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Normalizing equation systems provide convenient means to evaluate the relative importance of
each term or effect for a given set of physical parameters. The general normalization procedure
involves defining characteristic values for the system variables and then deriving nondimensional
parameters. Nondimensional numbers are useful for determining dynamic similitude – guaranteeing
self-similar solutions among differing scale problems.

Since the derivation of normalized equation systems requires choosing characteristic values,
normalizations are not unique. However, a consistent normalization permits comparisons among
different problems, and some choices during the normalization procedure results in nondimensional
parameters that are well-defined among a variety of models. This technical note presents a nor-
malization for multi-species plasma models that is consistent for the Boltzmann-Maxwell equation
system and for reduced plasma kinetic and fluid models, including the Vlasov-Poisson [1], multi-
fluid [2–6], and magnetohydrodynamic (MHD) [7] plasma models. The normalization and variable
definitions establishes the standard that should be used by the University of Washington Compu-
tational Plasma Dynamics Group. The normalization selected in this derivation results in physically
relevant nondimensional parameters, which indicate the relative importance of the electromagnetic
effects.

In an effort to simplify the presentation of the normalized multi-species plasma models, collisions
and atomic reactions are ignored and the pressure is assumed to be isotropic. Relaxing these
assumptions does not change the steps of the derivation, but it does introduce additional terms.
For example, a three-fluid plasma-neutral model is presented in Ref. [8].

The set of plasma models presented in this technical note provides a hierarchy of model fidelity
with a consistent normalization with nondimensional numbers that can be compared based on the
plasma parameters. The highest fidelity model considered is the Boltzmann-Maxwell system, and
it forms the basis from which all reduced models stem. However, the organization of this document
follows the derivation of the normalization, which begins with a plasma model of intermediate
fidelity and then extends the normalization to lower and higher fidelity plasma models.

1 Normalized Multi-Fluid Plasma Model

A normalization is sought that is preserved through the asymptotic approximations of the center-of-
mass (COM) single-fluid MHD model. A primary result of the approximations is the pre-Maxwellian
form of Ampere’s law and suggests that Ampere’s law should inform the appropriate normalization.
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The dimensional form of Ampere’s law in SI units is expressed as

−ε0
∂E

∂t
+

1

µ0
∇×B = j, (1)

where j =
∑

α qαnαvα. To eliminate the vacuum permittivity and permeability, the reference proton
plasma frequency and the reference Alfvén speed in a proton plasma are introduced through

ε0 =
e2n0
mpω2

p

, (2)

and

µ0 =
B2

0

mpn0V 2
A

. (3)

Reference values are denoted with a 0 subscript. Substituting these expressions and reference values
into Eq. (1) gives

− e2n0
mpω2

p

E0

τ

∂Ẽ

∂t̃
+
mpn0V

2
A

B2
0

B0

L
∇̃ × B̃ = en0v0j̃ = en0v0

∑
α

Zαñαṽα,

where all variables in the differential equation with a tilde are normalized by the reference values,
e.g. E = E0Ẽ. Relating the reference values defines a set of normalizations,

E0 = v0B0, (4)

v0 =
τ

L
= VA. (5)

Note that the normalization of Eq. (5) specifies the reference time to be the characteristic Alfvén
transit time. Introducing the proton cyclotron frequency

ωc =
eB0

mp
, (6)

reduces Ampere’s law to a normalized form,

− (ωcτ)2

(ωpτ)2
∂E

∂t
+∇×B = (ωcτ) j, (7)

where j =
∑

α Zαnαvα and tildes have been dropped for clarity. The normalization process has
introduced nondimensional parameters for the plasma frequency ωpτ and the cyclotron frequency
ωcτ .

Faraday’s law is normalized using the same definitions used for Ampere’s law. The dimensional
form of Faraday’s law in SI units is

∂B

∂t
+∇×E = 0, (8)
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which when expressed using the reference values gives

B0

τ

∂B̃

∂t
+
E0

L
∇̃ × Ẽ = 0.

Replacing the reference value for E0 from Eq. (4) simplifies Faraday’s law to normalized form,

∂B

∂t
+∇×E = 0, (9)

with the tildes removed.
Gauss’s law is normalized in a similar fashion. The dimensional form in SI units is

ε0∇ ·E = ρc =
∑
α

qαnα, (10)

where ρc =
∑

α qαnα. Using the reference values and normalizations gives

e2n0
mpω2

p

E0

L
∇̃ · Ẽ = en0ρ̃c = en0

∑
α

Zαñα,

which reduces to
(ωcτ)

(ωpτ)2
∇ ·E = ρc, (11)

where ρc =
∑

α Zαnα.
The fluid equations for the multi-fluid plasma model provide governing equations for the number

density, momentum, and total energy for each species. The continuity equation is

∂nα
∂t

+∇ · (nαvα) = 0, (12)

for each species α. Substituting the reference values into Eq. (12) gives

n0
τ

∂ñα

∂t̃
+
n0v0
L
∇̃ · (ñαṽα) = 0.

The coefficients cancel from the definitions of the normalizations, and the normalized continuity
equation simplifies to

∂nα
∂t

+∇ · (nαvα) = 0, (13)

without tildes.
The momentum equation is

mα
∂ (nαvα)

∂t
+mα∇ · (nαvαvα) +∇pα = qαnαE + qαnαvα ×B (14)

for each species α. The momentum equation is rewritten with the same reference values used in
deriving Eqs. (7,9,13) with an additional reference value for pressure, p0. The species mass and
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charge are normalized by introducing nondimensional parameters for the mass ratio Aα ≡ mα/mp,
which is normalized to the proton mass – effectively the atomic mass, and for the ionization state
Zα ≡ qα/e, which is normalized to the elementary charge. Substituting these reference values and
nondimensional parameters into Eq. (14) gives

mpn0v0
τ

Aα
∂ (ñαṽα)

∂t̃
+
mpn0v

2
0

L
Aα∇̃ · (ñαṽαṽα) +

p0
L
∇̃p̃α =

en0E0ZαñαẼ + en0v0B0Zαñαṽα × B̃.

Dividing by the leading coefficient, substituting the normalizations gives

Aα
∂ (ñαṽα)

∂t̃
+Aα∇̃ · (ñαṽαṽα) +

p0
mpn0v20

∇̃p̃α =

(
eB0

mp
τ

)
Zαñα

(
Ẽ + ṽα × B̃

)
. (15)

Relating the reference pressure to the reference magnetic field defines an additional normalization

p0 = mpn0v
2
0 =

B2
0

µ0
. (16)

Inserting the nondimensional cyclotron frequency gives the normalized momentum equation

Aα
∂ (nαvα)

∂t
+Aα∇ · (nαvαvα) +∇pα = (ωcτ)Zαnα (E + vα ×B) . (17)

The tildes have again been dropped for clarity. Since the Lorentz force couples the charged fluids
through the electromagnetic fields, the momentum balance law does not reduce to a conservation
law.

The fluid energy equation is

∂εα
∂t

+∇ · ((εα + pα)vα) = qαnαvα ·E (18)

for each species α, where

εα =
1

γ − 1
pα +

1

2
mαnαv

2
α. (19)

Using the same normalized variables and reference values and setting the reference energy value
such that ε0 = p0, Eq. (18) is transformed into

p0
τ

∂ε̃α

∂t̃
+
p0v0
L
∇̃ · ((ε̃α + p̃α) ṽα) = en0v0E0Zαñαṽα · Ẽ,

which reduces to the normalized energy equation,

∂εα
∂t

+∇ · ((εα + pα)vα) = (ωcτ)Zαnαvα ·E, (20)

through cancellation and the definition of the nondimensional cyclotron frequency. The normalized
total energy is now given by

εα =
1

γ − 1
pα +

1

2
Aαnαv

2
α. (21)

The tildes have been dropped from Eqs. (20,21) for clarity.
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1.1 Alternative Nondimensional Parameter

While the normalized equations given in the previous section are complete, the presence of the
nondimensional cyclotron frequency implies a magnetized plasma. Alternative expressions can be
derived by replacing this nondimensional parameter with an equivalent one.

ωcτ =
eB0

mp

L

VA
=
eB0

mp

L
√
µ0mpn0

B0
=

√
e2n0
ε0mp

L

c
=
ωpL

c
=
L

δp
, (22)

where δp is the proton skin depth.
Replacing the nondimensional cyclotron frequency with the nondimensional skin depth, which

is defined even in an unmagnetized plasma, results in the Maxwell’s equations of

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j, (23)

∂B

∂t
+∇×E = 0, (9)

1

(ωpτ)2
L

δp
∇ ·E = ρc. (24)

Note that the nondimensional parameters that multiply the displacement current in the normalized
Ampere’s law, Eq. (23), can be reduced as

1

(ωpτ)2

(
L

δp

)2

=

(
VA
c

)2

.

Using the nondimensional skin depth, the fluid equations become

∂nα
∂t

+∇ · (nαvα) = 0, (13)

∂ (nαvα)

∂t
+∇ · (nαvαvα) +

1

Aα
∇pα =

(
L

δp

)
Zα
Aα

nα (E + vα ×B) , (25)

∂εα
∂t

+∇ · ((εα + pα)vα) =

(
L

δp

)
Zαnαvα ·E. (26)

These equations constitute the normalization from which the other plasma models are extended.

2 Center-of-Mass Multi-Fluid Plasma Model

Extending the multi-fluid plasma model of Sec. 1 to the single-fluid MHD model begins by expressing
the equation system for a center-of-mass (COM) fluid. The COM mass density and velocity are

5



Extensible Normalization for Plasma Models Shumlak, Jul 2016

defined as

ρ =
∑
α

Aαñα =
1

mpn0

∑
α

mαnα, (27)

v =

∑
αAαñαṽα∑
αAαñα

=
1

v0

∑
αmαnαvα∑
αmαnα

, (28)

in both normalized and dimensional values. The tildes are dropped for the remainder of the
derivation.

The continuity equation, Eq. (13), is rewritten as a mass conservation law for each species,

∂ (Aαnα)

∂t
+∇ · (Aαnαvα) = 0, (29)

which is summed over all species to give the COM continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (30)

A drift velocity is defined for each species that relates the species velocity to the COM velocity,

wα = vα − v, (31)

which can be used to describe the evolution of the species densities,

∂nα
∂t

+∇ · (nα (v + wα)) = 0. (32)

Note that from Eqs. (27,28,31) the relative drift velocities have the property of
∑

αAαnαwα = 0.
The COM momentum equation is derived by summing the species momentum equations over

all species,

∂ (ρv)

∂t
+∇ · (ρvv) +∇ ·

(∑
α

Aαnα (wαv + (v + wα)wα)

)
+∇p =

(
L

δp

)(∑
α

ZαnαE +
∑
α

Zαnαvα ×B

)
or

∂ (ρv)

∂t
+∇ · (ρvv) +∇ ·

(∑
α

Aαnαwαwα

)
+∇p =

(
L

δp

)
(ρcE + j×B) , (33)

where the total pressure is defined as the sum of the partial pressures, p =
∑

α pα.
The evolution of the species momenta is described by the separate species momentum equations,

Eq. (25), and eliminating one species momentum equation since it is redundant. Alternatively, an
evolution equation can be derived for the relative drift velocities for each species.
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Using Eq. (30), Eq. (33) can be expressed as

∂v

∂t
+ v · ∇v +

1

ρ
∇ ·

(∑
α

Aαnαwαwα

)
+

1

ρ
∇p =

(
L

δp

)(
ρc
ρ
E +

j

ρ
×B

)
. (34)

In a similar manner the species momentum equation can be manipulated to give

∂vα
∂t

+ vα · ∇vα +
1

Aαnα
∇pα =

(
L

δp

)
Zα
Aα

(E + vα ×B) . (35)

Subtracting the two velocity equations yields an evolution equation for the drift velocity of each
species,

∂wα

∂t
+ v · ∇wα + wα · ∇ (v + wα)− 1

ρ
∇ ·

(∑
α

Aαnαwαwα

)
+

1

Aαnα
∇pα −

1

ρ
∇p =

(
L

δp

)((
Zα
Aα
− ρc
ρ

)
E +

(
Zαvα
Aα

− j

ρ

)
×B

)
. (36)

While a relative drift velocity equation exists for each species, it only needs to be solved for all but
one species. The remaining drift velocity can be computed from

∑
αAαnαwα = 0.

The COM energy equation is defined by summing over all species,

∂ε

∂t
+∇ ·

(∑
α

(εα + pα) (v + wα)

)
=

(
L

δp

)∑
α

Zαnαvα ·E,

or
∂ε

∂t
+∇ · ((ε+ p)v) +∇ ·

(∑
α

(εα + pα)wα

)
=

(
L

δp

)
j ·E, (37)

where the COM total energy is defined by

ε =
∑
α

εα (38)

=
∑
α

1

γ − 1
pα +

1

2
Aαnαv

2
α (39)

=
1

γ − 1
p+

1

2
ρv2 +

1

2

∑
α

Aαnαw
2
α. (40)

The species energy equation is expressed as

∂εα
∂t

+∇ · ((εα + pα) (v + wα)) =

(
L

δp

)
Zαnα (v + wα) ·E. (41)

The current density in COM variables is

j = v
∑
α

Zαnα +
∑
α

Zαnαwα

= ρcv +
∑
α

Zαnαwα. (42)
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The fluid equations are coupled to the complete Maxwell’s equations which are expressed using the
COM variables

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j, (23)

∂B

∂t
+∇×E = 0. (9)

The derivation of the COM equation system for the multi-fluid plasma model has introduced
no approximations and the system is mathematically equivalent to the system from Sec. 1.

2.1 Infinite Speed of Light - Charge Neutral Multi-Fluid Plasma Model

Applying the asymptotic approximation of infinite speed of light is achieved through the limit of
ωpτ →∞. Ampere’s law, Eq. (23), becomes

j =

(
δp
L

)
∇×B, (43)

and Gauss’s law, Eq. (24), reduces to ρc = 0, charge neutrality. Faraday’s law, Eq. (9), remains
unaffected.

Propagating these reductions through the fluid equations results in a total charge continuity
equation of

∂ (
∑

α Zαnα)

∂t
+∇ ·

((∑
α

Zαnα

)
v

)
+∇ ·

(∑
α

Zαnαwα

)
= ∇ ·

(∑
α

Zαnαwα

)
= 0, (44)

due to charge neutrality.
The COM momentum equation, Eq. (33), becomes

∂ (ρv)

∂t
+∇ · (ρvv) +∇ ·

(∑
α

Aαnαwαwα

)
+∇p = (∇×B)×B, (45)

and the relative drift velocity is given by

∂wα

∂t
+ v · ∇wα + wα · ∇ (v + wα)− 1

ρ
∇ ·

(∑
α

Aαnαwαwα

)
+

1

Aαnα
∇pα −

1

ρ
∇p =

(
L

δp

)
Zα
Aα

(E + vα ×B)− 1

ρ
(∇×B)×B. (46)

The COM energy equation becomes

∂ε

∂t
+∇ · ((ε+ p)v) +∇ ·

(∑
α

(εα + pα)wα

)
= (∇×B) ·E, (47)

and the species energy equation remains unchanged. The COM and species continuity equations
also remain unchanged.
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2.2 Negligible Electron Inertia - Massless Electron Multi-Fluid Plasma Model

Applying the asymptotic approximation of negligible electron inertia to the complete COM equation
system is accomplished through the limit of Ae → 0, which does not alter Maxwell’s equations.

The COM continuity equation is unchanged except that the mass density and COM velocity
are reinterpreted as

ρ =
∑
α
α 6=e

Aαñα,

v =

∑
α
α6=e

Aαñαvα∑
α
α 6=e

Aαñα
.

The summation of the relative advection term in the COM momentum equation, Eq. (33), now
excludes the electron species.

∂ (ρv)

∂t
+∇ · (ρvv) +∇ ·

∑
α
α 6=e

Aαnαwαwα

+∇p =

(
L

δp

)
(ρcE + j×B) (48)

The relative drift velocity equation, Eq. (36), is unchanged except the summation again excludes
the electron species.

∂wα

∂t
+ v · ∇wα + wα · ∇ (v + wα)− 1

ρ
∇ ·

∑
α
α 6=e

Aαnαwαwα

+

1

Aαnα
∇pα −

1

ρ
∇p =

(
L

δp

)((
Zα
Aα
− ρc
ρ

)
E +

(
Zαvα
Aα

− j

ρ

)
×B

)
(49)

These seemingly minor modifications are particularly consequential in a two-species (electron,
ion) plasma, since v = vi and wi = 0. In this case, the COM momentum equation becomes

∂ (ρv)

∂t
+∇ · (ρvv) +∇p =

(
L

δp

)
(ρcE + j×B) . (50)

Instead of using the relative drift velocity equation, an appropriate electron momentum equation
is most easily derived from the multi-fluid form by setting Ze = −1 and applying the limit Ae → 0.

− 1

ne
∇pe =

(
L

δp

)
(E + ve ×B) ,

or

− 1

ne
∇pe =

(
L

δp

)
(E + (v + we)×B) (51)

to provide a state equation that can be solved for the electron relative drift velocity.
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The COM energy equation, Eq. (37), is unchanged except that the electron energy only contains
the internal energy component, εe = pe/(γ − 1). For the two-species plasma, the COM energy
equation becomes

∂ε

∂t
+∇ ·

(
(ε+ p)v +

γ

γ − 1
pewe

)
=

(
L

δp

)
j ·E. (52)

2.3 Hall-MHD Model

Applying both asymptotic approximations from Secs. 2.1 and 2.2 yields the Hall-MHD model. The
evolution of the electromagnetic fields is described by Eq. (9)

∂B

∂t
+∇×E = 0, (9)

and Eq. (43)

j =

(
δp
L

)
∇×B, (43)

where they have been repeated for convenience.
Charge neutrality results from the first asymptotic approximation and results in ρc = 0 and

∇· j = 0. While a general set of fluid equations with arbitrary number of species can be derived for
the Hall-MHD model, the fluid equations for the two-species plasma are most common. The fluid
equations for the two-species are

∂ρ

∂t
+∇ · (ρv) = 0 (30)

∂ (ρv)

∂t
+∇ · (ρvv) +∇p = (∇×B)×B (53)

E + v×B =

(
δp
L

)
1

ne
((∇×B)×B−∇pe) (54)

∂ε

∂t
+∇ ·

(
(ε+ p)v +

γ

γ − 1
pewe

)
= (∇×B) ·E (55)

where the electron drift velocity is given by

we = − j

ne
(56)

= −
(
δp
L

)
∇×B

ne
, (57)

as a result of charge neutrality.
The MHD energy often represents the sum of the plasma energy ε and the magnetic field energy

B2/(2µ0). Performing the dot product of Eq. (9) with B yields

∂

∂t

(
B2

2

)
= −∇×E ·B = −∇×B ·E−∇ · (E×B) . (58)
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Performing the cross product of Eq. (51) with B and rearranging the terms gives

E×B = −
(
δp
L

)
1

ne
∇pe ×B− ((v + we)×B)×B

= −
(
δp
L

)
1

ne
∇pe ×B +B2v− (v ·B)B +B2we − (we ·B)B. (59)

Substituting Eq. (59) into Eq. (58) gives an evolution equation for the magnetic field energy, which
is B2/2 in normalized form. The MHD total energy equation is found by summing this equation
with Eq. (55).

∂

∂t

(
ε+

B2

2

)
+∇ ·

((
ε+ p+B2

)
v + (B · v)B

)
+∇ ·

((
εe + pe +B2

)
we + (B ·we)B

)
=

(
δp
L

)
∇ ·
(

1

ne
∇pe ×B

)
The total energy is defined as e = ε+B2/2 and similarly for the electron total energy, ee = εe+B

2/2.
Using these definitions and Eq. (57) gives the Hall MHD total energy equation

∂e

∂t
+∇ ·

((
e+ p+

B2

2

)
v + (B · v)B

)
=(

δp
L

)
∇ ·
((

ee + pe +
B2

2

)
∇×B

ne
− B · ∇ ×B

ne
B +

1

ne
∇pe ×B

)
, (60)

where the total energy has its usual definition of

e =
1

γ − 1
p+

1

2
Ainiv

2 +
B2

2
. (61)

Note that in the ideal MHD limit, δp/L→ 0, and the right-hand side of Eq. (60) vanishes.

3 Continuum Kinetic Plasma Model

The normalization presented in the previous sections leads to consistent plasma models that extend
from the multi-fluid plasma model to the Hall-MHD plasma model. The same normalization can be
extended to the continuum kinetic plasma model, namely the Boltzmann-Maxwell equation system.
For simplicity the collision term is expressed as a BGK operator [9, 10], though more complete
collision operators can be used. The Boltzmann equation describes the evolution of continuum
distribution functions for each species α

∂fα
∂t

+ v · ∇fα +
qα
mα

(E + v×B) · ∇vfα = να
(
fMα − fα

)
, (62)

where να is the spatially-dependent self-relaxation rate and fMα is a Maxwellian distribution function
defined taking the first three moments of fα. Additional collisional effects can be included and do
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not alter the normalization procedure presented here. Maxwell’s equations govern the evolution of
the electric and magnetic fields through Eqs. (1) and (8) and couple to the evolution of the plasma
state.

The normalized variables have been defined for the lower fidelity plasma models using reference
values

t = t̃τ x = x̃L v0 =
L

τ
= VA E0 = v0B0

fα = f̃αn0 qα = Zαe mα = Aαmp να = ν̃ανp

VA =

(
B2

0

µ0mpn0

)1/2

ωp =

(
e2n0
ε0mp

)1/2

ωc =
eB0

mp
δp =

c

ωp

where the reference self-relaxation rate is defined for a proton species. Substituting the normaliza-
tions into Eq. (62) gives

n0
τ

∂f̃α

∂t̃
+
n0v0
L

ṽ · ∇̃f̃α +
n0eB0

mp

Zα
Aα

(
Ẽ + ṽ× B̃

)
· ∇̃vf̃α = n0νpν̃α

(
f̃Mα − f̃α

)
,

which simplifies to

∂f̃α

∂t̃
+ ṽ · ∇̃f̃α + (ωcτ)

Zα
Aα

(
Ẽ + ṽ× B̃

)
· ∇̃vf̃α = (νpτ) ν̃α

(
f̃Mα − f̃α

)
.

Using the relationship between the nondimensional parameters, the normalized Boltzmann equation
becomes

∂fα
∂t

+ v · ∇fα +

(
L

δp

)
Zα
Aα

(E + v×B) · ∇vfα = (νpτ) να
(
fMα − fα

)
. (63)

Note that L/δp = ωpL/c, which commonly appears as the nondimensional parameter for the nor-
malized Boltzmann equation with a reference time of L/c. In the continuum kinetic model, the
current density is given by

j =
∑
α

Zα

∫
dv′v′fα(v′). (64)

The normalized forms of Maxwell’s equations

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j, (23)

∂B

∂t
+∇×E = 0, (9)

complete the Boltzmann-Maxwell continuum kinetic plasma model.

12
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3.1 Vlasov-Poisson Plasma Model

A common simplification of the Boltzmann-Maxwell continuum kinetic plasma model is to assume
a collisionless, electrostatic plasma. The resulting equation system constitutes the Vlasov-Poisson
continuum kinetic plasma model. The collisionless form of the normalized Boltzmann equation,
Eq. (63), is expressed as

∂fα
∂t

+ v · ∇fα +

(
L

δp

)
Zα
Aα

(E + v×B) · ∇vfα = 0, (65)

where the magnetic field is independent of plasma dynamics. The electric field is described by
an electrostatic potential φ, such that E = −∇φ. Poisson’s equation is derived by combining the
electrostatic potential with Gauss’s law, Eq. (10). The normalization follows that of Eqs. (11) and
(24) to yield

− 1

(ωpτ)2
L

δp
∇2φ = ρc. (66)

The charge density is given by

ρc =
∑
α

Zα

∫
dv′fα(v′) (67)

in the continuum kinetic model.

4 Summary of Normalized Plasma Models

The equations systems are summarized and ordered from highest fidelity to lowest fidelity plasma
models.

Boltzmann-Maxwell Plasma Model

∂fα
∂t

+ v · ∇fα +

(
L

δp

)
Zα
Aα

(E + v×B) · ∇vfα = (νpτ) να
(
fMα − fα

)
(63)

j =
∑
α

Zα

∫
dv′v′fα(v′) (64)

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j (23)

∂B

∂t
+∇×E = 0 (9)

13
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Vlasov-Poisson Plasma Model

∂fα
∂t

+ v · ∇fα +

(
L

δp

)
Zα
Aα

(E + v×B) · ∇vfα = 0 (65)

ρc =
∑
α

Zα

∫
dv′fα(v′) (67)

E = −∇φ (68)

− 1

(ωpτ)2
L

δp
∇2φ = ρc. (66)

Multi-Fluid Plasma Model
∂nα
∂t

+∇ · (nαvα) = 0 (13)

∂ (nαvα)

∂t
+∇ · (nαvαvα) +

1

Aα
∇pα =

(
L

δp

)
Zα
Aα

nα (E + vα ×B) (25)

∂εα
∂t

+∇ · ((εα + pα)vα) =

(
L

δp

)
Zαnαvα ·E (26)

j =
∑
α

Zαnαvα (69)

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j (23)

∂B

∂t
+∇×E = 0 (9)

Center-of-Mass Multi-Fluid Plasma Model Note the COM multi-fluid plasma model is
equivalent to the multi-fluid plasma model, and therefore shares the same fidelity.

∂ρ

∂t
+∇ · (ρv) = 0 (30)

∂nα
∂t

+∇ · (nα (v + wα)) = 0 (32)

∂ (ρv)

∂t
+∇ · (ρvv) +∇ ·

(∑
α

Aαnαwαwα

)
+∇p =

(
L

δp

)
(ρcE + j×B) (33)

∂wα

∂t
+ v · ∇wα + wα · ∇ (v + wα)− 1

ρ
∇ ·

(∑
α

Aαnαwαwα

)
+

1

Aαnα
∇pα −

1

ρ
∇p =

(
L

δp

)((
Zα
Aα
− ρc
ρ

)
E +

(
Zαvα
Aα

− j

ρ

)
×B

)
(36)

14
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∂ε

∂t
+∇ · ((ε+ p)v) +∇ ·

(∑
α

(εα + pα)wα

)
=

(
L

δp

)
j ·E (37)

∂εα
∂t

+∇ · ((εα + pα) (v + wα)) =

(
L

δp

)
Zαnα (v + wα) ·E (41)

ρc =
∑
α

Zαnα (70)

j = ρcv +
∑
α

Zαnαwα (42)

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j (23)

∂B

∂t
+∇×E = 0 (9)

Charge Neutral Multi-Fluid Plasma Model

∂ρ

∂t
+∇ · (ρv) = 0 (30)

∂nα
∂t

+∇ · (nα (v + wα)) = 0 (32)

∂ (ρv)

∂t
+∇ · (ρvv) +∇ ·

(∑
α

Aαnαwαwα

)
+∇p = (∇×B)×B (45)

∂wα

∂t
+ v · ∇wα + wα · ∇ (v + wα)− 1

ρ
∇ ·

(∑
α

Aαnαwαwα

)
+

1

Aαnα
∇pα −

1

ρ
∇p =

(
L

δp

)
Zα
Aα

(E + vα ×B)− 1

ρ
(∇×B)×B (46)

∂ε

∂t
+∇ · ((ε+ p)v) +∇ ·

(∑
α

(εα + pα)wα

)
= (∇×B) ·E (47)

∂εα
∂t

+∇ · ((εα + pα) (v + wα)) =

(
L

δp

)
Zαnα (v + wα) ·E (41)

∂B

∂t
+∇×E = 0 (9)
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Massless Electron Multi-Fluid Plasma Model

∂ρ

∂t
+∇ · (ρv) = 0 (30)

∂nα
∂t

+∇ · (nα (v + wα)) = 0 (32)

∂ (ρv)

∂t
+∇ · (ρvv) +∇ ·

∑
α
α 6=e

Aαnαwαwα

+∇p =

(
L

δp

)
(ρcE + j×B) (48)

∂wα

∂t
+ v · ∇wα + wα · ∇ (v + wα)− 1

ρ
∇ ·

∑
α
α 6=e

Aαnαwαwα

+

1

Aαnα
∇pα −

1

ρ
∇p =

(
L

δp

)((
Zα
Aα
− ρc
ρ

)
E +

(
Zαvα
Aα

− j

ρ

)
×B

)
(49)

∂ε

∂t
+∇ · ((ε+ p)v) +∇ ·

(∑
α

(εα + pα)wα

)
=

(
L

δp

)
j ·E (37)

∂εα
∂t

+∇ · ((εα + pα) (v + wα)) =

(
L

δp

)
Zαnα (v + wα) ·E (41)

j = ρcv +
∑
α

Zαnαwα (42)

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j (23)

∂B

∂t
+∇×E = 0 (9)

Massless Electron Two-Fluid Plasma Model (Special Case)

∂ρ

∂t
+∇ · (ρv) = 0 (30)

∂ne
∂t

+∇ · (ne (v + we)) = 0 (71)

∂ (ρv)

∂t
+∇ · (ρvv) +∇p =

(
L

δp

)
(ρcE + j×B) (50)

− 1

ne
∇pe =

(
L

δp

)
(E + (v + we)×B) (51)

16



Extensible Normalization for Plasma Models Shumlak, Jul 2016

∂ε

∂t
+∇ ·

(
(ε+ p)v +

γ

γ − 1
pewe

)
=

(
L

δp

)
j ·E (52)

∂pe
∂t

+∇ · (γpe (v + we)) =

(
L

δp

)
(γ − 1)Zαnα (v + we) ·E (72)

j = ρcv− enewe (73)

− 1

(ωpτ)2

(
L

δp

)2 ∂E

∂t
+∇×B =

(
L

δp

)
j (23)

∂B

∂t
+∇×E = 0 (9)

Hall-MHD Plasma Model
∂ρ

∂t
+∇ · (ρv) = 0 (30)

∂ (ρv)

∂t
+∇ · (ρvv) +∇p = (∇×B)×B (53)

E + v×B =

(
δp
L

)
1

ne
((∇×B)×B−∇pe) (54)

∂e

∂t
+∇ ·

((
e+ p+

B2

2

)
v + (B · v)B

)
=(

δp
L

)
∇ ·
((

ee + pe +
B2

2

)
∇×B

ne
− B · ∇ ×B

ne
B +

1

ne
∇pe ×B

)
(60)

e =
1

γ − 1
p+

1

2
Ainiv

2 +
B2

2
(61)

∂B

∂t
+∇×E = 0 (9)

References

[1] G. V. Vogman, P. Colella, and U. Shumlak. Dory–Guest–Harris instability as a benchmark
for continuum kinetic Vlasov–Poisson simulations of magnetized plasmas. Journal of Compu-
tational Physics, 277(0):101 – 120, 2014.

[2] U. Shumlak and J. Loverich. Approximate Riemann solver for the two-fluid plasma model.
Journal of Computational Physics, 187(2):620–638, 2003.

[3] A. Hakim, J. Loverich, and U. Shumlak. A high resolution wave propagation scheme for ideal
two-fluid plasma equations. Journal of Computational Physics, 219(1):418 – 442, 2006.

[4] A. Hakim and U. Shumlak. Two-fluid physics and field-reversed configurations. Physics of
Plasmas, 14(5):055911, 2007.

17



Extensible Normalization for Plasma Models Shumlak, Jul 2016

[5] U. Shumlak, R. Lilly, N. Reddell, E. Sousa, and B. Srinivasan. Advanced physics calculations
using a multi-fluid plasma model. Computer Physics Communications, 182(9):1767–1770, 2011.

[6] B. Srinivasan and U. Shumlak. Analytical and computational study of the ideal full two-fluid
plasma model and asymptotic approximations for Hall-magnetohydrodynamics. Physics of
Plasmas, 18(9):092113, 2011.

[7] J. P. Freidberg. Ideal magnetohydrodynamic theory of magnetic fusion systems. Reviews of
Modern Physics, 54(3):801–902, July 1982.

[8] E. T. Meier and U. Shumlak. A general nonlinear fluid model for reacting plasma-neutral
mixtures. Physics of Plasmas, 19(7):072508, 2012.

[9] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. i.
small amplitude processes in charged and neutral one-component systems. Physical Review,
94:511–525, May 1954.

[10] S. Livi and E. Marsch. Comparison of the Bhatnagar-Gross-Krook approximation with the
exact Coulomb collision operator. Physical Review A, 34:533–540, Jul 1986.

18


