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Introduction

This writeup describes the positivity-preserving Discontinuous Galerkin method
for the Euler equations and related systems of conservation and source-balance
laws. We first describe the basis and philosophy of the method and its applica-
tion to the 1D Euler equations without source or diffusion terms.

1 First things first: 1D Euler equations

See [1] for the details of this section. Here we recap the development of the
scheme for the 1D Euler equations with no source terms,

∂tw + ∂xf(w) = 0, (1)

where

w =

 ρ
ρu
E

 , f(w) =

 ρu
ρu2 + p
(E + p)u

 . (2)
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The total energy E may be partitioned into the kinetic energy and the internal
energy, which we denote

e = E − 1

2

(ρu)2

ρ
. (3)

In MHD, the total energy also includes the magnetic energy. We want to stay
in the set of admissible states with positive density and internal energy, defined
as

G =

{
ρ > 0, p = (γ − 1)

(
E − 1

2

(ρu)2

ρ

)
> 0

}
. (4)

We here note, without proof, that G is a convex set, which is of supreme im-
portance.

We start with a first-order scheme,

wn+1
j = wn

j − ∆t

∆x

[
h(wn

j ,w
n
j+1)− h(wn

j−1,w
n
j )
]
. (5)

The function h is a numerical flux such as the Lax-Friedrichs flux, j indexes
the spatial cell and n the timestep. We assume that h has the property that,
if wn

j ∈ G, then wn+1
j ∈ G so long as the standard CFL condition is satisfied.

This first-order scheme will be the basis of the positivity-preserving high-order
scheme.

Now consider a first-order in time, high-order DG discretization of the Euler
equations on cell j using the same numerical flux function h, where the test
functions are denoted ψα:∫ xj+1/2

xj−1/2

wn+1 −wn

∆t
ψα dx−

∫ xj+1/2

xj−1/2

f(wn)∂xψα dx = − [h(wn)ψα]
xj+1/2

xj−1/2
. (6)

To see what happens to the cell averages under the DG discretization, let ψα = 1.
The volume integral vanishes, leaving

∆xw̄n+1 = ∆xw̄n −∆t
[
h(w−

j+1/2,w
+
j+1/2)− h(w−

j−1/2,w
+
j−1/2)

]
. (7)

We now assume the existence of a quadrature rule which integratesw exactly
on the element, and has all positive weights. That is, we assume that there are
nodes x̂αj and weights ŵα such that

w̄ =

N∑
α=1

ŵαw(x̂αj ), (8)

and ŵα > 0 for all α.
Zhang and Shu show [1] how we may now rewrite (7) as

w̄n+1
j =

N−1∑
α=2

ŵαw(x̂αj ) + ŵNHN + ŵ1H1, (9)
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where

H1 = w+
j−1/2 −

∆t

ŵ1∆x

[
h(w+

j−1/2,w
−
j+1/2)− h(w−

j−1/2,w
+
j−1/2)

]
, (10)

HN = w−
j+1/2 −

∆t

ŵN∆x

[
h(w−

j+1/2,w
+
j+1/2)− h(w+

j−1/2,w
−
j+1/2)

]
. (11)

The trick is that each of H1 and HN has the form (5)!. We now conclude that,
if each of w+

j−1/2,w
−
j+1/2, and w(x̂αj ), 2 ≤ α ≤ N − 1 are in G, then w̄n+1

j ∈ G.

This follows because we have written w̄n+1
j as a convex combination of terms

in G, where the weights are just ŵα which are positive.
In other words, a sufficient condition for the next cell average, w̄n+1

j , to
be admissible, is that the previous solution be admissible at N nodal points,
namely the interior quadrature nodes and the endpoints. It so happens that
in 1D, the LGL nodes are precisely what we need: a quadrature rule with all
positive weights which sum to 1.

1.1 The positivity-enforcing limiter

Now that we understand the sufficient condition for cell-average positivity, we
can directly enforce it with a solution limiter. A solution limiter, as opposed
to a flux limiter, simply modifies the values of the solution “in place”. We call
this limiter the positivity-enforcing limiter, since it can only enforce positivity
at the nodes. It must be coupled with appropriate numerical fluxes to obtain a
scheme that is overall positivity-preserving.

Begin by defining ϵρ and ϵp as very small numbers, which ρ and p, respec-
tively, are supposed to remain above. By default we choose ϵρ = ϵp = 10−12,
that is, 4 orders of magnitude or so larger than machine precision. Following [3]
and [4], the positivity-enforcing limiter is a simple linear scaling which leaves
the cell averages of conserved variables unchanged. It works as follows:

1. Enforce positivity of density: replace ρj(x), the density polynomial on cell
j, by

ρ̂j(x) = θρ(ρj(x)− ρ̄nj ) + ρ̄nj , (12)

where

θρ = min

(
1,

ρ̄nj − ϵρ

ρ̄nj − ρmin

)
, ρmin = min

α
ρj(x̂

α
j ). (13)

2. Enforce positivity of pressure. Define the internal energy as

e = (γ − 1)−1p = E − 1

2

ρu2

ρ̂
. (14)

Note the use of the scaled ρ̂ in the denominator.
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Compute the internal energy of the cell-averaged solution. Note that this
is distinct from the cell average of the internal energy, since the average of
a nonlinear function is not necessarily equal to the same nonlinear function
of the average of its arguments.

enj = Ēn
j − 1

2

(ρunj )
2

ρ̄nj
. (15)

The scaling factor is

θp = min

(
1,

enj − ϵp

enj − emin

)
, (16)

where

emin = min
α
ej(x̂

α
j ). (17)

We now scale all of the components of w by a factor designed to enforce
positivity of the internal energy:

wj(x) = θp(wj(x)− w̄n
j ) + w̄n

j . (18)

Note that because it is a simple scaling, the limiter may be applied directly
to the nodal representation of the polynomial. The important point is that we
evaluate the minimums in (13) and (??) at the positively-weighted quadrature
nodes, but the scaling itself may be applied to the original representation.

In WARPXM, the cell average may be taken by contracting a variable’s
nodal values with the entries of the basis array LINEAR AVERAGE, which may be
accessed in C++ code as getBasisArray LinearAverage().

2 Ideal MHD

The limiter for MHD variables is almost identical to the limiter for the Eu-
ler equations, except that the internal energy is defined by subtracting off the
magnetic energy as well:

e = (γ − 1)−1p = E − 1

2

ρu2

ρ
− |B|2

2
. (19)

See [5] for details.

3 Source terms

We now move to the discussion of the compressible Euler equations with source
terms:

∂tw + ∂xf(w) = s(w, x). (20)
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The scheme satisfied by the cell averages of the DG solution becomes

w̄n+1
j = w̄n

j − ∆t

∆x

[
h(w−

j+1/2,w
+
j+1/2)− h(w−

j−1/2,w
+
j−1/2)

]
+

∆t

∆x

∫ xj+1/2

xj−1/2

s(wj , x) dx.

(21)

If we approximate the integral of the source term via a Gauss quadrature rule
with nodes xβj and weights wβ , then we will have

w̄n+1
j = w̄n

j − ∆t

∆x

[
h(w−

j+1/2,w
+
j+1/2)− h(w−

j−1/2,w
+
j−1/2)

]
+∆t

∑
β

wβs(wj(x
β
j ), x

β
j ).

(22)

In [2], the authors show how we may rewrite this expression as

w̄n+1
j =

1

2
H+

1

2

∑
β

wβ

(
wj(x

β
j ) + 2∆ts(wj(x

β
j ), x

β
j )
)
. (23)

The factor of 2 in front of ∆t comes from the need to split the contribution of
w̄n

j over both terms. The term H contains the contribution from the numerical
flux:

H = w̄n
j − 2∆t

∆x

[
h(w−

j+1/2,w
+
j+1/2)− h(w−

j−1/2,w
+
j−1/2)

]
, (24)

and we will have H ∈ G under a CFL condition twice as stringent as the case
with no source terms.

Further, assume that we can choose ∆t small enough that if w ∈ G then
w + 2∆ts(w, x) ∈ G. Finally, suppose that wj(x

β
j ) ∈ G for all the Gauss

quadrature points β. In that case, all of the terms in (23) are in G, so we have
written w̄n+1 as a convex combination of terms in G, showing that it also lies
in the admissible set.

Let’s recap how this condition differs from the case without source terms. In
addition to requiring that wj(x̂

α
j ) ∈ G, i.e. that the solution at the positivity-

preserving quadrature points is positive, we also need wj(x
β
j ) ∈ G hold at each

of the quadrature points where the source term integral is approximated. This
is accompanied by a requirement that

wj(x
β
j ) + 2∆ts(wj(x

β
j ), x

β
j ) ∈ G. (25)

In the 1-dimensional case, it might be typical that the points x̂αj are the same

as the points xβj ; however, it is not necessary to the numerical method.

3.1 Timestep limit for source terms

Suppose that we want to evaluate a source term

s(w) = ẇ =

 ρ̇
ρ̇u

Ė

 . (26)
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The positivity-preserving timestep restriction is that

wn + 2∆tẇ ∈ G, (27)

or in other words that

ρn + 2∆tρ̇ > 0, p(wn + 2∆tẇ) > 0. (28)

Meeting this constraint will ensure that the source term not cause the density or
pressure to go negative at the next timestep. However, to properly resolve the
dynamics associated with that source term, a natural cousin of the positivity-
preserving restriction on timestep is the following:

ρn +∆tρ̇ ≥ λρn, p(wn +∆tẇ) ≥ λp(wn), 0 < λ < 1. (29)

This says that neither of the two positive quantities will be allowed to drop
below a factor λ of their former values. This ensures that, if the source term
represents a decay or loss process, that the timestep respects the characteristic
time of that process. However, because pressure is a nonlinear function of the
conserved quantities, it will be significantly easier to approximate it with a
constraint of the form

p(wn + 2∆tẇ) ≥ (1− 2(1− λ))p(wn), (30)

which says exactly the same thing but for allowing the pressure to drop by twice
as much over a timestep of twice the length.

Now combine the density constraints by multiplying the second by 2 and
taking the maximum of the right hand sides:

2ρn + 2∆tρ̇ > max(2λρn, ρn), (31)

or

ρn +∆tρ̇ > µρn, µ = max

(
λ,

1

2

)
. (32)

The constraint on pressure, again taking the maximum of the right-hand sides,
is

p(wn + 2∆tẇ) > ηp(wn), η = max(1− 2(1− λ), 0). (33)

The constraint on ρ is equivalent to

∆t ≤ (µ− 1)ρn

ρ̇
. (34)

To analyze the pressure constraint, multiply both sides of (33) by (γ −
1)ρn(ρn + 2∆tρ̇):

ρn(ρn + 2∆tρ̇)(En + 2∆tĖ)− ρn
|(ρu)n + 2∆tρ̇u|2

2
> (35)

ηρn(ρn + 2∆tρ̇)En − η(ρn + 2∆tρ̇)
|ρu|2

2
. (36)
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Expanding and collecting factors of 2∆t gives a quadratic inequality:

4∆t2ρn
(
ρ̇Ė − |ρ̇u|2

2

)
+ 2∆t

(
ρnEnρ̇+ ρnρnĖ − ρn(ρu)n ˙(ρu)− ηρnEnρ̇+ ηρ̇

|(ρu)n|2

2

)
(37)

+ ρnρnEn − ρn
|(ρu)n|2

2
− ηρnρnEn + ηρn

|(ρu)n|2

2
> 0.

(38)

This can be slightly simplified to

4∆t2ρn
(
ρ̇Ė − |ρ̇u|2

2

)
+ 2∆t

[
ρn
(
(1− η)Enρ̇− ρnĖ − (ρu)n ˙(ρu)

)
+ ηρ̇

|(ρu)n|2

2

]
(39)

+ (1− η)ρn
(
ρnEn − |(ρu)n|2

2

)
> 0. (40)

To optimize the pressure constraint, it suffices to find the roots of the polynomial
in ∆t on the left hand side, and choose the largest one which is still bounded
by the ∆t we found from the ρ requirement, (34).

4 Two dimensions

In this section we describe the modifications to the 1D story required for making
positivity-preserving DG work for the Euler equations and for Ideal MHD in 2D.
We are primarily interested in triangular elements. The approach described here
is an adaptation of Zhang et al.’s approach [6].

The positivity-preserving DG method in two dimensions is nearly identical
to that in 1D. As before, we express the update to the cell average as a flux
differencing formula:

w̄n+1 = w̄n − ∆t

∆x

3∑
l=1

∫
∂Ωl

n̂ · h(w−,w+) ds. (41)

Here, l indexes the faces of the element, while h is the numerical flux function.
Numerically, the face integrals will be approximated by a quadrature rule, with
nodes xβ and weights wβ :∫

∂Ωl

n̂ · h(w−,w+) ds ≈
Np∑
β=1

wβ,lh(w−(xβ,l),w+(xβ,l)). (42)

As in one dimension, we suppose that we can decompose the cell average
w̄n as a convex combination of point values, using a quadrature rule with all
positive weights:

w̄n =

N∑
α=1

w(x̂α)ŵα. (43)
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As before, it is critical that the set of points x̂α contain the face quadrature
nodes. Denote the weight for the node x̂α = xβ,l by wα = wα|β,l. That is, this
is the weight for the node xβ,l, but in the volume quadrature rule, not the face
quadrature rule.

Then we can write

w̄n =

3∑
l=1

N∑
β=1

wα|β,lw(xβ,l) +

Nint∑
α=1

wαw(xα). (44)

The idea is to split up the decomposition of the cell average into contributions
from the interior of the cell, and contributions from those quadrature nodes
which coincide with a face quadrature node. 1

Zhang et al. then show how we may express the cell average at the next
time step as

w̄n+1 =

Nint∑
α=1

wαw(xα) +

Np∑
β=1

wα|β,l[H1,β +H2,β +H3,β ]. (45)

Each of the Hl,β have the form

Hl,β = w(xβ,l)−∆t
wβ,l

wα|β,l [∆F ], (46)

where ∆F is a difference of numerical fluxes. Once again, we have deconstructed
the cell average of the high-order scheme into a convex combination of point
values and expressions of the form (5).

Unlike in one dimension, the total set of nodes at which we must enforce pos-
itivity is not the same as the LGL collocation nodes. We need positivity at all
the nodes x̂α, which as we saw must include the face quadrature nodes, but may
also include other nodes in the interior of the element. The basis definitions.pdf
writeup contains details of how this quadrature rule is constructed for the tri-
angular basis elements. Inside of WARPXM, we apply the positivity-enforcing
limiter at both the face nodes and the extra interior positivity nodes.

4.1 Cylindrical geometry and source terms

In cylindrical geometry, we typically evaluate source terms at Gaussian Quadra-
ture nodes, rather than the LGL nodes, which appear at r = 0, resulting in a
singular source term evaluation. When this is done, we must be careful to in-
clude the Gaussian quadrature nodes in the set of positivity nodes. This is
controlled by the include gaussian quad nodes flag in warpy.

1Note that if a node is double counted at a vertex, we can pretend that it is two separate
nodes which coincide in space, each with half the weight.
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