence that the decline is biologically important.

 

Using the Bayesian Regression Results in a 
Decision Analysis

 

Drawing conclusions about the conservation status of
populations is an inherent part of conservation biology.
Conventional frequentist trend analysis concludes that a
population is declining only when the data results in a
slope that is significantly different from 0.0. Thus deci-
sions depend on obtaining statistically significant results.
Managers are often unaware that accepting conventional
standards of statistical proof may result in potentially un-
acceptable under-protection errors.

Bayesian decision theory provides an alternative frame-
work for making decisions (Berger 1985). Often the fin-
ished product from the scientist will be the posterior
distribution. The manager, however, can use that distri-
bution in further analyses to make decisions through the
use of a “loss function.” A manager creates a loss func-
tion by specifying values that represent the relative un-
desirability of various wrong decisions—such as under-
protecting or overprotecting a population—according
to agency policy or his or her personal beliefs. Once
these loss functions are specified, the “Bayes expected
loss” is calculated for each possible decision as the inte-
gral of the product of the posterior distribution for the
slope and the loss function for that decision. The man-
ager can then choose the decision with the lowest loss,
because this decision minimizes the Bayes expected loss
(Berger 1985; Lee 1989).

Decision theory allows for multiple decision possibili-
ties, rather than just the two states (significant or not) al-
lowed by frequentist hypothesis tests. Returning to our
example of the trend of the two hypothetical popula-
tions, a policymaker could consider three possible deci-
sions: (1) to conclude that a population is declining rap-
idly, and thus managers would presumably initiate direct
conservation action to slow the rate of decline; (2) to
conclude that a population is declining slowly or that its
trend is uncertain, and thus managers would presumably
wish to collect additional data to confirm the trend and
study potential ways of directly benefiting the popula-
tion; or (3) to conclude that a population is not declin-
ing and is possibly increasing, and thus managers would
simply maintain baseline monitoring at a level appropri-

 

Table 1. Posterior probabilities for three specific ranges of the 
slope parameter (

 

s

 

) calculated from the areas under the curves in 
Fig. 3.

 

Posterior
probabilities

 

s 

 

,

 

 2

 

0.05

 

2

 

0.05 

 

# 

 

s 

 

#

 

 0.0

 

s 

 

.

 

 

 

0.0

 

Population 1 0.00 0.976 0.024
Population 2 0.855 0.118 0.027
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ate for a population considered of no conservation con-
cern. As an example, I specify a simple loss function for
each of these three possible decisions (Table 2).

The values used in loss functions result from policy
decisions that quantify the relative gravity of various er-
rors. I provide an example of the logic that could be
used to create Table 2. There are three different possible
states of nature: (1) 

 

s 

 

# 2

 

0.05, (2) 

 

2

 

0.05 

 

# 

 

s 

 

#

 

0.00,
and (3) 

 

s 

 

$ 

 

0.0. These correspond to the three decisions
stated above that represent the correct decision (from
the policymaker’s point of view) for each of those three
states of nature. If the true state matches the decision,
then a value of 0.0 is given to signify no loss under that
decision (diagonal values, Table 2). For decision 1, to
conclude that there is a rapid decline, a moderate pen-
alty (loss of 0.5) is given when a population is actually
declining at 

 

,

 

5%, and a strong penalty (loss of 1.0) is
given if a population is actually increasing. These loss
values represent the belief that if one concludes that a
population is declining rapidly, then it would be twice
as bad to do so when the population is increasing than
when it is declining slowly. It should be recognized that
the particular loss function values of 0.0, 0.5, and 1.0
have meaning only relative to one another, so it would
be equivalent to use values of 0.0, 1.0, and 2.0, for exam-
ple. For decision 2, to conclude that there is a slow de-
cline, a moderate penalty is given if the population is ac-
tually declining rapidly or if the population is increasing.
Finally, for decision 3, to conclude that there is no de-
cline, a strong penalty is given if the population is truly
declining at 

 

.

 

5%, and a moderate penalty is given if the
population is truly declining at a rate between 5% and
0%. The penalties in Table 2 are symmetrical, which
means that equal loss is assigned to over- and underpro-
tecting a population. A policy maker could choose a pre-
cautionary approach by making the values above the di-
agonal greater than those below.

The policymaker chooses the decision that minimizes
the Bayes expected loss and therefore concludes that
population 1 is declining slowly and that population 2 is
declining rapidly (footnote c, Table 2). Therefore, a
manager would initiate direct action to attempt to slow
or stop the decline of population 2 and would call only

for the collection of additional data on population 1.
This Bayesian analysis leads to conclusions opposite of
those based on the frequentist hypothesis tests, in which
population 1 has a significant decline and population 2
does not.

In the interest of making the example clear, simple
step functions have been used here for the loss func-
tions. Nevertheless, these loss functions can be continu-
ous functions of the parameter. For example, the rela-
tive loss could continue to increase with greater rates of
decline. Taylor et al. (1996) provide an example of a
continuously changing loss function for extinction risk.

 

Discussion

 

Conservation research will be more effective if results
can be communicated clearly to managers, stakeholders,
and policymakers. A Bayesian posterior distribution is
easy to understand and communicate and contrasts with
the often convoluted interpretation of frequentist statis-
tics (Lindley 1986; Berger & Berry 1988). In particular, a
probability distribution communicates uncertainty in a
parameter estimate in a visual manner, which is simpler
to interpret than a confidence interval. In the trend anal-
ysis, I demonstrated that a probability distribution was
more useful for identifying a population of conservation
concern than a frequentist significance test. In certain
circumstances, a population might go extinct before a
significant decline could be detected (Taylor & Gerro-
dette 1993). Additional critiques of the frequentist hy-
pothesis testing framework, from a non-Bayesian point
of view, have been offered by Edwards (1992) and Roy-
all (1997).

Bayesian methods allow decision theory to be applied
to conservation problems. Policy makers can then ex-
plicitly state that some errors are worse than others. De-
cision theory also allows a richer set of responses. In
the example, two different responses were possible for
a declining population—to take immediate conservation
action or to collect additional data—depending on the
magnitude and the certainty of the result. A set of possi-
ble actions allow a more appropriate response than just

 

Table 2. Loss functions and expected loss for three possible decisions in a Bayesian decision analysis applied to trend data.

 

Decisions

Loss functions

 

a

 

Expected loss for
population 1

 

b

 

Expected loss for
population 2

 

b

 

s 

 

,

 

 2

 

0.05

 

2

 

0.05 

 

#

 

 

 

s 

 

#

 

0.0 0.0 

 

, 

 

s

(1) Conclude population is declining rapidly 0.0 0.5 1.0 0.512 0.086

 

c

 

(2) Conclude population is declining slowly 0.5 0.0 0.5 0.012

 

c

 

0.441
(3) Conclude population is not declining 1.0 0.5 0.0 0.488 0.914

 

a

 

The slope parameter is 

 

s

 

.

 

b

 

The expected loss is the sum across the three slope categories of the product of the loss function and the appropriate posterior probability from Table 1.
For example, the expected loss for decision 1 for population 1 of 0.512 was calculated as (0.0

 

*

 

0.000) 

 

1

 

 (0.5

 

*

 

0.976) 

 

1

 

 (1.0

 

*

 

0.024). 

 

c

 

The decision with the smallest expected loss is chosen, which in this case is to conclude that population 1 is declining slowly and that population 2 is
declining rapidly.
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being able to conclude whether a population is declin-
ing or not.

Bayesian methods also allow uncertainty to be incor-
porated directly into analyses. No standard frequentist
method exists for incorporating uncertainty for parame-
ters for which no data exist. Often such parameters are
fixed at single values, ignoring the high degree of uncer-
tainty when no species-specific data are available. In
contrast, Bayesian methods allow a range of plausible
values to be incorporated by specifying a prior distribu-
tion for an unknown parameter. Examples of this ap-
proach include specifying a prior distribution for the
value of an environmental variance parameter (Taylor et
al. 1996) and specifying a prior distribution for a density-
dependence parameter (Wade 1994, 1999, 2001). A sim-
ilar ad hoc frequentist approach has been proposed
(Restrepo et al. 1992), but it has been shown that this
approach generally performs no better, and sometimes
much worse, than Bayesian methods (Poole et al. 1999).

Another advantage not illustrated here is the use of
Bayesian methods for comparing models and incorporat-
ing model uncertainty (Kass & Raftery 1995). The Bayes
factor, used here for comparing hypotheses, can also be
used to compare how well different models fit the data
in a Bayesian framework. There are two main advantages
of Bayesian methods over frequentist methods for model
comparison (Kass & Raftery 1995). First, the models that
are compared do not have to be nested as they need to
be in many frequentist analyses, such as step-wise multi-
ple regression. Second, rather than just choosing the sin-
gle best model when several models have some proba-
bility of fitting the data reasonably well, their results can
be proportionally mixed to form a posterior distribution
for the parameter of interest which takes into account
model uncertainty. As an example, Wade (2001) used
the Bayes factor to compare how well different models
(e.g., simple vs. age-structured) fit data on gray whale
abundance.

Given these advantages, one may wonder why Baye-
sian methods have not been taught or used more often.
Although Bayesian theory has older roots (Bayes 1763;
Laplace 1774), frequentist methods have dominated in
applied statistics until recently. This is partly because
Fisher, Neyman, Pearson, and others established practi-
cal methods for using frequentist statistics well before
Jeffreys (1939) laid the foundation for applied Bayesian
statistics. Most scientists receive training only in fre-
quentist methods, so it is natural for frequentist methods
to dominate common practice.

Computational difficulties are another reason for the
lack of a widespread use of Bayesian methods. Some sci-
entists interested in using Bayesian methods have not
used them because of technical difficulties. A major
problem has been the computational difficulties in solv-
ing integrations for anything but the most simple prob-
lems. This problem is quickly disappearing because

many new solutions are now available through numeri-
cal methods for integration, which are possible because
of increased computer speeds. Examples include the
sampling-importance-resampling method (Rubin 1988;
Smith & Gelfand 1992) and the Markov chain Monte
Carlo (Geyer 1992). Tanner (1993) and Gelman et al.
(1995) provide a comprehensive look at various numeri-
cal integration methods.

In addition, some scientists have been exposed to
Bayesian methods but have chosen, for a variety of rea-
sons, to use other methods. Some have raised objections
to the potential for introducing subjective opinion into
prior distributions (Efron 1986; Dennis 1996). It is true
that some Bayesian practitioners treat probability as a
subjective quantity and include expert opinion in analy-
ses (e.g., Wolfson et al. 1996). This is not the only way
to use Bayesian methods, however, and there is nothing
inherently subjective or unscientific about using a prior
distribution (Cox & Hinkley 1974). Efron (1986) recog-
nized that there are both subjective Bayesian methods
and what he called “objective Bayesian” methods. In
1812, Laplace proposed the “principle of insufficient
reason,” in which all values of the unknown parameter
are taken to be equally likely, a priori, unless there is a
reason to the contrary (Press 1989). Following Laplace,
Jeffreys (1939, 1961) discussed objective Bayesian infer-
ence and the use of “non-informative” or “vague” priors,
which in simple cases can be just uniform distributions
(e.g., Fig. 1).

Press (1989) recommended that non-informative pri-
ors be used when public policy may be influenced by
the outcome of an analysis, and conservation biology is-
sues likely fall into this category. Such priors can be ob-
jective in the sense that any person applying the same
criteria will form the same prior distribution. Most Baye-
sian statistics textbooks contain large sections on the
use of non-informative prior distributions (e.g., Jeffreys
1961; Iversen 1984; Berger 1985; Lee 1989; Press 1989;
Gelman et al. 1995).

Although some Bayesian advocates have pointed out
the potential for subjectivity in frequentist methods
(Berger & Berry 1988; Press 1989), this does not negate
the fact that there sometimes are genuine difficulties in-
volved in specifying prior distributions that do not influ-
ence the results. Problems can arise because non-infor-
mative distributions (such as a uniform) may no longer
be so if a model is re-parameterized and transformed to a
new parameter space. It can also be difficult to specify
non-informative prior distributions for several parame-
ters at once if those parameters are interrelated through
the model; for example, in combination, uniform distri-
butions for model parameters may result in a nonuni-
form distribution for an output quantity of interest that
is a function of the model parameters.

Practical solutions often exist to the problem of speci-
fying non-informative prior distributions. Savage (1962)
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has pointed out that the prior distribution needs to be
non-informative only over the range at which the likeli-
hood function is non-negligible; outside this range the
prior is irrelevant because it will not influence the re-
sults. Where so few data are available that the choice of a
non-informative prior influences the results, Gelman et al.
(1995) recommend putting relevant information into
the prior distribution by means of a hierarchical model.
Ideally, one hopes to avoid these complications by using
a data-based prior (Press 1989), which is a prior based on
an analysis of previously available data (not the data to be
used in the likelihood function in the current analysis).

The attractions of Bayesian methods can be seen in
their increasing use in many fields of applied science, in-
cluding ecology. In fisheries biology, an increasing num-
ber of applied assessments have used Bayesian methods
in recent years (e.g., Hilborn & Walters 1992; Thomp-
son 1992; McAllister et al. 1994; Walters & Ludwig 1994;
McAllister & Ianelli 1997), and they have become com-
mon enough to justify a review (Punt & Hilborn 1997).
Similarly, applied Bayesian methods are increasingly be-
ing used in the assessment of whale populations (e.g.,
Givens et al. 1993, 1995; Raftery et al. 1995; Punt & But-
terworth 1997, 1999; Wade 2001). Other examples of
Bayesian methods in ecology include analyses by Ellison
(1996); Gazey and Staley (1986); Reckhow (1990);
Shaughnessy et al. (1995); Pascual and Kareiva (1996);
and Omlin and Reichert (1999). Within conservation bi-
ology, a few examples exist of Bayesian population via-
bility analyses (Ludwig 1996; Taylor et al. 1996). It is
likely that the use of Bayesian methods will continue to
increase in applied science, including disciplines such as
conservation biology.
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Appendix

Bayesian Statistics

The goal of Bayesian analysis is to calculate the probabil-
ity of a specific value of a parameter (u) given the data
(x), written as p(uux). Bayes’s theorem is a conditional
probability statement that proves that p(uux) is propor-
tional to the sampling distribution for the data, p(xuu),
multiplied by an independent probability distribution
for the parameter, p(u) (independent, in this case, of the
specific data x).

In this relationship, Bayesians have named p(u) the
prior probability for u and p(uux) the posterior probabil-
ity for u (in the sense that it summarizes what is known
about u prior and posterior to the examination of the
data x). In this context, the sampling distribution for the
data, p(xuu), is often referred to as the likelihood func-
tion. In more formal terms,

(1)

where p(uux) is the posterior probability for the parame-
ter u given the data x; p(xuu) is the likelihood function,
which provides the probability of the data x given u
(sometimes written as L(uux)); p(u) is the prior probabil-
ity for u; and c is the normalizing constant, which is the
inverse of the integral of p(xuu) 3 p(u) over the parameter
space of u. To calculate c, one needs to calculate the en-
tire distribution of p(xuu) 3 p(u), so one automatically cal-
culates the entire distribution for p(uux) as well. There-
fore, one usually speaks in terms of the posterior and prior
distributions. All statistical inference is then based on the
posterior distribution. The mean of the posterior distribu-
tion can serve as a point estimate for the parameter. Un-
certainty in the point estimate is expressed directly in the
posterior distribution and can be summarized either as
percentiles of the posterior distribution or as what is
termed the highest posterior density interval.

To calculate the posterior distribution, one has to inte-
grate the product of the prior distribution and the likeli-
hood function. In some simple cases, the integral can be
calculated directly (in these cases it is said to have an an-
alytical or “closed-form” solution). If no analytical solu-
tion is available, the integration can be done by numeri-
cal methods.

p θ x( ) p x θ( )  p θ( )  c,××=


