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Abstract. Bayesian statistics involve substantial changes in the methods and philos- 
ophy of science. Before adopting Bayesian approaches, ecologists should consider carefully 
whether or not scientific understanding will be enhanced. Frequentist statistical methods, 
while imperfect, have made an unquestioned contribution to scientific progress and are a 
workhorse of day-to-day research. Bayesian statistics, by contrast, have a largely untested 
track record. The papers in this special section on Bayesian statistics exemplify the diffi- 
culties inherent in making convincing scientific arguments with Bayesian reasoning. 
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Ecologists should be aware that Bayesian methods 
constitute a radically different way of doing science. 
Bayesian statistics is not just another new tool to be 
added into ecologists' repetoire of statistical methods. 
Instead, Bayesians categorically reject various tenets 
of statistics and the scientific method that are currently 
widely accepted in ecology and other sciences. The 
Bayesian approach has split the statistics world into 
warring factions (ecologists' "density independence" 

, vs. "density dependence" debates of the 1950s pale 
by comparison), and it is fair to say that the Bayesian 
approach is growing rapidly in influence. 

The full implications of adopting Bayesian statistics 
in ecology are not readily apparent from the papers 
under discussion here. Therefore, before commenting 
on the individual papers I will attempt a brief survey 
of some of the major points of contention between 
Bayesian and "frequentist" (the kind of statistics most 
of us learned in college) statistics. 

The controversy over Bayesian statistics is not over 
Bayes' theorem. Bayes' theorem remains true for fre- 
quentists and Bayesians alike. Let X and Y be random 
variables, with probability density functions (pdfs) 
px(x) and pdy), respectively. Bayes' theorem, when 
expressed for random variables, states that 

where p d y  I x) is the conditional pdf for Y given X = 
x, and p,(x I y) is the conditional pdf for X given Y = 

y. The "theorem" just restates the definition of con- 
ditional probability of the event B given the event A: 
P(B I A) = P(A, B)IP(A) = P(A I B)P(B)IP(A). 

Rather, the controversy revolves around the use of 
the theorem. To the Reverend Bayes, and his contem- 
porary followers, pdy)  in the theorem represents the 

Manuscript received 29 December 1995; revised and ac- 
cepted 27 March 1996. 

For reprints of this group of papers on Bayesian inference, 
see footnote 1, page 1034. 

investigator's subjective prior beliefs about whether a 
fixed parameter takes the value y (see Stigler 1986, 
Trader 1989). The parameter is not a random variable; 
rather, it is an unknown variable, and the "prior pdf" 
denoted by pdy)  measures the relative strengths of be- 
lief about possible values of the parameter,(Lindley 
1982, 1990). The investigator selects the form of the 
prior pdf that quantifies his or her best guesses about 
the parameter (the parameter can be a vector, and pdy)  
is then a joint pdf). In the theorem, x is the observed 
outcome of the experiment (vector of data), and px(x I 
y) is the likelihood function familiar in frequentist sta- 
tistics (pdf of the data, x, given the value of the pa- 
rameter, y). The conclusions about the parameter after 
the experiment are summarized in the posterior pdf of 
y given x: p d y  I x). The posterior pdf expresses how 
the investigator's subjective beliefs have been altered 
by the advent of the data, x. 

In the Bayesian approach, all conclusions about the 
value of the parameter are embodied in the posterior 
pdf. The data enter the conclusions only through the 
likelihood function, px(x I y). In particular, no sample- 
space probabilities, other than the actual realized value 
of the likelihood function, are admitted into the con- 
clusions (Lindley 1982, 1990). Sample-space proba- 
bilities, such as the probability that a test statistic might 
exceed a critical value, involve "data that didn't hap- 
pen," and are excluded from the analysis. The principle 
of including only the actual data in the analysis and 
excluding consideration of all other sample-space pos- 
sibilities is known as the "likelihood principle." 

Thus, there are two key elements in the Bayesian 
approach to statistics. First is the quantification of prior 
beliefs about a parameter in the form of a probability 
distribution and the incorporation of those beliefs into 
the data analysis. Second is the acceptance of the like- 
lihood principle and the concomitant rejection of all 
sample-space probabilities from inferential conclusions 
about the parameter. The battle lines between Bayes- 
i a n ~  and frequentists are drawn around these two ele- 
ments. 

I 
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Long-standing statistical and scientific practices 
would change under the Bayesian framework. 

P values.-P values are an anathema to Bayesians. 
To Bayesians, P values embody all that is logically 
incorrect about frequentist approaches. A P value is 
the probability, provided the null hypothesis is true, 
that the test statistic would have been more extreme 
than the actual observed value of the statistic. In other 
words, a P value is a probability of data that didn't 
occur. As such, use of a P value to draw conclusions 
violates the likelihood principle because it involves a 
sample-space probability. Bayesians point out that the 
use of P values has startling consequences, such as the 
dependence of the statistical analysis on the intentions 
of the investigator (Berger and Sellke 1987, Berger and 
Berry 1988). 

Bayesians instead assign a prior subjective proba- 
bility to each statistical hypothesis. The data modify 
the belief in a given hypothesis through the likelihood 
function. A posterior belief probability for each hy- 
pothesis emerges from the analysis. The hypothesis 
with the largest posterior probability is deemed by the 
investigator the most likely to be true. A pair of hy- 
potheses can be compared with the ratio of their pos- 
terior probabilities, which is proportional to the like- 
lihood ratio or "Bayes factor" (Lee 1989, Kass and 
Raftery 1995). 

Under the Bayesian procedure, scientists with dif- 
ferent prior beliefs are invited to draw their own con- 
clusions from the data, using their own priors. Con- 
sensus would supposedly emerge when most scientists' 
priors became swamped by large amounts of data (i.e., 
when their posterior beliefs become nearly identical). 

The concepts of significance level and test power are 
sample-space probabilities and play no role in Bayesian 
statistics. 

Randomization.-Because of the likelihood princi- 
ple, randomization is irrelevant to Bayesian inference 
(Basu 1975, 1980) and poses ethical dilemmas in hu- 
man clinical trials (Royall 1991). To those ecologists 
who consider randomization to be a cornerstone of the 
scientific method, the Bayesians' rejection of random- 
ization might at first seem surprising. The argument, 
briefly caricatured, is as follows. Suppose you have 10 
chickens. Five are assigned at random to a treatment 
group; five to a control. Three of the chickens have 
oozing, festering sores. By chance, the three are as- 
signed to the control group. The Bayesians would say 
that only the outcome of the randomization procedure 
has any relevance to the data analysis. The frequentist 
counts on the randomization to spread the variability 
(seen or unseen) in experimental units more or less 
uniformly among the treatments. The frequentist's sta- 
tistical analysis takes into account all the possible treat- 
ment assignments, not just the actual one that hap- 
pened. Mindless applications of frequentist procedures 
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yields a potentially misleading conclusion: that the 
treatment improved some measurable characteristic of 
the chickens. The Bayesian incorporates beliefs about 
the actual chickens into the prior (healthy chickens 
would get a prior for control and a prior for treatment, 
say, and oozing chickens would get different priors for 
control and treatment). Only the actual treatment as- 
signments would enter the analysis (via the likelihood 
function). (I can't help interjecting that a frequentist 
scientist, upon discovering the condition of the three 
chickens, would throw the data in the garbage and be- 
gin again.) 

Sample surveys.-"Design-based" sample surveys 
are the standard sampling procedures used by ecolo- 
gists. Simple random sampling, stratified random sam- 
pling, unequal probability sampling (Horvitz-Thomp- 
son estimator), and cluster sampling are examples of 
design-based sampling (see Overton and Stehman 1995 
for a contemporary discussion). Bayesians reject de- 
sign-based sampling (Basu 1971) or are ambivalent 
about it (Royall 1976, 1988). Under the likelihood prin- 
ciple, the probabilities in probability sampling con-
tribute no information to the estimate of the quantity 
of interest. The frequentist considers all possible out- 
comes of the sampling procedure in drawing conclu- 
sions about the population sampled. The Bayesian con- 
siders only the actual sample drawn. It is not necessary 
to draw the sample at random; if nonrandom sampling 
occurred, the Bayesian forms an appropriate prior and 
proceeds as usual. To the Bayesian, the issue is belief. 
A random sampling experiment is ancillary to the pop- 
ulation parameter of interest and hence contributes no 
information to beliefs about that parameter. 

Conjdence intervals.-Confidence intervals, as in- 
terpreted by Neyman (1937), are a central concept of 
frequentist statistics. As any instructor of basic statis- 
tics classes knows, confidence intervals are one of the 
most difficult concepts in statistics to understand prop- 
erly. Even quantitative ecologists stumble on the con- 
cept (Poole 1974:49). Confidence intervals seductively 
suggest more than is actually delivered. What is deliv- 
ered is an interval, say (9.5, 12.3). What is suggested 
is that the probability that the parameter is in the in- 
terval is (or is approximately) 0.95. Under frequentist 
probability, it just ain't so: the parameter is either in 
the interval or out of the interval, period. 

Even Fisher, one of the founding fathers of frequen- 
tist statistics, chafed under the concept. Realizing that 
the statement P(9.5 < 8 < 12.3) = 0.95 made no sense 
under the frequentist definition of probability, Fisher 
devised a new type of probability, which he termed 
fiducial probability (Fisher 1935). Fiducial probability 
was a conceptual tent big enough to admit such prob- 
ability statements as sensical, but it is fair to say that 
fiducial probability confused rather than clarified the 
issues (see Kendall and Stuart 1979: 147, Buehler 1983, 
Edwards 1983, Stone 1983). Because fiducial proba- 
bility has hints of subjectivity, Bayesians are quick to 
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claim that Fisher saw the right problem but attacked it 
with the wrong means. 

That frequentists can become so confused over one 
of their most important concepts is a source of con- 
tinuing amusement to Bayesians. 

Furthermore, in the earlier days, confidence intervals 
were heavily based upon asymptotic approximations. 
A scientist was sometimes faced with a confidence in- 
terval that extended beyond the known range of the 
parameter (recall the old joke that when the confidence 
interval for a survival probability had a lower bound 
extending below zero it meant "a fate worse than 
death"). Confidence intervals came under intensive fire 
from Bayesians for this and other failures (Jaynes 
1976). Modern-day computational approaches such as 
profile likelihoods and bootstrapping have rendered 
some of these complaints moot. 

To Bayesians, the interpretation of a confidence in- 
terval involves long-run frequencies over a sample 
space and thus violates the likelihood principle. In- 
stead, the posterior pdf can be used to construct a 95% 
belief interval (Bayesian probability interval or highest 
density region) for the parameter in question (see Jay- 
nes 1976, Lee 1989). 

Randomization tests.-Randomization tests are gain- 
ing popularity in the life sciences (Manly 199 1, Sokal 
and Rohlf 1995). Such tests are utterly repudiated by 
Bayesians (Basu 1975, 1980). The dreaded P values 

' are not the Bayesians' only objection; the act of basing 
a test on an ancillary random experiment, after the data 
are recorded, is a first-degree violation of the likelihood 
principle. Tests based on other resampling methods 
such as bootstrapping or jackknifing do not fare any 
better in the Bayesian view. 

Purported advantages of Bayesianism.-Bayesians 
point to several practical advantages to their approach. 
First, combining data from several studies, and adding 
more data in a sequential study, is simple and straight- 
forward under a Bayesian framework. Second, multiple 
hypotheses (more than two) are easy to sort out, where- 
as the pairwise hypothesis-testing framework of fre- 
quentists is awkward for such sorting (recall the dif- 
ficult material on pairwise comparisons and linear con- 
trasts in analysis of variance courses). Third, "nuisance 
parameters," that is, parameters that are unknown but 
not of direct interest to the investigator, are naturally 
and elegantly handled by the Bayesian approach. [The 
standard example of a nuisance parameter is u 2  when 
the interest is in the mean p. of a normal (p., u2) 
distribution.] Finally, perhaps most importantly, the 
designation of probability as a measure of belief unifies 
the concepts of prediction and estimation. 

New developments in statistics are allowing most of 
these problems to be addressed in a frequentist frame- 
work and are being applied in ecological work. Meta- 
analysis has become an effective tool for combining 
studies and is gaining acceptance in ecology (Gurevitch 
et al. 1992). Information criteria, such as that of Akaike 

(see Sakamoto et al. 1986, Bozdogan 1987) have been 
used in ecological work to select models from many 
competing statistical models (see Kemp and Dennis 
1991, Lebreton et al. 1992, Anderson et al. 1994, Hoo- 
ten et al. 1995). Increasing uses in ecology of profile 
likelihoods (Lebreton et al. 1992, Dennis et al. 1995), 
randomization and Monte Carlo tests (Manly 199 l ) ,  
and parametric bootstrapping (Dennis and Taper 1994) 
are sidestepping the "nuisance parameter" problem. 

The predictionlestimation dispute between Baye-
sians and frequentists requires some elaboration. If sci- 
entists adopt probability as a measure of belief, as Bay- 
e s i a n ~  would advocate, then prediction and estimation 
are almost identical concepts. If a coin is tossed, it 
makes little difference to a Bayesian whether the coin 
has not landed yet (outcome random) or whether the 
coin has landed but the outcome has not yet been 
viewed (outcome fixed, but unknown). To a frequentist, 
the difference is crucial (and is a major source of con- 
fusion among beginning statistics students about con- 
fidence intervals, P values, and the like). 

A frequentist estimates a fixed but unknown quantity, 
and predicts a random quantity. These are distinct be- 
cause the frequentist uses sample-space properties of 
a model of a random process. To estimate the parameter 
y, the frequentist collects data x (the outcome of a ran- 
dom process) and builds a likelihood function, px(Xly). 
The likelihood function is a hypothetical model of the 
random process. The frequentist uses a statistic, s(x) 
= y* to estimate y. The estimated model, px(xly*), is used 
to estimate hypothetical sample-space properties of the 
statistic s(x) such as how variable the statistic would 
be under repetitions of the random process. The esti- 
mated model is used also to make predictions (i.e., to 
estimate hypothetical sample space properties) about a 
future outcome X of the random process. 

To the frequentist, the focus must be on the appro- 
priateness of the hypothetical modelpx(xly). Estimating 
y and predicting X are almost incidental; the investi- 
gator does not have confidence in the estimate or pre- 
diction until the form of the model itself is challenged 
and found to be an adequate representation of the ran- 
dom process. 

Therein lies the key. The frequentist, it seems to me, 
is often not fundamentally interested in estimation or 
prediction; rather, the frequentist is interested in ex- 
planation. The form of the likelihood function is a cen- 
tral part of the theory being constructed. The parameter 
y is just an unknown portion of the theory and is not 
the only purpose for collecting the data. The prediction 
X is interesting, and indeed pleasing if it turns out to 
be accurate, but it is not the whole purpose of the 
investigation. The main purpose of prediction is to 
challenge the model. A good prediction is good because 
the outcome is not unreasonable under the model. A 
bad prediction is bad because the outcome was extreme 
enough as to be unreasonable under the model. In other 
words, bad predictions, in a sample-space framework, 
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come from bad models. To a frequentist, models are 
disposable and are screened by comparing predictions 
to models based on the sample-space properties of the 
models. 

It is hard to see how a model can be adequately 
evaluated without resorting to sample-space properties. 
It is hard to see how a Bayesian scientific method can 
systematically produce satisfying explanations. Sam- 
ple-space probability is a key tool scientists have for 
ridding themselves of bad theories. If the distinction 
between estimation and prediction is as a result con- 
fusing and difficult, perhaps it is the price we must pay 
for progress. 

Bayesians, you see, are not allowed to look at their 
residuals. It violates the likelihood principle to judge 
an outcome by how extreme it is under a model. To a 
Bayesian, there are no bad models, just bad beliefs. 

As can be gathered from the above discussion, the 
context of the Bayesian ecology papers published here 
is laden with controversies. In light of these tensions, 
I now provide some remarks about the particular pa- 
pers. 

Taylor et al. (1996j.-The Bayesian population vi- 
ability analysis by Taylor et al. (1996) illustrates why 
scientists need frequentist model evaluation tech-

. niques. The lack of serious diagnostic analyses or data- 
based criticism of their model is telling. The main mod- 
el component, wherein occur the most interesting bi- 
ological assumptions about Spectacled Eider popula- 
tion growth, is located in the prior. 

Taylor et al. (1996) treat population size N, as an 
unknown parameter that changes through time accord- 
ing to a stochastic population model (stochastic ex-
ponential growthldecline). The parameters in the 
growth model are given prior distributions. The data, 
N,(t), are abundance indexes arising from surveys and 
are modeled essentially as N, + (normal sampling er- 
ror). The viability assessments are based on the re- 
sulting posterior distributions for the parameters, in 
particular, that of r. 

The stochastic exponential growthldecline model is 
off the table, so to speak, when it comes to evaluating 
their analyses. It is a part of their prior beliefs. We do 
not know if their growth model "fits" or not. We also 
do not know if their sampling model is adequate. The 
data, in Bayesian analysis, are not permitted to shed 
light on model adequacy. 

Consider an alternative frequentist analysis. The sto- 
chastic exponential growthldecline model in population 
viability analysis (PVA) was extensively discussed by 
Dennis et al. (1991) (a paper uncited by Taylor et al. 
1996). Dennis et al. stressed: (1) the use of diagnostic 
procedures for model evaluation, (2) the incorporation 
of uncertainty in parameter estimation into population 
risk estimates; and (3) the use of "quasi-extinction" 
thresholds of population size (akin to Taylor et al.'s 
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[I9961 level of 250 Spectacled Eiders), rather than true 
extinction levels (<l ) ,  in order to minimize errors due 
to Allee effects, extinction vortexes, and so on. 

I applied the stochastic exponential growthldecay 
model of Dennis et al. (1991) directly to the breeding 
pair time series (Taylor et al. 1996:Table 1). The model 
includes environmental variability but not sampling 
variability; it is N, = N,-,exp(p. + uZ,), where N, is the 
population abundance as indexed, 2,is standard normal 
noise, and p. and u 2  are parameters. I obtained estimates 
of the model's two unknown parameters: (i = -0.0622, 
e2= 0.265 (notation of Dennis et al. 199 1). I performed 
parametric bootstrapping, that is, I generated bootstrap 
values (i* and g2* from the estimated sampling distri- 
butions of (iand g2and then simulated trajectories from 
the model using the bootstrap values. With the boot- 
strapping procedure, I estimated the probability, G(t ) ,  
of the time series reaching the level 250 starting from 
2363, within t years. For various values of t, the es- 
timates (along with bootstrapped 95% confidence in- 
tervals) were: G(10) = 0.246 (0.054, 0.513), ~ ( 2 0 )  = 
0.462 (0.103, 0.866), ~ ( 3 0 )  = 0.580 (0.142, 0.956), 
~ ( 4 0 )= 0.663 (0.124, 0.984), G(50) = 0:686 (0.106, 
0.993). 

According to Taylor et al. (1996), the population is 
in little jeopardy of reaching 250 until well after 50  yr 
in the future (their Fig. 6). My quick analysis above 
indicates that the breeding pair time series has a sub- 
stantial risk of reaching 250 within even 10 yr. Note 
how the uncertainty in my estimates of first passage 
probabilities increases as time increases. 

The point is, the model forms matter. But the real 
difference between our analyses is not the model forms 
(we could have easily used different models), but in 
the approach and scientific philosophy used. My anal- 
ysis is vulnerable to being tossed out by model eval- 
uation methods. It is straightforward to perform resid- 
ual-based diagnostic analyses to ascertain whether or 
not the model I used adequately describes the vari- 
ability in the data (briefly: the normal-based noise on 
the logarithmic scale does a pretty good job, but there 
is some first-order autocorrelation, and the 1987-1988 
jump is an outlier). It is straightforward to use hy-
pothesis testing techniques (Dennis and Taper 1994) 
and model selection criteria (Hooten et al. 1995, Taper 
et al. 1995) to compare the model with other less or 
more biologically detailed models. The model of Taylor 
et al. (1996), by contrast, is not vulnerable to falsifi- 
cation in the frequentist (and scientifically Popperian) 
sense. 

Ver Hoef (1996j.-It is debatable whether parametric 
empirical Bayes (PEB) methods are Bayesian. Purists 
point out that PEB methods violate the likelihood prin- 
ciple (Lindley 1983). At best, PEB methods provide 
an improvement to the likelihood function for a random 
process. Parameters in a stochastic model, formerly 
taken as fixed, are in turn modeled as arising from some 
stochastic mechanism. Thus, Ver Hoef takes the time 
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sequence of mean abundances O , ,  0 , .  . ., 0,, and models 
them as arising from a time series model (linear trend 
with noise). The 0,'s must be estimated by population 
sampling procedures (mark-recapture, etc.), yielding 
observations 6 , ,  a,, . . . 6,. The linear trend "hyper- 
model" is combined with the sampling model to form 
a likelihood function for the observations. The hyper- 
model plays somewhat of the role of a prior, except 
that the hyperparameters (intercept, slope, and variance 
in the linear trend model) are estimated from the data 
in frequentist fashion via the likelihood function. The 
combined samplinglhypermodel likelihood function is 
presumably a more accurate representation of the vari- 
ability in the data, and, not surprisingly, confidence 
intervals for population abundances have better statis- 
tical coverage properties. 

This is frequentism, pure and simple. Build a better 
sample-space model; get better confidence intervals. In 
frequentist statistics, it is standard practice to improve 
models by assuming that various parameters arise from 
their own random process. Random effects models in 
analysis of variance is one example (effects parameters 
arising from normal distributions). Ver Hoef's model 
of an unobservable time series process and an observ- 
able sampling process is an example of a frequentist 
"state-space" model (Carlin et al. 1992). 

Wolfson et  al. (1996).-Wolfson et al. (1996) recite 
the claim, often made, that environmental management 
decisions are better made in a Bayesian framework. 
Indeed, the mathematical theory of decisions has be- 
come increasingly a Bayesian one (Berger 1985, Lind- 
ley 1985). The mathematical theory can be character- 
ized as a personal decision theory; it represents the sort 
of decisions individuals do when, for example, playing 
poker. The long-run chance that your opponent has a 
great set of cards is extremely low. However, you must 
base your immediate betting decisions in part on prior 
information (facial expressions, opponent's bluffing 
history), or lose. Wolfson et al. (1996) analyze ex-
amples from environmental pollution involving "stake- 
holders" (local residents potentially affected by the 
pollution, for instance) and a government regulatory 
agency (Environmental Protection Agency, EPA). 

A recurring problem in environmental decision mak- 
ing is the lack of adequate data. The regulator must 
make a "decision" as to, say, whether or not an area 
is polluted enough to warrant expensive remediation 
measures. The data are typically inconclusive, from a 
frequentist standpoint. Decision theory states that the 
regulator's (predata) beliefs about the degree of pol- 
lution should be quantified into a prior distribution, and 
that the data and prior should be mixed into a posterior 
distribution of beliefs. The decision is calculated from 
the posterior, using a function (the loss function) rep- 
resenting the losses associated with each action. 

The Bayesian manager, in other words, instead of 
saying "I don't know whether the area is polluted," 

says something like "there is a 20% chance that the 
area is polluted." 

I object to calling this science. Science is not about 
decisions; science is about making convincing conclu- 
sions. If the information is inadequate and a policy 
decision must be made, the regulator should take re- 
sponsibility, clearly admit that the information is in- 
adequate, institute an interim, cautious policy until bet- 
ter data become available, and not pass off personal 
(or anyone's) beliefs disguised by fancy statistical anal- 
ysis as science. 

Also, use of personal decision theory for public de- 
cisions is controversial, to say the least. It is under- 
standable that the stakeholders might be biased. It is 
understandable that polluters might be biased. For the 
EPA regulators not to enter the investigation with open 
minds, though, is a violation of public trust. A prior 
probability of no contamination equal to 0.95, as rec- 
ommended in Wolfson et al. (1996), is not open-mind- 
edness. A prior probability of p, wherep is any number 
between zero and one, is not open-mindedness. It is 
the EPA's job to find out how much pollution there is 
and act accordingly. 

Moreover, for the EPA to admit the special interests' 
opinions into the data analysis is an invitation to chaos. 
Consider, for instance, the loss function proposed by 
Wolfson et al. (1996) in their case study number 1 
(radioactive groundwater contamination). In the loss 
function there is a quantity, v,, representing the value 
placed by the stakeholders on unnecessary public 
spending by the EPA on sampling and remediation. 
This quantity is "elicited" from the stakeholders prior 
to the data analysis. Just wait until stakeholders learn 
this game! If they express extreme enough views to the 
EPA investigators, they will injuence the conclusions 
of the sampling! (Bayesians think this is reasonable, 
logical, and desirable!) 

My view is this: v2 is a nonexistent quantity. It varies 
with the wind. It has no mean, no variance. It is non- 
stationary. It, and other quantities like it, have no place 
in scientific data analysis. 

Ludwig (1996).--Ludwig's (1996) analysis illus-
trates an operational difficulty with Bayesian methods 
that frequentists find worrisome. The problem concerns 
how to quantify ignorance into a prior. Consider, for 
illustration purposes, a simpler version of Ludwig's 
population model. Suppose log-population size, X,,un-
dergoes a simple drift-free random walk with vari- 
ability parameter u2. Thus, X,would have a normal 
distribution with a mean of x, (log-initial population 
size) and a variance of u2t. Let 4 be the probability 
that X,attains a lower level a before hitting an upper 
level b, where a 5 x, 5 b. The quantity 4 is the prob- 
ability that quasi-extinction occurs before recovery, 
and its estimation is a typical objective of PVA (Dennis 
et al. 1991). For fixed values of a, b, and x,, 4 is a 
function of u2. 

Now, ignorance about u2,quantified for instance into 
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a "noninformative prior" for log u2,does not transform 
into ignorance about the risk parameter $. A nonin- 
formative prior for u2will produce one posterior dis- 
tribution for $, along the lines of Ludwig's analysis. 
Suppose, however, a noninformative prior is assumed 
for $ instead. After all, $ is the main parameter of 
interest, and we might reasonably suppose in this prob- 
lem that all we really know is that $ is somewhere 
between 0 and 1. A different posterior distribution for 
$ results! Which of these beliefs should we believe? 
On which posterior should we bet the species? 

Ludwig's model has more parameters (primarily for 
density dependence), but the basic problem remains. 
Prior lack of knowledge about $ is not the same as 
prior lack of knowledge about any other parameter. 

Criticizing maximum likelihood (ML) methods for 
producing only point estimates of $ is a red herring. 
The frequentist approach concentrates on the point es- 
timate of $ and its sample-space variability. Dennis et 
al. (1991) wrote extensively about the need for quan- 
tifying the uncertainty in ML point estimates, and sug- 
gested approaches for calculating standard errors. An 
accurate analysis of the variability of the ML estimate 
of $ for Ludwig's model and data would likely yield 
conclusions about our knowledge of $ similar to those 
of Ludwig's. 

The quantity $ is, in fact, a sample-space probability. 
It is the probability of occurrence of a set of extreme 
population trajectories. For a living species, $ is the 
probability of "data that didn't happen." The likeli- 
hood principle forbids the use of such quantities in 
inferential conclusions. If you think confidence inter- 
vals are tough to understand, try listening to how Bayes- 
ians estimate forbidden quantities. 

As noted earlier in my discussion of the Taylor et 
al. (1996) paper, a major practical challenge in PVA is 
choosing an adequate model. Density-dependent mod- 
els and density-independent models, for instance, can 
give substantially different risk estimates (Stacey and 
Taper 1992). Greater attention in PVA to diagnostic 
methods seems essential (Dennis et al. 1991, Dennis 
and Taper 1994). Methods for model selection based 
on information criteria are yielding promising results 
(Hooten et al. 1995, Taper et al. 1995). One hopes that 
Bayesian approaches to PVA will concentrate on build- 
ing better likelihood functions. 

Ellison (1996).-Ellison's paper explicitly admits 
that Bayesianism means abandoning the Popperian fal- 
sificationist approach to science. It is one of the first 
Bayesian expositions I have read to do so. Ecologists 
take note. 

What scientific philosophy is offered by Bayesians 
as a replacement? Ellison does not give it a label; I 
would argue that the Bayesian philosophy of science 
is scientific relativism. 

To scientific relativists, truth is subjective. Scientific 
theories are socially "warranted" constructs that do 
not necessarily make progress toward uncovering uni- 

versal truths. Scientific discourse is a social power 
game in which the very rules of evidence are socially 
warranted by the ruling clique and change with fashion, 
a sort of intellectual Calvinball. There is no truth, only 
beliefs. Scientific relativists have published vigorous 
scholarly attacks on scientists' claims of objectivity in 
journals of feminist and multicultural studies (see Lev- 
itt and Gross 1994). So-called "creation science" has 
its basis in scientific relativism (for example, Campbell 
1996). 

Bayesians want to incorporate such beliefs directly 
into the conclusions drawn from data. They claim that 
explicitly stating prior beliefs and mixing the beliefs 
into the data analysis is more desirable than having the 
beliefs hidden and mixed into the data in uncontrolled, 
unacknowledged ways. 

No scientist I know would deny that science is a 
human enterprise and is fraught with human imperfec- 
tions. Scientists have careers to build, families to feed, 
grants to renew. Scientists are biased; some are petty 
jerks, some are racists, some are deluded. We all know 
scientists who have stubborn, data-resistant beliefs. 

Frequentist statistics may indeed have .hidden sub- 
jective biases. What is important, however, is that it 
seeks to rid itself of such biases. It seeks to remove 
the scientist's beliefs from the conclusions as much as 
possible and let the data do the talking. It seeks to 
understand and improve the best, most effective parts 
of the scientific method. 

In particular, an enduring and effective argument in 
science for convincing skeptics is to make the skeptics' 
beliefs blow up in the skeptics' faces. The much-ma- 
ligned "null hypothesis," if used properly, is a pow- 
erful argumentative tool and has been valuable for re- 
ducing the noise level in scientific discourse (Bross 
1971). 

What is amazing is that the process works so well. 
Science has made spectacular progress under the re- 
ductionist, hypothetico-deductive, falsificationist way 
of thinking. The Fisher-Neyman-Pearson-Wald (and, 
may I add, -Rao-Efron) frequentist contributions to- 
ward building that way of thinking into our data anal- 
ysis have accelerated that progress immensely. Prog- 
ress, advancement, or whatever we call that overall 
tendency of our theories and understandings to get bet- 
ter, is not predicted by scientific relativism. Bayesian 
statistics, though it has been in full-fledged existence 
since Laplace, and investigated intensively by mathe- 
matical statisticians for 60 yr, has played virtually no 
role in this progress. Bayesianism means never having 
to say you're wrong. 

Ellison points out the introspection about scientific 
methodology that has characterized ecology in recent 
years. The fields of community and evolutionary ecol- 
ogy, for instance, have had major crises of confidence, 
as born witness by the famous November 1982 issue 
of The American Naturalist. Ellison paints a portrait 
of continuing malaise in our science, stemming from 
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the unattainable ideals of falsificationist epistemology 
and the lack of utility to decision-makers of our sci- 
entific conclusions. I couldn't disagree more. 

I see a renewed, vigorous science emerging from a 
period of soul-searching and self-criticism. Ecologists 
have formed a clearer picture of the types of evidence 
it takes to make a convincing explanation of some as- 
pect of the biological world. There is now increased, 
not decreased, importance attached to classical scien- 
tific method. Numerous observational and experimen- 
tal studies published recently have emphasized rigor, 
originality, cleverness, and connection to general the- 
ories (a much shortened list of my exemplary favorites: 
Tilman and Wedin 1991, Grant and Grant 1993, Gross 
et al. 1993, Hanski et al. 1993, Lindstrom et al. 1994, 
Marquis and Whelan 1994, McLaren and Peterson 
1994, Barry et al. 1995, Schoener and Spiller 1995, 
Valone and Brown 1995). Gurevitch et al. (1992) 
searched just six journals for the previous 10 yr and 
found 42 articles with data on a particular aspect of 
competition (biomass change) of sufficient quality for 
inclusion in a meta-analysis. Applied ecology and nat- 
ural resource management have heard calls toward in- 
creased scientific rigor (e.g., Romesburg 1981, 1991). 
Ecologists and environmental scientists are presenting 
policy-makers and the public with remarkably strong 
scientific conclusions on an enormous array of envi- 
ronmental problems, from endangered species status to 
global change (Newman 1993). That ecologists' rec-
ommendations are frequently unheeded is not, as El- 
lison claims, a failing of the science, but rather of a 
political system that allows wealthy stakeholders to 
have an inordinate influence on environmental policy. 
Ecology is not a sick science, but a healthy and vital 
science making slow but steady progress on really, re- 
ally difficult problems. 

Ellison's claim that 96% of the authors of the papers 
he sampled from Ecology unwittingly considered the 
probability of their alternative hypotheses to be high 
is unjustified. In a well-designed study, H ,  is the only 
plausible alternative to H,; if the mechanism H, cannot 
reasonably have given rise to the data, one does not 
have to be a Bayesian to state that the data support H,. 
In some cases, the authors might simply have used 
careless wordings: why not ask the authors what they 
really meant? Frequentist statistical concepts are hard; 
wordings are delicate and treacherous. Many ecolo- 
gists' grasp of the concepts is shaky. When ecologists 
at large attain command of the differences between 
frequentist and Bayesian approaches, and of the im- 
plications of attaching personal probabilities to hy- 
potheses, I seriously doubt we will find that our science 
is full of closet Bayesians. 

Attaining that command will be tough. Statistics ed- 
ucation in ecology is already misdirected and ill-con- 
ceived. Too much time is spent in "methods" courses, 
that is, courses without calculus prerequisites. Statistics 
is a postcalculus topic; a student who takes only meth- 

ods courses is not likely to gain any level of comfort 
with the concepts in frequentist or Bayesian statistics 
(a 1-yr course at the level of, say, Rice 1988 is far 
preferable for gaining confidence in statistical concepts 
than the conventional 2-yr parade of methods courses). 
However, ecologists cannot now hope to avoid these 
issues and go about business as usual; the Bayesian 
foot is in the door. What will the traditionally schooled 
ecologist do when hislher paper is refereed by a Bayes- 
ian? How will Bayesians get their studies past fre- 
quentist editors? How will ecologists respond to a Bayes- 
ian PVA of the Northern Spotted Owl put forth by the 
forest products industry? 

Bayesian statistics, as I have tried to demonstrate 
here, is not just a new set of tools for ecologists to use. 
It is a whole different way of doing business. Bayesian 
and frequentist statistics cannot logically coexist. 

The present group of papers offer fine expositions 
and nice, illustrative ecological examples (interested 
readers should also see Gazey and Staley 1986, Johnson 
1989, and Raftery et al. 1995). However, the burden 
of proof is still on Bayesians to show that ecology can 
continue its progress with subjective probability ap-
proaches. Frequentism, like the peer review system, is 
imperfect but has a proven track record. We need to 
see a room full of community ecologists making prog- 
ress and convincing each other using Bayesian argu- 
ments. Until I see some new compelling Bayesian un- 
derstandings of nature, I will not be a believer. 

My thanks to Subash Lele and Mark Taper for their in- 
sightful comments on the paper, and for countless hours of 
discussions. The opinions expressed are my own. 
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