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The models and numerical methods described in Chapters ?? and ??, respectively are imple-
mented in the WARPXM (Washington Approximate Riemann Plasma eXtended modeling platform
- Many-core version) code [5]. This is an unstructured framework designed to solve the plasma mod-
els using the discontinuous Galerkin method. The code was initially built by Sean Miller [6] which
extended previous work on the structured WARPX and WARPM codes built by previous students
([9, 10, 2, 4, 8]) to an unstructured framework. This allows for simulation of more complex ge-
ometries for which the discontinuous Galerkin method is amenable. The code is also parallelized
into subdomains and patches, upon which a problem can be broken up into multiple MPI processes
across multiple host machines. In broad terms, the code consists of an unstructured library, a set
of host actions, and a set of patch processes. The unstructured library handles incorporation of an
external mesh file into usable information as well as handling geometric information associated with
the mesh that is required by solvers. Hostactions are calculations over the the entire domain, such
as time integration, while patch processes are calculations taking place within the patch level, such
as the discontinuous Galerkin solver. A synchronizer is also used to transfer information between
neighboring patches when required.

The rest of this chapter gives an overview of the general solver algorithm followed by a high
level description of these main sections of the code.
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1 High-Level Structure

Applications

src examples extra tools test

Applications

Array

Basis

DFEM

Host Actions

Initial Conditions

Patch Processes

Solver

Sychronizer

Variable

Variables

WARPXM

UC Library Warpy

Plotting Scripts

At the highest level, the code has a source directory upon which the meat of the code sits. There
is an examples directory with example input files. The “extra” directory holds the Unstructured
Converter (UC) library, which translates meshes into information that WARPXM can read and
also performs patch and subdomain decomposition. The tools directory holds Warpy, which is a
python suite developed to generate and run input files in WARPXM.
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2 Source Directory

src

Apps Array Basis DFEM HA IC PP Solver Sync variable warpxm

In the source directory are the integral pieces of the code. Physics applications, solvers, finite
element bases, and variable arrays are all developed here.

2.1 warpxm

warpxm

warpxm.cc wmsimulation.cc

In this section, the basic workflow of WARPXM is overviewed. The entry point of the code
is in the file src/warpxm/warpxm.cc. Here all of the required components are setup and run. A
general outline of src/warpxm/warpxm.cc is as follows

• main()

– warpxm_init()

∗ initialize MPI

∗ initialize petsc

– warpxm_main()

∗ initialize simulation

· read input file

· create cryptset

· setup simulation

· run simulation

– warpxm_finalize()

∗ finalize petsc

∗ finalize MPI

It can be seen that MPI and petsc are integrated at the highest level. Then the code reads in the
input file using a cryptset object before setting up and running the simulation. The cryptset class
is the module that translates the input file into the simulation parameters. The simulation is itself
an object written in its own file wmsimulation.cc, detailed next.

• setup()

– determines a run name and sets up various logging streams for output messaging to the
user
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– creates a solver based on cryptset parameters

– sets up solver

• simulate()

– runs solver.solve()

Overall, this shows that the simulation sets up and runs the solver of the actual problem and relays
information between the user and the simulation. An overview of wmsolver.cc is described next.

2.2 Solver

solver

stepper Sequenced Group

solver Host Sequenced Group

• setup()

– setup WmDomain object

∗ Sets up mesh object, which uses the UC Domain object to set up unstructured
patches, which are then used to generate unstructured geometry objects to develop
relevant mesh information

– Read in variables

∗ initialize variables

∗ setup variables

– Initialize host actions

∗ for all host actions

· initialize host action

· setup host action

– compile sequence groups

∗ startOnly

∗ endOnly

∗ perStep

• solve()

– presolve()

∗ initialize hostactions

∗ initialize startOnly or restart sequence
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– for each writeout frame to final time

∗ advance() solution to next frame

· while time less than time of next frame, run step_dt(), which runs step()

function of the time integrator host action.

This shows that the solver is responsible for running the simulation as a whole. In the setup()

function a WmDomain object is initialized, which in turn uses a mesh object to interface with the
unstructured converter library, translating the mesh into usable information for WARPXM. It then
reads in variables and sets up host actions, such as the time integrator. Finally it arranges tasks
into various groups, such as startOnly occurring at the beginning of the simulation, endOnly
occurring only at the end and perStep occurring at each timestep. The solution is advanced in
the solve() function which runs the advance() function to call the time integrator from frame to
frame. The time integrator itself is responsible for continuously advancing the solution within these
frames. It also handles the spatial solvers and variable adjusters to update the right hand side of
the calculation, occurring as patch processes. These components used by the solver (unstructured
converter, host actions, and patch processes) are discussed further in following sections.

2.3 Host Actions

Host Actions (ha)

Patch
Processor

Swapper
Time In-
tegrator

Synchronizer Loader Writers

Host actions are procedures occurring across the entire domain of the calculation. Important
examples include the time integrator (also known as the temporal solver), synchronizer which copies
variables at interface elements between patches on different MPI processes, variable loader which
loads variables from input files, swapper which swaps like variables between time integrator stages,
writers which write variables to output files, and the patchprocessor, which coordinates various
patchprocesses within the domain. They should all have a step() function delineating procedures
to be performed at each time step. At this level various time integration methods could be written.
In this work explicit Runge-Kutta methods as described in Sec. ?? are employed.
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2.4 Patch Processes

Patch Process (pp)

Spatial Solvers Variable Adjusters

Nodal DG

Kinetic Nodal DG

BC

Function Evaluators (IC)

Gradients

Limiters

Moment Takers

These are processes that occur at the patch level and can be called upon by a host action. In
the case of the time integrator host action for example, the spatial solver and variable adjusters
are called. The spatial solver effectively calculates the right hand side of the discretized partial
differential equation in question. In WARPXM, this is the DG method given in Eq. (??). Variable
adjusters, as their name suggests, adjusts the variable being solved for in some way before the time
integration step occurs. This is the effect of boundary conditions applying a given value to a “ghost
boundary node”, gradient solvers (e.g. the application of Eq. (??)), and limiters. Initial conditions
are calculated in a similar manner, but which are only applied as a startOnly step at the beginning
of a simulation. Some more detail of these variables adjusters are given below.

• Boundary Conditions

Boundary conditions specific to equation sets can be written by the end user. If non-periodic
boundary conditions are required, WARPXM creates and extra layer of “ghost” elements
around the domain, upon which boundary conditions can be set on nodes just exterior to the
domain boundary. The user can call these node locations and apply equation-set dependent
boundary conditions. Additionally, “virtual” boundary conditions between subdomains can
be applied. This is useful for simulations solving different equation sets on different subdo-
mains of the domain, but need interface conditions to stitch them together on the subdomain
interfaces, as is needed by the domain-decomposed hybrid method. In these situations, the
“ghost” layer is simply the first layer on the adjacent subdomain.

• Initial Conditions

This module uses applications developed by the end user to create a set of variable adjusters
known as function evaluators on the appropriate subdomains managed by a host action (called
variable adjuster runner) that applies these function evaluators only at the beginning of
the simulation. The user can write applications just like other physics applications for this
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purpose, where the initial conditions are set on variables through the evaluate_function()
method that exists in the application class.

• Gradients

This module is an application of Eq. (??). In a problem involving higher order derivatives, for
each timestep one applies this gradient calculation, followed by a relevant boundary condition
on them, before applying the spatial solver equation. In this work, the local discontinuous
Galerkin (LDG) formulation has been implemented through Eqs. (??) and (??) as well as the
interior penalty (IP) method in Eqs. (??), (??), and (??).

• Limiters

A few limiter implementations of the slope-moment type limiters mentioned in Sec. ?? have
been implemented as variable adjusters. These include limiters described by Moe et al. [7]
and Tu et al. [11]. An artificial viscosity limiter has also been implemented, though as an
application for the spatial solver instead of a variable adjuster, as it effectively adds a term
to the equation set.

2.5 Applications

Applications

MHD 5N -moment Maxwell Kinetics

Ideal MHD

Resistivity

Intraspecies C.

Hall Terms

BC

IC

Euler

Intraspecies C.

Interspecies C.

Maxwell Src.

BC

IC

Maxwell Flux

Fluid Source

BC

IC

Vlasov Flux

BGK

0th Moment

1st Moment

2nd Moment

BC

IC

The actual implementation of the physics models as discussed in Chapter ?? happens at this
level. Specifically, for the DG solver this happens when applying Eq. (??) where F̂λ, F̃λ, and Ŝλ

are determined by the physics model. These are implemented through a set of applications which
the end user writes.
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2.6 Synchronizer

Synchronizer

Patch Synchronizer

The synchronizer manages the information passing between patches within the domain. Nor-
mally, running WARPXM with multiple processes results in the subdomains subdividing into sep-
arate patches, one for each MPI process. The synchronizer holds the element numbers between
patches that need to be synced at particular points in the simulation. It is held by a host action,
such as a time integrator, which uses it to sync data along patch boundaries between timesteps
or variable adjuster applications. Asynchronous sends and receives are used, where data is sent
between adjacent patches, and then each adjacent patch waits to receive its data from the other
patch before moving on in the calculation.

2.7 Array

Array

Array Allocation

Patch Array

The patch array class here sets up a C++ vector in which data is to be stored. Full implemen-
tation is done in the DFEM directory to write this specifically for DG. This array is called by the
DG method to operate on variables at node locations. It also gets written to the hdf5 output on
writeout steps.
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2.8 Basis

Basis

Basis Set Element Bases

Lines

Triangles

Tetrahedrons

Square (1D1V Kinetics)

Cube (1D2V Kinetics)

34-Duoprism (2D2V Kinetics)

This holds element basis information in the form of text files for various element types with
various order. These files are precomputed using mathematica scripts and yield information such as
node locations, basis functions, inverse mass matrices, advection matrices, etc. For kinetics, python
scripts are used to compute bases using tensor products of lower dimensional elements as described
in Sec. ??. The role of the basis set is to translate these text files into variables/arrays/matrices
for use in WARPXM.

2.9 DFEM

DFEM

Array Variable TI Var Adjusters
Spatial
Solvers

Sync

Subdomain

Patch

Distributed Explicit

Implicit

BC

Gradients

Limiters

NDG

Kinetic NDG

Patch

Rank

The DFEM (Discontinuous Finite Elements) module is where the actual implementations of
various host actions, patch processes, variables, arrays, etc. for the DG formulation are written.
From the perspective of object-oriented programming, the base (parent) classes of these modules
are implemented elsewhere but the children classes specific to DFEM implementation are defined
here.
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2.10 Variable

Variable

Variable

Distributed Variable

Distributed Component
Patch Ar-
ray

The variable class holds actual patch arrays for various model components and is used when
writing to and reading from output files. A distributed variable may be of an “MHD Fluid” which
then would have 8 distributed components ([ρ, ρvx, ρvy, ρvz, e, Bx, By, Bz]). Each of these
distributed components holds the patch arrays with their values at various nodes in the patch.

3 Unstructured Framework

The unstructured framework in WARPXM can be thought of as having two primary components,
consisting of

1. Unstructured Converter (UC) Library

2. Geometric Calculations (Unstructured Geometry Object)

3.1 Unstructured Converter Library

UC Library

IO Node Element Face
Element
Group

Domain Basis

The UC library handles incorporation of the mesh file into geometric information that WARPXM
can use and handles subdomain and patch decomposition. It does this through a series of objects
that handle different aspects of the domain decomposition and geometric calculations.

At the highest level, the domain object is the interface class responsible for reading, partition-
ing, accessing and writing unstructured meshes. It holds an element group which is an object that
represents various groups of elements, including full domains, subdomains, and patches. Informa-
tion from the meshfile is converted into these structures. The Metis graph partitioning library [3]
is then invoked by the highest-level element group representing the entire domain to perform patch
partitioning. Further details of how this library is used is in Sec. 3.2.

Contained by the element groups are nodes, elements, and faces, which are also determined from
the meshfile. Nodes are the actual points with coordinates given by the meshfile while elements
are collections of nodes connected by a connectivity mapping. They also hold face objects, also
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determined by connections between nodes. The faces are used to give elements local neighborhoods,
mapping them to neighboring elements through these faces. They also have an orientation, which
determine how a neighboring face is oriented with respect to it, which determines the opposite node
numbers used in numerical flux calculations.

Additionally, a layering calculation is also performed on each element, setting a distance between
an element and the edge of the element group. This collects elements within the element groups
into separate layers, which can be used by the numerical method to apply certain calculations on
specific layers of the element group. External layers are also added, specifying the elements that
must be synchronized with those from an adjacent patch, usually on a different MPI process, during
various stages in simulations. Finally, periodic boundary conditions are enabled by a determination
of conjoining nodes on the domain.

3.2 Metis Partitioning

The goal of the patch partition is to split the domain (or subdomain) up into roughly equivalent
sizes, or weightings, between patches, often with each patch being worked on by a separate MPI
process. Current usage involves a call to the METIS_PartGraphRecursive() function in the Metis
library. This function requires the mesh to be organized into a graph, where “vertices” are the
elements and the “edges” are the element neighbors. Normally, an input mesh file contains 3 sources
of information, the node coordinates, the element connectivities which give nodes that make up
each element, and nodesets which specify boundary nodes. The UC library uses this information
to calculate element neighborhoods which give the neighboring elements along each element face,
as well as the orientation between the faces. The neighborhood information is then called into the
METIS_PartGraphRecursive() function. The information needed by the function needs to be put
in a CSR format where the value array corresponds to locations of an element × element matrix
(though not explicitly given to the function) where we have 1’s (or true’s) where the element in a
row has a neighbor at a column. The column array (called adjncy) corresponds to the neighbors
and the row pointer array (called xadj) allows for indexing into the neighbors for given elements.
The function then partitions the mesh according to a specified number of partitions (the number
of patches the domain is to be decomposed into) and weights for each partition. Current usage
exhibits default behavior in which all patches (often one for each compute device available which
are CPUs in the present system) are weighted evenly so that each patch should contain roughly the
same number of nodes. However, weightings can be given to different processes for load balancing in
case certain compute cores are faster than others, for example if GPUs are additionally used. Also,
if different models are used in different patches, weights can also be assigned due the difference in
computational cost between models.

Metis also provides the functionality to take mesh information directly in the form of connectiv-
ities instead of neighborhoods. In this case, the matrix that the CSR arrays holds can be thought
of an element × node matrix where 1’s (or true’s) are where the element in a row has a node at
a column. The function METIS_PartMeshDual() could be used for this where the column array
becomes instead an array of connectivity nodes per element (denoted as eind) and the rowpointer
array becomes the array to these connectivities per element (denoted as eptr). One specifies the
number of connecting nodes that specify an edge between elements (1 for lines in 1D, 2 for triangles
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in 2D, or 3 for tetrahedrons in 3D), and the Metis library determines neighborhoods on its own
before then performing the graph partition. The advantage of this method is that it can be used
directly with a meshfile that only gives connectivity information and that neighborhoods do not
have to be calculated (though it is calculated in WARPXM for use in the DG algorithm to find
neighboring elements). However at this time, the graph function METIS_PartGraphRecursive() is
used to partition domains and subdomains. Future work should consider adjustments of weights
according to model usages in hybrid simulations for load balancing between partitions.

An example of usage of the Metis partitioning is shown in Appendix ??.

3.3 Geometric Calculations

WMSolver

WMDomain

Mesh UC Domain

WM Unstructured Patch

WM Unstructured Geometry

The output of the unstructured converter library is used to develop elemental geometry in-
formation, such as Jacobians, element centroid locations, area/volumes, etc. These are specific
calculations for various element types, and as element types are added into WARPXM, these cal-
culations must be made. It is created through the mesh which uses the UC Domain object to first
develop an unstructured patch object, which then has the necessary information to populate the
unstructured geometry object with the relevant information. This is then further expanded upon
by the unstructured DG object which adds DG information on to this, such as basis information
and other relevant information required by the DG solver. At the time of writing, the unstructured
geometry object contains the geometric calculations for 1D line, 2D triangle, and 3D tetrahedron
elements based on the information in the mesh file as interpreted by the UC library.

As an example of a Jacobian calculation, consider a 2D isoparametric triangle with three nodes
at (0, 0), (1, 0) and (1, 1), respectively, in a 2D isoparametric space (ξ1, ξ2). Assuming basis expan-
sion as given in Eq. (??), the position in real space for some element λ can be written as

xλ =x̂λ
1ψ1(ξ(x)) + x̂λ

2ψ2(ξ(x)) + x̂λ
3ψ3(ξ(x)), (3.1)

which has a three-node second-order basis. With a nodal basis this becomes

xλ =xλ
1 (1− ξ1(x)− ξ2(x)) + xλ

2ξ1(x) + xλ
3ξ2(x) (3.2)

assuming ξ ∈ (0, 1). So for example, the Jacobian terms are

Jλ =

(
∂xλ

1
∂ξ1

= xλ2 − xλ1
∂xλ

1
∂ξ2

= xλ3 − xλ1
∂yλ1
∂ξ1

= yλ2 − yλ1
∂yλ1
∂ξ2

= yλ3 − yλ1

)
. (3.3)
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Thus, given coordinates from the mesh of an element, λ, the Jacobian can be readily calculated
when required.

4 Kinetic Framework

Kinetic calculations in WARPXM are performed by stacking a velocity space on top the physical
space that already exists. Functionally, this means the distributed variable array, holding variable
values on element nodes are extended into “super elements” that stack all nodes in the velocity
space onto the element for kinetic variables. For example, in the simple case of second-order 1D1V,
nominally there are two nodes per each line element that is allocated into the distributed array.
However, for phase space variables, nodes are added according to the number of nodes in the
corresponding phase space element and the extent of velocity space. In second-order 1D1V, the
phase space element is square. So if velocity space extends 10 elements in vx, then the phase space
super element will consist of 4× 10 = 40 nodes per super element. The kinetic DG implementation
then must correctly calculate node numbers when in phase space. In this way, any arbitrary
geometry in physical space can be used.

5 Domain-Decomposed Hybrid Method

The domain-decomposed hybrid method as described in Sec. ?? can be thought of as a boundary
condition between models at a subdomain interface. The direct variable translation method as
described in Sec. ?? directly translates variables at these subdomain interfaces to the appropriate
model before calculating consistent numerical fluxes. This is performed through virtual boundary
conditions, which set values of variables on internal edges of subdomains that are consistent with
adjacent subdomains’ models. The numerical flux can then be calculated at each subdomain inter-
face using the values consistent with each model. For the composite distribution function method
as described in Sec. ??, the boundary condition calculations can be sidestepped and the numerical
fluxes can be directly calculated, such as by summation of the sided moments of the distribution
functions on either side of a subdomain interface that construct the composite distribution function.

The domain-decomposed hybrid method allows for reduction in required memory and simulation
time due to the fact that certain subdomains can use reduced models with smaller sets of distributed
variables and less computationally-intensive calculations. Future work could make the domain
decomposition dynamic or adaptive, in which the mesh is remapped at periodic intervals using the
Metis partitioning tools as described in Sec. 3.2. Such dynamic remapping of subdomains can be
useful in simulations in which the physical accuracy of models in different regions change over time,
which can be determined using metrics such as χ in Eq. (??).
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